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Possible superfluidity of molecular hydrogen in a two-dimensional crystal phase of sodium
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We theoretically investigate the ground-state properties of a molecular para-hydrogen (p-H2) film in which
crystallization is energetically frustrated by embedding sodium (Na) atoms periodically distributed in a triangular
lattice. In order to fully deal with the quantum nature of p-H2 molecules, we employ the diffusion Monte
Carlo method and realistic semiempirical pairwise potentials describing the interactions between H2-H2 and
Na-H2 species. In particular, we calculate the energetic, structural, and superfluid properties of two-dimensional
Na-H2 systems within a narrow density interval around equilibrium at zero temperature. In contrast to previous
computational studies considering other alkali metal species such as rubidium and potassium, we find that the
p-H2 ground state is a liquid with a significantly large superfluid fraction of ρs/ρ = 0.29(2). The appearance
of p-H2 superfluid response is due to the fact that the interactions between Na atoms and H2 molecules are
less attractive than between H2 molecules. This induces a considerable reduction of the hydrogen density which
favors the stabilization of the liquid phase.
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I. INTRODUCTION

Unlike helium, bulk molecular para-hydrogen (p-H2) al-
ways solidifies if a sufficiently low temperature is reached.1

Intermolecular H2-H2 interactions are attractive and quite
intense; hence, even though hydrogen molecules are lighter
than 4He atoms, p-H2 crystallization is energetically favored
over melting in the T → 0 limit frustrating any possibility
to observe superfluidity (SF) or Bose-Einstein condensation
(BEC) in bulk. Putting this into numbers, molecular hydrogen
becomes a solid at temperatures below Tt ∼ 14 K, whereas
the critical temperature at which BEC and SF are expected
to occur is Tc ∼ 1 K.2 In spite of that, many experimental
attempts have focused on supercooling bulk liquid p-H2 below
Tc, although unfortunately with no apparent success to date.3,4

A likely way to induce superfluidity in molecular hydrogen
consists in lowering its melting temperature by reducing its
dimensionality and/or confining it to restricted geometries.
Following this line of thinking many experimental and
theoretical studies have focused on the characterization and
analysis of p-H2 films adsorbed on different substrates.5–8

For instance, two-dimensional hydrogen has been observed
to freeze at temperatures around 5 K when placed onto an
exfoliated graphite plate.9 Also, it has been experimentally
shown that small para-hydrogen clusters immersed in 4He
droplets exhibit superfluidlike behavior.10 On the theoretical
side, it has been predicted that one-dimensional arrays of p-H2

molecules remain in the liquid phase down to absolute zero11

and that small two- and three-dimensional clusters of pure
p-H2 are superfluid at temperatures below 1–2 K.12,13

An alternative way to induce superfluidity in molecular
para-hydrogen may consist in embedding alkali metal (AM)
atoms on it. This idea was originally proposed by Gordillo and
Ceperley (GC)14 and is based on the fact that the interactions
between alkali metal atoms and molecular hydrogen are
less attractive than between p-H2 molecules. Therefore, a
substantial reduction of the equilibrium hydrogen density

can be induced which triggers stabilization of the liquid. In
particular, GC investigated two-dimensional AM-H2 (AM = K
and Cs) systems at low temperatures (i.e., 1–4 K) employing
the path integral Monte Carlo (PIMC) technique. They found
that the p-H2 equilibrium state in AM-H2 films was a liquid
of concentration ∼0.04 Å−2 which became superfluid at
temperatures below 1.2 K. Nevertheless, a few years later
Boninsegni15 found, using a very similar approach to GC
and attempting extrapolation to the thermodynamic limit,
that the hydrogen equilibrium state in K-H2 films was a
crystal commensurate with the underlying lattice of alkali
metal atoms. The superfluid fraction of such a commensurate
system was equal to zero as reported by Boninsegni. Almost
simultaneously to the publication of Boninsegni’s work,15

Cazorla and Boronat presented a ground-state study (i.e.,
performed at zero temperature) of a two-dimensional system
composed of Rb atoms and hydrogen molecules.16 By using
the diffusion Monte Carlo (DMC) method and somewhat
more realistic AM-H2 potentials than adopted by GC and
Boninsegni, they found that the p-H2 ground state in the
Rb-H2 film was a highly structured liquid with a practically
suppressed superfluid fraction of ρs/ρ = 0.08(2). Overall,
these theoretical predictions appeared to suggest that the
embedding of alkali metal atoms on hydrogen matrices was
not an effective strategy to trigger p-H2 superfluidity.

