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London penetration depth and pair breaking
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The London penetration depth is evaluated for isotropic materials for any transport and pair-breaking Born
scattering rates. Besides known results, a number of features are found. The slope |dρ/dθ | of the normalized
superfluid density ρ = λ2(0)/λ2(θ ) at the transition θ = T/Tc = 1 has a minimum near the value of the pair-
breaking parameter separating gapped and gapless states. The low-T exponentially flat part of ρ for the s-wave
materials is suppressed by increasing pair breaking. For strong Tc suppression by magnetic impurities the “Homes
scaling” λ−2(0) ∝ σTc with σ being the normal conductivity gives way to λ−2(0) ∝ σT 2

c . For the d-wave order
parameter, the transport and spin-flip Born scattering rates enter the theory only as a sum; in particular, they affect
the Tc depression in the same manner. We confirm that the linear low-temperature behavior of ρ in a broad range
of the combined scattering parameter turns to the T 2 behavior only when the critical temperature is suppressed
at least by a factor of 3 relative to the clean limit Tc0. Moreover, in this range, ρ(θ ) is only weakly dependent on
the scattering parameter, i.e., it is nearly universal.
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I. INTRODUCTION

Within isotropic weak coupling BCS theory, the London
penetration depth λ has been evaluated for any concentration
of nonmagnetic impurities.1–3 Spin-flip scattering suppresses
the critical temperature Tc, the order parameter �, and the
superfluid density making the analytic evaluation of λ more
complicated. Early calculations of Abrikosov and Gor’kov
(AG) for the strong pair breaking in the gapless state,4 of
Skalski et al. and of Maki for the dirty limit,5,6 were done
treating the scattering as weak and employing the Born
approximation.

Later developments related to cuprate d-wave supercon-
ductivity brought about a refined treatment of scattering, the
t-matrix approach, the unitary limit.7–12 In particular, Hir-
shfeld and Goldenfeld showed how the unitary scatter-
ing may reconcile the T 2 low-temperature dependence of
λ(T ) − λ(0) with nearly impurity independent Tc of some
cuprates.10

An unprecedented number of new superconductors have
been discovered since then; the iron-based family of materials
is rich in particular. Most of these materials have the pair-
breaking scattering present to various degrees which are
not yet clearly established.13–15 There are also examples of
long mean-free-path paramagnets or antiferromagnets which
become superconducting with the temperature dependence of
the penetration depth corresponding to a strong pair breaking
(CeCoIn5).16 Hence, the necessity to have at least a qualitative
picture of the pair breaking influence on λ(T ) in a broad range
of scattering parameters.

Accurate methods for measurements of λ(T ), such as
the tunnel-diod resonator, are now available and used to
extract information on the order parameter symmetry. In
this text, besides demonstrating substantial simplifications
brought about by employing the quasiclassical formalism17

to the problem of the penetration depth in materials with pair
breaking, we provide a straightforward numerical procedure

which can be used by those involved in studies of new materials
and confronted with a need to estimate the contribution of pair
breaking to various properties.

For completeness of the presentation we reproduce a
number of well-known results for the s- and d-wave order
parameters, although the properties of the penetration depth
are our main goal and we try to present them in a form
useful to the community dealing with actual measurements.
In particular, we focus on evaluation of the normalized
superfluid density ρ(T ) = λ2(0)/λ2(T ) and show that for
the s-wave case, the slope of this quantity at T → Tc is
a nonmonotonic function of the pair-breaking scattering
parameter. We also show that the pair breaking suppresses
the exponentially flat low-temperature part of ρ(T ) at large
scattering rates which can be confused with the d-wave
behavior.

For the d-wave order parameter, we find that in the Born
approximation the linear low-temperature behavior of λ(T ) is
quite robust with respect to magnetic scattering and turns to
λ ∝ T 2 only for strong pair breaking in agreement with the
conclusions of Ref. 12. This is in a striking difference with
predictions based on unitary scattering limit which suggests
that a small concentration of strong scatterers destroys the
d-wave low-T linear signature of λ(T ).10,11 We find that in the
Born approximation, slopes of ρ(t) = λ2(0)/λ2(θ ) at Tc plotted
vs reduced θ = T/Tc deviate from the clean limit value of 4/3
only in materials with strongly suppressed Tc’s. In addition, we
find that for the isotropic Fermi surface the penetration depth
for the d-wave order parameter � ∝ k2

x − k2
y is isotropic, too

(λc = λab), although this is not required by symmetry. In fact,
the anisotropy of λ has been demonstrated for � ∝ (kx + iky)2

in Ref. 8.
We also find that within our weak coupling model, the

ratio �(0)/Tc (often taken as indicator for the weak or strong
coupling superconductivity), depends on the pair-breaking
scattering and may exceed substantially the weak-coupling
value 1.76.
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II. MAGNETIC IMPURITIES

The system of equations describing superconductivity in
this situation is17

v�f = 2�g − 2ωf + g

τ−
〈f 〉 − f

τ+
〈g〉, (1)

−v�∗f + = 2�∗g − 2ωf + + g

τ−
〈f +〉 − f +

τ+
〈g〉, (2)

g2 = 1 − ff +, (3)

�

2πT
ln

Tc0

T
=

∑
ω>0

(
�

�ω
− 〈f 〉

)
. (4)

j = −4π |e|N (0)T Im
∑
ω>0

〈vg〉. (5)

Here v is the Fermi velocity, � = ∇ + 2πi A/φ0; �(r) is
the order parameter, f (r,v,ω), f + = f ∗(r, − v,ω), and g are
Eilenberger Green’s functions, N (0) is the density of states at
the Fermi level per spin; �ω = πT (2n + 1) with an integer n;
〈...〉 stands for averages over the Fermi surface; j is the current
density.

The scattering in the Born approximation is characterized
by two scattering times, τ for the transport scattering respon-
sible for conductivity in the normal state, and τm for the
pair-breaking magnetic scattering processes:

1

τ±
= 1

τ
± 1

τm

. (6)

The self-consistency equation [Eq. (4)] contains Tc0, the
critical temperature in the absence of magnetic impurities. This
equation is not always convenient because the actual Tc �= Tc0

does not enter explicitly this form. It can be recast to a form
containing Tc, but our numerical procedure based on Eq. (4)
generates—among other things—the actual Tc for a given τm.

A. London penetration depth, s wave

We aim at finding how weak fields penetrate the material,
the problem solved by perturbations. Hence, we have to solve
first for the uniform zero-field state; we denote corresponding
functions as f0,g0,�0. In the isotropic situation of interest
here, the sign of averages over the Fermi sphere can be omitted.
Equations (1)–(4) reduce to

0 =
√

1 − f 2
0 (�0 − �f0/τm) − �ωf0, (7)

�0

2πT
ln

Tc0

T
=

∑
ω>0

(
�0

�ω
− f0

)
. (8)

The first equation here is solved for f0(�0,ω);18 the second
gives �0(T ).5,6,19

Equation (7) is used in literature in a different form.
Introducing u = g0/f0 so that f0 = 1/

√
1 + u2 and g0 = u/√

1 + u2 one obtains4–6

�ω

�0
= u

(
1 − �

τm�0

√
1 + u2

)
. (9)

This equation as well as Eq. (7) can be transformed to a quartic
equation for u or f0.20,21 The result, however, is cumbersome
and we prefer to resort to numerical solutions.

Weak supercurrents and fields leave the order parameter
modulus unchanged, but cause the condensate, i.e., � and the
amplitudes f to acquire an overall phase θ (r). We therefore
look for the perturbed solutions in the form,

� = �0 eiθ , f = (f0 + f1) eiθ ,

f + = (f0 + f +
1 )e−iθ , g = g0 + g1, (10)

where subscripts 1 denote small corrections. In the London
limit, the only coordinate dependence is that of the phase θ , i.e.,
f1,f

+
1 ,g1 can be taken as r independent (taking into account

the r dependence of f1,g1 amounts to nonlocal corrections
to the current response, the question out of the scope of this
paper).2 We obtain

�̃g1 − �ω̃f1 = i�f0v P/2,

�̃g1 − �ω̃f +
1 = i�f0v P/2, (11)

2g0g1 = −f0(f1 + f +
1 ),

where

�̃ = �0 + �f0

2τ− , ω̃ = ω + g0

2τ+ , (12)

and

P = ∇θ + 2π A/φ0 ≡ 2π a/φ0 (13)

is the “supermomentum” related to the “gauge invariant vector
potential” a. In writing down the above system, we used the
fact that all corrections are proportional to v P and their Fermi
surface averages are zeros.