In this work we report an exhaustive diffusion Monte Carlo
(DMC) study of the ground-state properties (i.e., energetic,
structural, and superfluid) of p-H2 molecules within a two-
dimensional solid matrix of sodium (Na) atoms. Our main
finding is that the p-H2 ground state is a liquid that possesses
a remarkably large superfluid fraction of ρs/ρ = 0.29(2). The
reason behind such a large superfluid response lies in the details
of the Na-H2 interaction, which presents a smaller repulsive
core as compared to other AM-H2 pairwise potentials.

The organization of this article is as follows. In the next
section we provide a brief description of the DMC method and
the details of our calculations. Next, we present our results and
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compare them with previous computational works. Finally, we
summarize our main findings in Sec. IV.

II. METHODS AND SIMULATION DETAILS

The basics of the diffusion Monte Carlo (DMC) method
have been reviewed with detail elsewhere17–20 so here we only
comment on the essential ideas.

In the DMC approach, the time-dependent Schrödinger
equation of a quantum system of N interacting particles
is solved stochastically by simulating the time evolution of
the Green’s function propagator e− i

h̄
Ĥ t in imaginary time

τ ≡ it
h̄

. For τ → ∞, sets of configurations (walkers) {Ri ≡
r1, . . . ,rN } rendering the probability distribution function
(�0�) are generated, where �0 is the ground-state wave
function of the system and � is a guiding wave function (gwf)
used for importance sampling. Within DMC, exact results
(i.e., subject only to statistical uncertainties) are obtained for
the total ground-state energy and related quantities in bosonic
quantum systems.21–23

We are interested in studying the ground state of a system of
p-H2 molecules immersed in a two-dimensional solid matrix
of Na atoms. We model the Hamiltonian of this system as

H = − h̄2

2mH2

N∑
i=1

∇2
i +

N∑
i<j

VH2-H2 (rij ) +
N,n∑
i,k

VNa-H2 (Rik),

(1)

where mH2 is the mass of a p-H2 molecule, N is the number
of hydrogen molecules, n is the number of alkali metal
atoms, and VH2-H2 and VNa-H2 are semiempirical pairwise
potentials describing the H2-H2 and Na-H2 interactions. The
internal structure of p-H2 molecules has been neglected (i.e.,
vibrational and rotational degrees of freedom are disregarded)
and the hydrogen-hydrogen molecular interactions have been
modeled with the standard Silvera-Goldman potential.24 The
interactions between Na atoms and H2 molecules are de-
scribed with a Lennard-Jones potential of the form VLJ(r) =
4ε[(σ/r)12 − (σ/r)6], with parameters taken from Ref. 25,
namely σ = 4.14 Å and ε = 30 K. The kinetic energy of the
Na atoms has been also neglected since this is expected to be
much smaller than the typical energy scale of p-H2 molecules
(i.e., 10–100 K).

It is worth noticing that despite asymptotic DMC results do
not depend on the choice of the guiding wave function (gwf),
the algorithmic efficiency in DMC runs is influenced by the
quality of �. The guiding wave function that we use to describe
the present Na-H2 system contains correlations between the N

H2 molecules [f2(rij )] and the N H2 molecules and n alkali
metal atoms [F2(Rij )]. In the liquid phase this gwf reads

�L (r1,r2, . . . ,rN ) =
N∏

i<j

f2(rij )
N,n∏
i,k

F2(Rik), (2)

where two-body correlation factors f2(r) and F2(r) have been
chosen of the McMillan form, i.e., exp[− 1

2 (b/r)5], and Rik

is the distance between the ith p-H2 molecule and the kth
alkali atom. In order to compute the energy of possible solid
pseudocommensurate phases (see next section for details), we

adopted the guiding wave function

�S (r1,r2, . . . ,rN ) = �L

N∏
i=1

g1(ξi), (3)

where one-body factors g1 are Gaussians, i.e., exp(− 1
2cr2),

and ξi is the distance of the ith p-H2 molecule to its site in
the corresponding perfect lattice configuration. The value of
all variational parameters were determined through subsidiary
variational Monte Carlo calculations. In the liquid phase these
resulted in b = 3.70 Å (f2) and 5.60 Å (F2), and in the solid
phase, b = 3.45 Å (f2), 5.60 Å (F2), and c = 1.22 Å−2 (g1).