To find the current response, we need only g1:

g1 = i�f 2
0 v P/2

�̃f0 + �ω̃g0
. (14)

The dominator here,

�0

(
f + g

�ω

�0
+ �

2τ�0
+ �

2τm�0
(g2 − f 2)

)
, (15)

is manipulated to a simpler form using �ω/�0 from Eq. (9) to
obtain

�̃f0 + �ω̃g0 = �0/f0 + �/2τ−. (16)

Finally, substituting g0 + g1 in the current density (5) and
comparing the result with the London expression,

4π j/c = −λ−2a, (17)

we obtain for the penetration depth,

λ−2 = 16π2e2T N (0)v2

3c2

∑
ω

f 2
0

�0/f0 + �/2τ− . (18)

If only nonmagnetic scattering is present, the summand re-
duces to �2

0/β
2(β + �/2τ ), β2 = �2

0 + �
2ω2, as it should.1–3

Thus, the general scheme of the λ evaluation consists of
solving the system of Eqs. (7) and (8) for �0(T ) and f0(�0,ω)
for given scattering parameters; �0(T ) and f0(�0,ω) then are
substituted in Eq. (18) for λ.
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B. Numerical procedure

For the numerical work, we introduce dimensionless
scattering parameters,

P = �

2πTc0 τ
, Pm = �

2πTc0 τm

. (19)

The transport scattering parameter P varies between 0 and ∞.
Since τm > τm,crit = 2�/�00 where �0(0) is the order param-
eter at T = 0 in the clean sample, we obtain

0 < Pm < 1/4eγ = 0.1404, (20)

where γ ≈ 0.577 is the Euler constant.
Equations (7) and (8) take the form,

√
1 − f 2

0 (�1 − f0Pm) = t(n + 1/2)f0, (21)

− ln t =
∞∑

n=0

(
1

n + 1/2
− tf0

�1

)
, (22)

where the reduced temperature and the order parameter are

t = T

Tc0
, �1 = �0(T )

2πTc0
. (23)

It is worth noting that nonzero solutions of the system (21)
and (22) exist only for t < tc = Tc/Ic0 with tc satisfying the
Abrikosov-Gor’kov relation,

− ln tc = ψ

(
1

2
+ Pm

tc

)
− ψ

(
1

2

)
, (24)

where ψ is the digamma function. In fact, this relation follows
from Eq. (21) where f 2

0 can be disregarded relative to 1 as
T → Tc. Hence, the numerical solutions of the system (21)
and (22) satisfy t < tc automatically.

Finally, we normalize λ−2 on the clean limit T = 0 value,

λ−2
clean(0) = 8πe2N (0)v2

3c2
= 4πe2n

mc2
(25)

(m is the effective mass; n is the carriers density):

λ̃−2 = λ−2

λ−2
clean(0)

=
∞∑

n=0

t f 3
0

�1 + f0(P − Pm)/2
. (26)

In this work we used MATHEMATICA 9.0 on a HP Z620
Workstation. To obtain the superfluid density, we first solve the
system of Eqs. (21) and (22) for the Elienberger function f0

and the order parameter �1 thus assuring the self-consistency.
Then the penetration depth is found from Eq. (26). This
simple scheme is very efficient from about 0.1Tc to Tc, but
may produce artifacts at lower temperatures due to a finite
upper limit of summations in Eqs. (22) and (26). We therefore
use an analytic approach for T = 0, Appendix C, to verify
numerical results. The agreement obtained in this manner is
shown in the upper panel of Fig. 6 where 105 summations and
several hours for a curve of 100 points was needed. Of course,
the numerical procedure can be optimized by employing a
temperature-dependent upper summation limit. Representative
examples of these calculations are given in Fig. 1.
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FIG. 1. (Color online) (Upper panel) Numerical solution of
Eqs. (21) and (22) for �0(t)/Tc in the absence of magnetic scattering
and for the magnetic scattering parameter Pm = 0.1. The lower
panel shows λ̃2 = λ2

clean(0)/λ2(t) for a few combinations of scattering
parameters P,Pm.

C. T = 0

In solving numerically for �(t) and λ(t), the low-T
region is the most time-consuming. As t → 0, the number of
summations needed for reliable numerical results increases. In
other words, for t = 0 one needs an independent evaluation
procedure to confirm general t-dependent results. Such a
procedure for finding �(0) for a given pair-breaking pa-
rameter Pm had, in fact, been given in the original AG
paper.4,6

To determine �(0) it is convenient to start with the self-
consistency equation in the form,

1

N (0)V
= 2πT

∑
ω>0

f0

�0
=

∫
�ωD

0

d �ω

�0
f0, (27)

where the coupling constant V is related to Tc0: �0(0) =
πTc0e

−γ = 2�ωDe−1/N(0)V .
We now use Eq. (9) to replace integration over �ω in

Eq. (27) with one over u. In our notation, the parameter,

ζ = �

�0τm

= Pm

�1
, (28)

and the integration over u goes from u1 to �ωD/�0, where
u1 = 0 for ζ < 1 and u1 = √

η2
m − 1 for ζ > 1.4,6 One then

obtains that at t = 0, the order parameter satisfies the following
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FIG. 2. (Color online) The zero-T order parameter �1 = �0/

2πTc0 vs pair-breaking scattering parameter Pm according to Eq. (29).
The vertical dashed line Pm = 0.128 separates domains of gapped and
gapless (0.128 < Pm < 0.14) states.

equations (in our notation):

− ln(2eγ �1) = π

4
ζ, ζ < 1, (29)

− ln(2eγ �1) = cosh−1 ζ + 1

2

(
ζ sin−1 1

ζ
−

√
ζ 2 − 1

ζ

)
,

where the second line is for ζ > 1. The numerical solution
�1(0,Pm) of these equations is shown in Fig. 2. The cross
section of the dashed line �1 = Pm with the curve �1(0,Pm)
defines the point where ζ = 1. The first of Eq. (29) then gives
Pm = e−γ−π/4/2 ≈ 0.128. This point separates domains of
gapped, 0 < Pm < 0.128, and gapless, 0.128 < Pm < 0.14,
states. In fact, the value 0.128/0.14 ≈ 0.91 has been estab-
lished by AG as a fraction of critical density of magnetic
impurities where the gap in the electronic spectrum vanishes.

It is instructive to calculate the ratio �0(0)/Tc as a function
of Pm, the quantity often used to identify the superconducting
coupling as weak (�0(0)/Tc ≈ 1.76) or strong (�0(0)/Tc >

1.76). Figure 3 obtained within our weak coupling model
shows that the pair breaking interferes with this clear-cut
“weak–strong” distinction.

Given �1(0,Pm), one can solve Eq. (21) for f0 and evaluate
numerically the penetration depth λ̃−2(P,Pm) at T = 0 with
the help of Eq. (26). The results are shown in Fig. 4. Note
that the parameter P = πξ0/2eγ � ≈ 0.88 ξ0/� so that P = 1
corresponds to ξ0/� ≈ 1.1, i.e., to a quite clean situation.

Another point to stress is that calculations of λ involve the
order parameter �0 rather than the gap �g in the electronic
spectrum measured, e.g., in tunneling experiments. In the
presence of pair breaking the gap calculated according to AG
is �g = �0(1 − ζ 2/3)3/2 and it differs from �0 for all values
of Pm as shown in Fig. 4.

As mentioned, the calculation of λ for T → 0 requires
an exceedingly large number of summations in Eq. (26). We
verify these results with another method designed for T = 0
which does not involve summations (Appendix B). The results
so obtained for λ−2 at T = 0 are shown in Fig. 5.
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FIG. 3. (Color online) �0(0)/Tc vs the magnetic scattering
parameter Pm.

D. Strong pair breaking

This is the case when τm is close to 2�/�0(0), the critical
value for which Tc = 0. According to AG, we have in this
domain �2

0 = 2π2(T 2
c − T 2) or in our units,

�1 = (
t2
c − t2

)/
2. (30)

The superconductivity is weak in this domain, f0 
 1 at all
temperatures under tc.4 Then, Eq. (21) yields in the lowest
approximation,

f0 = �1

t(n + 1/2) + Pm

. (31)

Substituting this in Eq. (26) we obtain

λ̃−2 = 4�2
1

(P − Pm)2

[
ψ

(
Pm

t
+ 1

2

)
− ψ

(
P + Pm

2t
+ 1

2

)

+ P − Pm

2t
ψ ′

(
Pm

t
+ 1

2

) ]
. (32)
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FIG. 4. (Color online) The ratio of zero-T order parameter to Tc