In our simulations, both the alkali metal atoms and p-H2

molecules are arranged in a strictly two-dimensional geometry.
Na atoms are considered static and distributed according to a
triangular lattice of parameter 10 Å. It is worth noticing that
such an alkali metal geometry is realistic since it has been
experimentally observed in Ag(111) plates.26–28 In order to
determine the equation of state and ground-state properties of
the liquid H2 film, we kept the number of alkali metal atoms
fixed to 30 and progressively increased the concentration of
p-H2 molecules. The typical size of our simulation boxes
is 50 Å × 50 Å. The value of the technical parameters in
the calculations were set to ensure convergence of the total
energy per particle to less than 0.1 K/atom. For instance,
the mean population of walkers was equal to 400 and the
length of the imaginary time step (�τ ) to 5 × 10−4 K−1.
Statistics were accumulated over 105 DMC steps performed
after equilibration of the system and the approximation used
for the short-time Green’s function e−Ĥ τ is exact up to order
(�τ )2.20,29 It is important to stress that by using the same DMC
method we have been able to reproduce in previous works the
experimental equation of state of archetypal quantum solids
like 4He, H2, LiH, and Ne.30–38

III. RESULTS AND DISCUSSION

Let us to start by presenting the energy results obtained in
the liquid Na-H2 system. The corresponding total, potential,
and kinetic energies per hydrogen molecule expressed as a
function of density are enclosed in Table I (potential energies
were obtained with the pure estimator technique, hence all
the reported energies are exact, i.e., subject to statistical un-
certainty only22,23). The ground-state energy and equilibrium
density of the liquid film e0 and ρ0 were determined by fitting

TABLE I. Total (E), potential (V ), and kinetic (T ) energies per
p-H2 molecule calculated in the liquid H2 system and expressed in
units of K.

ρ (Å−2) E/N 〈V 〉/N 〈T 〉/N
0.029 − 45.04(4) − 63.65(7) 18.61(7)
0.031 − 45.66(3) − 65.52(5) 19.86(5)
0.033 − 46.24(2) − 67.02(5) 20.78(5)
0.036 − 46.93(2) − 69.36(7) 22.43(7)
0.038 − 47.13(2) − 71.57(7) 24.44(7)
0.040 − 46.86(3) − 72.95(5) 26.09(5)
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FIG. 1. (Color online) Representation of the three pseudocommensurate crystal structures considered in this work. Big red dots represent
sodium atoms and small green dots p-H2 molecules.

the polynomial curve

e(ρ) = e0 + B

(
ρ − ρ0

ρ0

)2

+ C

(
ρ − ρ0

ρ0

)3

(4)

to the calculated total energies. The resulting optimal parame-
ter values are B = 86.16 K, C = 221.69 K, ρ0 = 0.038 Å−2,
and e0 = −47.13 K. We note that the liquid ground-state
energy and equilibrium density are significantly different
from those computed in the pure two-dimensional p-H2

crystal, namely −23.41 K and 0.067 Å−2.30 These large total
energy and equilibrium density differences have their origin
in the potential energy gain and steric effects deriving from
the presence of sodium atoms. Also, we observe that the
equilibrium density of the liquid H2 film is appreciably larger
than the calculated in the analogous Rb-H2 system, namely
0.023 Å−2 (Ref. 16) (e.g., the ratio among the number of
p-H2 molecules and alkali metal atoms are 10/3 and 2/1,
respectively). The cause for the large equilibrium density in
the Na case, as compared to that of the Rb system, is related
to the decrease of the core size of the AM-H2 interaction
(i.e., σ = 4.54 Å in the Rb-H2 case), which makes the surface
available to p-H2 molecules larger (we note that the depth of
the potential wells ε in both Na-H2 and Rb-H2 interactions are
very similar, i.e., 30 and 28 K, respectively25).

Regarding the stabilization of possible pseudocommensu-
rate solid phases, we investigated the three crystal structures
shown in Fig. 1 We refer to them as pseudocommensurate
phases because in order to fully fulfill commensurability
some p-H2 molecules should be located at the same x-y
positions as alkali metal atoms. Since the system considered
in the present study is strictly two dimensional, this positional
coincidence is energetically forbidden. Therefore, we started
by generating the exact C1/3, C1/4, and C1/7 commensurate
structures (where the subscripts indicate the relative population
of alkali and hydrogen species) and then removed by hand
the p-H2 molecules located at the same positions as sodium
atoms (hence the prime in our notation). In Table II we enclose
the energy results obtained for those pseudocommensurate
structures. It is found that of the three cases considered C ′

1/4
is by far the system with the lowest energy. Interestingly, the
density of the C ′

1/4 phase (i.e., 0.035 Å−2) is very close to
the equilibrium density found in the analogous liquid system
(i.e., 0.038 Å−2). Moreover, from a structural point of view
the pseudocommensurate C ′

1/4 phase is very similar to the
equilibrium state predicted by Boninsegni in K-H2 films at

low temperatures (see Fig. 3 in Ref. 15). Nevertheless, the
total energy per particle of the C ′

1/4 phase is about 0.9 K larger
than the energy of the corresponding fluid at equilibrium and
thus, according to our calculations, the ground state of the
Na-H2 system is a liquid. In view of these findings, we will
concentrate on the description of the liquid H2 system in the
remainder of this article.