(upper curve) as compared to the T = 0 gap �g/Tc vs pair-breaking
scattering parameter Pm.
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FIG. 5. (Color online) λ̃−2(P,Pm) at T = 0 vs Pm for P = 0,1,

10. The dashed line at Pm = 0.128 separates the gapped (left)
from gapless (right) domains. Since P ≈ ξ/�, the shaded part
roughly corresponds to scattering parameters for majority of real
materials.22,23

Note that P,Pm enter arguments of ψ’s as, e.g.,

P

t
= �

2πTcτ
� 1, (33)

since Tc → 0 for a strong pair breaking. Hence, we can use
large argument asymptotics of functions ψ :

λ̃−2 = 2
(
t2
c − t2

)
(P − Pm)2

(
P − Pm

2Pm

− ln
P + Pm

2Pm

)
, (34)

where the expression (30) has been used.
For the strong pair breaking of interest in this section, Pm

is close to the maximum possible value of 0.14. This implies
that P � Pm practically for any transport scattering in real
materials with P ∼ ξ0/�. Expanding Eq. (34) in small Pm, one
arrives at4

λ̃−2 = t2
c − t2

PmP
. (35)

One obtains readily for T = 0 in common units,

λ−2(0) = 8π2

�c2PmTc0
σT 2

c , (36)

where Pm ≈ 0.14 and σ = 2e2N (0)v2τ/3 is the normal state
conductivity.

It is instructive to compare this with Homes’ scaling
λ−2(0) ∝ σTc which works for a great many materials.22 This
scaling obviously works in the dirty limit where λ−2(0) ∝
σ�0(0). It has been argued recently23 that, in fact, the scaling
extends all the way down to P ≈ 1, i.e., to quite a clean
situation provided no pair-breaking scattering is present [this
also follows from our evaluation of λ−2(0) in Appendix B].

Hence we see that when the pair breaking is strong, the Homes
scaling is violated.

E. Superfluid density

It is a common practice to study the normalized superfluid
density defined as ρ(T ) = λ2(0)/λ2(T ) so that ρ(0) = 1. The
pair-breaking affects the T dependence of ρ in a dramatic way.
Figure 6 shows that in the gapless state with Pm � 0.128 the
flat part of ρ as t → 0 nearly disappears and might be confused
with the linear d-wave behavior. According to Eq. (34) it
should appear again if Pm approaches the critical value
of 0.14.

Until now, we have normalized λ−2(t) on the clean limit
λ−2

clean(0) and employed the reduced temperature t = T/Tc0.
Usually Tc0 is unknown and it is preferable to employ the
actual Tc. Combining the self-consistency Eq. (4) with the AG
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FIG. 6. (Color online) (Upper panel) The superfluid density ρ vs
T/Tc0 for P = 0 and a few pair-breaking parameters Pm shown in
the legend. It is seen that for the gapless state with Pm > 0.128 the
flat low-T part vanishes within the accuracy of this calculation. The
dots at T = 0 are reproduced with the method of Appendix B which
does not involve numerical summations. (Lower panel) The case of
a short transport mean-free path, P = 10, and a few values of the
pair-breaking parameter Pm.
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relation (24) between Tc and Tc0 one can exclude Tc0:

ln
Tc

T
=

∞∑
n=0

(
1

n + 1/2 + ρm

− 2πTf0

�0

)
, (37)

ρm = �

2πTcτm

= Pm

tc
. (38)

We now focus on the slope dρ/dT at Tc. To find this quantity
we need to solve the self-consistency equation as T → Tc

where both �0 and f0 go to zero. We look for solutions of
Eq. (7) in the form f0 = f1 + f2, f2 
 f1 
 1, to obtain

f0 = �0

�ωm

− ω

2ωm

�3
0

�3ω3
m

, ωm = ω + 1

τm

. (39)

Substitute this in Eq. (37) and do the summation:

�2
0 = 16π2T 2

c [ρmψ ′(ρm + 1/2) − 1]

ψ ′′ (ρm + 1/2) + ρm

3 ψ ′′′ (ρm + 1/2)
(1 − θ ), (40)

where θ = T/Tc (not to confuse with t = T/Tc0).
In evaluation of λ−2 of Eq. (18) near Tc, the first term in the

expansion (39) suffices. After simple algebra we obtain

λ̃−2 = �2
0

4π2T 2
c

∑
n

(
n + 1

2
+ ρm

)−2 (
n + 1

2
+ ρ+

2

)−1

= �2
0

2π2T 2
c ρ2−

[
2ψ

(
ρm + 1

2

)
− 2ψ

(
ρ+ + 1

2

)
(41)

+ ρ−ψ ′
(

ρm + 1

2

) ]
, ρ± = �

2πTcτ± = P ± Pm

tc
.

Combining this with Eq. (40) for �0 near Tc and utilizing
λ̃−2(0) calculated above we obtain the slope of the normalized
superfluid density dρ/dθ = (dλ−2/dθ )/λ−2(0) at the transi-
tion, θ = 1.

Results of this evaluation are shown in Fig. 7. Main features
of these curves are (i) with no magnetic scattering, Pm = 0, the

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

1.2

1.5

1.8
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2.4

P = 1 P = 10
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|d
ρ/

dθ
| θ=

1

P
m

P = 0

FIG. 7. (Color online) The slopes of the normalized superfluid
density |dρ/dθ | at the phase transition vs the pair-breaking parameter
Pm for P = 0, 1, and 10 in the down-up order. Note that in the
dirty limit of P � 1 with no magnetic scattering, Pm = 0, the slope
is 2.66.24

slope |dρ/dθ | increases with increasing transport scattering P

from the clean limit value of 2 up to the dirty limit 2.66,24 (ii)
with increasing Pm the slopes decrease and reach minimum
near the boundary between gapped and gapless states at
Pm = 0.128, (iii) in the gapless domain 0.128 < Pm < 0.14,
the slopes increase and tend to the value of 2, in agreement
with AG prediction for this limit.4

III. D WAVE

Equations (1)–(3) hold for any anisotropic order parameter.
We assume a factorizable form of the coupling potential re-
sponsible for superconductivity V (k,k′) = V0�(k)�(k′) and
of the order parameter �(k,r,T ) = �(k)�(r,T ). The self-
consistency equation for the uniform state then takes the form,

�0

2πT
ln

Tc0

T
=

∑
ω>0

(
�0

�ω
− 〈�f 〉

)
. (42)

The function �(k) determines the dependence of � on the
position at the Fermi surface and is normalized: 〈�2〉 = 1.
For the Fermi surface as a rotational ellipsoid, with nodes of
the d-wave order parameter along meridians, � = √

2 cos 2ϕ

where ϕ is the azymuth.25

For the field-free state we average Eq. (1) over the Fermi
surface to obtain 〈f0〉 = 0 so that we have

�0g0 − �ω̃f0 = 0, ω̃ = ω + G

2τ+ , G = 〈g0〉. (43)

Together with Eq. (3) this gives

f0 = �0/β̃, g0 = �ω̃/β̃, β̃2 = �2
0 + �

2ω̃2. (44)

Since ω̃ does not depend on the angle ϕ, we have

G = �ω̃

〈
1

β̃

〉
= �ω̃

2π

∫ 2π

0

dϕ√
2�2

0 cos2 2ϕ + �2ω̃2

= 2�ω̃

π

√
2�2

0 + �2ω̃2
K

(
2�2

0

2�2
0 + �2ω̃2

)
, (45)

where K (m) is the complete elliptic integral of the first kind
with m = 2�2

0/(2�2
0 + �

2ω̃2).26 This equation can be solved
numerically to find G for given t,n,�0, and the scattering rate
1/τ+. Taking 2πTc0 as a unit of energy, we obtain this equation
in dimensionless form,

G = 2ω̃1

π

√
2�2

1 + ω̃2
1

K
(

2�2
1

2�2
1 + ω̃2

1

)
, (46)

�1 = �0

2πTc0
, P + = �

2πTc0τ+ , (47)

ω̃1 = �ω̃

2πTc0
= t

(
n + 1

2

)
+ GP +

2
. (48)

After averaging over the Fermi surface, the self-consistency
equation [Eq. (42)] takes the dimensionless form,

∞∑
n=0

[
1

n + 1/2
− 2t

√
2

π�1

E(m) − (1 − m)K (m)√
m

]
= − ln t,

m = 2�2
1

2�2
1 + ω̃2

1

, (49)
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where E(m) is the complete elliptic integral of the second
kind and the identity

√
1 − mK (m) = K [m/(m − 1)] has been

used. The system of Eqs. (46)–(49) is solved numerically to
obtain the order parameter �1 = �1,max/

√
2.