In Fig. 2 we show a snapshot of the probability density
calculated for the ground state of the Na-H2 system. There
it is observed that hydrogen molecules can access a large
portion of the surface left between Na atoms by diffusing
through honeycomblike pathways created around the alkali
metal centers. This situation is eminently different from the
one observed in Rb-H2 films, where a highly structured liquid
is found to be the ground state (see Ref. 16 and Fig. 2). In
this last case, most of p-H2 molecules are localized within
the interior of the triangles formed by Rb atoms and the
connectivity between high-density p-H2 regions is rather low.
The probability density differences observed between Na-H2

and Rb-H2 systems again can be understood in terms of the
core lengths of the corresponding AM-H2 interactions.

The enhanced delocalization of p-H2 molecules in the Na-
based film can be also deduced from the shape of the pair-
radial distribution functions calculated with the pure estimator
technique.22,23 In Fig. 3 one can observe that the peaks of
the crossed gNa-H2 distribution function are less sharp than
those obtained in the analogous Rb-H2 system [g(r) results
from Ref. 16 have been included in the plot for comparison
purposes]. Also, the first peak of the gH2-H2 function centered
at r = 3.9 Å is a global maximum and does not coincide with
the position of the first gNa-H2 peak found at r = 5.1 Å, so
implying a high concentration of p-H2 molecules. These last
features are in opposition to what is observed in the Rb-H2

film, where the first and second gH2-H2 peaks centered at 5.2
and 10.3 Å can be ascribed to the hexagonal-like pattern that

TABLE II. Total (E), potential (V ), and kinetic (T ) energies per p-
H2 molecule calculated in three different pseudocommensurate solid
H2 systems and expressed in units of K.

Phase ρ (Å−2) E/N 〈V 〉/N 〈T 〉/N
C ′

1/3 0.023 − 41.56(2) − 53.74(3) 12.18(3)
C ′

1/4 0.035 − 46.28(2) − 67.76(5) 21.48(5)
C ′

1/7 0.069 58.47(2) − 22.11(4) 80.58(4)
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FIG. 2. (Color online) Snapshot of the probability density of two-
dimensional p-H2 (green dots) calculated in the liquid Na-H2 (Na =
red dots, top) and Rb-H2 (Rb = blue dots, bottom) films at equilibrium
(i.e., 0.038 and 0.023 Å−2, respectively) and zero temperature.

results from filling the triangles formed by Rb atoms with one
p-H2 molecule.

In order to better assess the structure of the p-H2 molecules
in the Na film, we calculated the corresponding structure
factor S(k) using the pure estimator technique22,23 (see Fig. 4).
This has been obtained through estimation of the expected
value of the density fluctuation operator 1√

N

∑N
i exp(−ik · ri),

multiplied by its conjugate. Quantities gH2-H2 and S(k) are
obviously related by a Fourier transform. In Fig. 4 one can
observe the presence of two sharp S(k) peaks centered at
reciprocal lattice vectors that essentially coincide with the
periodicity imposed by the triangular Na lattice (i.e., at k =
0.75 and 1.5 Å−1). However, no other large scattering peaks
signalizing the appearance of a solid or glassy state are seen in
the figure. The p-H2 film, therefore, appears to be a fluid. We
note that moderate structure factor fluctuations around unity
appear in the regime of large k’s; these are probably due to the
large H2-H2 distance variations that hydrogen molecules may
experience when they are close to an alkali metal center.

As an additional test, we also monitored the average
distance that the p-H2 molecules move away from the Na
atoms which at the start of the simulation are closest to them.
We plot this quantity as a function of imaginary time in Fig. 5.
As it can be appreciated, function �r(τ ) = 〈|ri(τ ) − Rni(0)|〉
monotonically increases with τ reproducing so the typical
profile that is obtained in bulk fluids (i.e., is roughly linear).
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FIG. 3. (Color online) Pair-radial distribution functions (pure
estimation) obtained in the liquid Na-H2 (top) and Rb-H2 (bottom)
films at their corresponding equilibrium densities.