It is worth noting that for the d-wave symmetry, the trans-
port and magnetic Born scattering enter the self-consistency
Eq. (49) only additively. Hence, both rates affect the order
parameter and, in particular, the critical temperature depres-
sion in exactly the same manner. Formally, this means that
instead of two scattering parameters, P and Pm, one has only
one P + = P + Pm, which simplifies treatment of the d-wave
case as compared to the s wave. In particular, one can show
using Eq. (49) that Tc → 0 when P + → P +

crit ≈ 0.281, twice
the value for Pm,crit for the s wave with magnetic impurities. It
remains to be seen whether or not these features still hold for
other than Born scattering regimes.

The perturbation procedure, as described for the s wave,
yields the correction g1 to g0 in the presence of weak fields:

g1 = i�f 2
0 v P

/
2

�0f0 + �ω̃g0
= i��2

0v P

2β̃3
. (50)

As was done above, one substitutes this in the expression
(4) for the current density and compares the result with the
anisotropic version of London Eq. (17) to get the penetration
depth:

(λ2)−1
ik = 16π2e2T N (0)

c2

∑
ω

〈
vivk�

2
0

β̃3

〉
. (51)

At first sight, for the d-wave order parameter, λ can be
anisotropic even on the Fermi sphere. This, however, is not the
case:

(λ2)−1
aa ∝

〈
v2

a�
2
0

β̃3

〉
= 〈sin2 θ cos2 ϕ �(cos2 2ϕ)〉,

(λ2)−1
cc ∝ 〈cos2 θ �(cos2 2ϕ)〉, � = �2

0

/
β̃3, (52)
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FIG. 8. (Color online) The superfluid density of d-wave super-
conductors for a few values of the combined scattering parameter
P + = P + Pm = �/2πTc0τ

+ shown in the legend; P +
crit = 0.281

corresponds to Tc = 0.
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ρ
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FIG. 9. (Color online) The superfluid density of d-wave super-
conductors vs reduced temperature T/Tc for a few values of P + up
to 0.15 which corresponds to Tc/Tc0 ≈ 0.6. A simple polynomial fit
gives a good approximation of the curves presented.

which are easily shown to be the same. Hence, the tensor
(λ2)−1

ik is reduced to λ−2δik . Apparently, this is the property
of the order parameter � ∝ (k2

x − k2
y) on the Fermi sphere. In

particular, this means that for a d-wave order parameter on a
Fermi sphere, λab(T ) = λc(T ) for any Born scattering, either
transport or magnetic. However amusing this conclusion is, it
suggests that the contribution of the d wave per se to the λ

anisotropy is weak relative to the contribution of anisotropic
Fermi surfaces. It should be noted here that Ref. 8 concludes
that the order parameter of the form (kx + iky)2, a mixture of
two d waves, does produce anisotropy of λ even if the Fermi
surface is a sphere.

We normalize λ−2 on λ−2
clean(0) of Eq. (25) and obtain after

performing the Fermi sphere average,

λ̃−2 = t
√

2

π�1

∞∑
n=0

√
m [K (m) − E(m)] . (53)

This relation for T = 0 has been given in Ref. 7.
The quantity λ̃−2 calculated with the help of Eq. (53) for

a few scattering parameters P + is shown in Fig. 8. We note
that for P + = 0, λ(0) coincides with λclean(0) in agreement
with the general argument based on Galilean invariance: In
the absence of scattering at T = 0 all carriers take part in the
supercurrent independently of the order parameter value or its
symmetry.

Figure 9 shows the normalized superfluid density ρ =
λ−2(T )/λ−2(0) calculated numerically versus reduced temper-
ature T/Tc for a few scattering parameters P +. A remarkable
feature to note: All curves with P + up to about half of the
maximum possible value of 0.28 are nearly the same. In
particular they have the slope at Tc close to the clean limit value
of 4/3. An example of deviations from this nearly universal
form for P + = 0.25 is also shown. We conclude again that the
clean limit d-wave form of ρ(T/Tc) is only weakly sensitive
to the Born scattering.
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FIG. 10. (Color online) Fit of the superfluid density ρ(T/Tc) of
d-wave superconductors to a square polynomial in the interval 0 <

θ < 0.3 showing relative contributions of linear and quadratic terms
with increasing pair-breaking parameter P +. Although as θ → 0,
Bθ2/Aθ → 0, the coefficient B remains comparable to A.

Figure 10 is to demonstrate that the low-temperature
superfluid density ρ can be well represented by a square
polynomial with coefficients dependent on P +.

IV. DISCUSSION

We have studied effects of the transport and pair-
breaking scattering in the Born approximation upon tem-
perature dependence of the penetration depth for s- and
d-wave order parameters on isotropic Fermi surfaces. In
practice of analyzing λ(T ) data, our work may prove useful
since it shows that the pair-breaking scattering changes even
a qualitative character of λ(T ) curves. Examples of Fig. 6 for
the s-wave case demonstrate clearly that a sufficiently strong
pair breaking practically eliminates the flat low-temperature
part of superfluid density curves and makes them qualitatively
similar to the d-wave linear behavior.

For the d-wave symmetry we find nearly universal behavior
of the normalized superfluid density ρ(θ ) = λ2(0)/λ2(θ ) (θ =
T/Tc, not to confuse it with t = T/Tc0) for P + = P + Pm

up to ≈ 0.15 (whereas P +
crit = 0.28 kills superconductivity

altogether).
A note of caution: We consider the scattering in the Born

approximation which, of course, restricts applicability of our
results. To demonstrate how strong the effect of the scattering
approximation might be we show in Fig. 11 the results for the
superfluid density of a d-wave superconductor calculated for a
unitary scattering limit for the same input parameters as those
of Fig. 8. One can see that even a weak scattering eliminates
the linear low-temperature signature of the d-wave order
parameter and transforms it in the T 2 behavior in agreement
with early results.10,27

However, when confronted with data interpretation on new
materials, one never knows up front what kind of scattering
model should be employed, so that it is reasonable to start with
the simplest situation of the Born approximation. Discussion
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FIG. 11. (Color online) (Dashed curves) The superfluid density
for scattering parameters P + of Fig. 8 (shown by solid lines) in the
unitary limit for d-wave superconductors.

of the pair-breaking scattering effects within the t-matrix
approach and in the unitary limit was a subject of a number
of excellent theoretical papers;7–12,27 still, a number of issues
there related to the data interpretation deserve further study
and will be considered elsewhere.
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APPENDIX A: NOTATION

We use a number of dimensional and reduced quantities.
For readers’ convenience we provide a short list below.

Tc0 is the critical temperature in the absence of pair-
breaking scattering.

The reduced temperatures are t = T/Tc0 and θ = T/Tc.
�(T ,r) is the order parameter with the dimension of energy.

�0(T ) with the dimension of energy is the order parameter of
the uniform field-free state. �1(t) = �0(T )/2πTc0.

For the d wave,

�0(T ) = �0,max cos 2ϕ = �0

√
2 cos 2ϕ,

�1,max = �0,max

2πTc0
= �0,max

√
2

2πTc0
= �1

√
2.

APPENDIX B: λ(0)

We offer here a way of evaluating λ(0) which does not
involve summations and can be used to verify λ(T ) obtained
with the help of Eq. (26). At T = 0 Eq. (18) gives for the
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isotropic s wave,

λ̃−2 =
∫

�ωD

0

d(�ω)/�0

(1 + u2)(
√

1 + u2 + η−)
, (B1)

where 1 + u2 = 1/f 2
0 and

η− = �

2τ−�0
= P − Pm

2�1
(B2)

is the relevant scattering parameter. Integration here can be done by going to the variable u as explained in derivation of Eq. (29).
For ζ = Pm/�1 < 1 the integration over u is from 0 to �ωD/�0 and we obtain

I = π

2η−

⎛
⎝1 −

4 tan−1 1−η−√
1−η2−

π

√
1 − η2−

⎞
⎠ + ζ

12η− + 8η3
− − 3π (2 + η2

−)

12η4−
− 2ζ

η4−
√

1 − η2−
tan−1 η− − 1√

1 − η2−
. (B3)

For purely transport scattering, ζ = 0, this reduces to the result of Ref. 23. This expression, in fact, covers arbitrary transport
scattering and the pair breaking up to Pm = 0.128 corresponding to a strong suppression of the critical temperature Tc/Tc0 = 0.22.

In the gapless state with ζ > 1, the integral over u is from
√

ζ 2 − 1 to �ωD/�0. The integration is doable analytically, but the
result is very cumbersome and not really illuminating. One can easily do the integration numerically.
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