Assuredly, then, the simulated p-H2 system remains in a liquid
phase. For comparison purposes, we include also in Fig. 5
the diffusion profile obtained in the equivalent Rb-H2 system
under equilibrium conditions. In this last case, the mobility of
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FIG. 4. Molecular hydrogen structure factor (pure estimation)
obtained in the liquid Na-H2 system at the equilibrium density. Peaks
ascribed to the periodicity of the underlying sodium film are indicated
with arrows.
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FIG. 5. (Color online) Averaged mean distance of p-H2 molecules
to the nearest Na and Rb atoms at the start of the simulations carried
out at the respective equilibrium densities.

the hydrogen molecules is practically suppressed as shown by
the computed d�r/dτ ∼ 0 slope.

In order to complete our description of the Na-H2 film, we
estimated the superfluid fraction ρs/ρ of the p-H2 subsystem.
This can be achieved within the DMC formalism by extending
to zero temperature the winding number technique employed
in PIMC calculations.39,40 This generalization essentially
consists of reinterpreting the winding number in terms of the
trajectory of particles in DMC simulations subject to periodic
boundary conditions. In particular, ρs/ρ is computed as the
ratio of two diffusion constants Ds/D0 in the imaginary time
limit τ → ∞, where D0 = h̄2/(2mH2 ) and

Ds = lim
τ→∞

N

4τ

∫
dRf (R,τ ) [Rc.m.(τ ) − Rc.m.(0)]2∫

dRf (R,τ )
. (5)

In Eq. (5), Rc.m. = (1/N )
∑N

i=1 ri represents the position of
the p-H2 center of mass, f (R,τ ) is the probability distribution
�0�, and the factor of 4 in the denominator corresponds to
two times the dimensionality. In Fig. 6 we plot the Ds/D0

function computed at two different densities and expressed as
a function of imaginary time. From the Ds/D0 asymptote
we estimate the superfluid fraction of the hydrogen liquid
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FIG. 6. (Color online) Diffusion Monte Carlo estimation of the
p-H2 superfluid density in Na films at different densities.

at equilibrium to be 0.29(2), a quite large value. It is worth
recalling that the superfluid fraction computed in the equivalent
Rb-H2 system was much smaller, namely ρs/ρ = 0.08(2).16

This significant ρs/ρ difference is a direct consequence of the
increase in the p-H2 concentration at equilibrium, which in turn
depends on the form of the AM-H2 interaction. Furthermore,
we calculated the superfluid response of the Na-H2 film at a
density slightly above the equilibrium point (see Fig. 6) and
found that the value of the Ds/D0 asymptote decreases [i.e.,
0.23(2) at ρ = 0.040 Å−2]. This last finding points out to a
strong dependence of the superfluid fraction on ρ due to the
effect of excluding surface produced by the presence of static
Na atoms. We note that the finite size of the simulation box
could induce some dependence of the superfluid fraction on
the number of particles. In order to reduce this effect, however,
we worked with a rather large simulation box of typical size
50 Å × 50 Å (i.e., as large as the one employed in Ref. 15,
where suppression of p-H2 superfluidity in a potassium film
was predicted). Also the effect of adding a third dimension
in the direction that is perpendicular to the alkali metal plane
could change our ρs/ρ results. However, based on previous
outcomes obtained in pure two- and quasi-two-dimensional
4He systems,34 we foresee that considering this effect, within
the typical values observed in adsorbed monolayers, will
further enhance superfluidity.

In the light of our energy, structural, and superfluid fraction
results obtained in alkali-H2 films (see Ref. 16) it may be
concluded that (i) the softer the repulsive core of the crossed
AM-H2 interaction is, the larger the p-H2 equilibrium density
and superfluid fraction result, and (ii) the superfluid response
of two-dimensional p-H2 films strongly depends on density.

IV. CONCLUSIONS

Summarizing, we have performed an exhaustive diffusion
Monte Carlo study of the energetic, structural, and superfluid
properties of a p-H2 two-dimensional system in which Na
atoms have been embedded forming a triangular lattice. The
main motivation of this computational study was to investigate
whether hydrogen crystallization could be prevented in two
dimensions and, if so, to estimate the superfluid response of the
corresponding p-H2 subsystem at zero temperature. We have
found, in contrast to previous computational works considering
other alkali metal species and AM-H2 potentials, that the
p-H2 ground state in the Na film is a liquid that possesses
a remarkably large superfluid fraction [i.e., ρs/ρ = 0.29(2)].
The principal reason behind the stabilization of this fluid
relies on the fact that Na-H2 interactions are less attractive
than H2-H2 and thus a significant reduction of the hydrogen
equilibrium density occurs. Also, we have found that the
energetic, structural, and superfluid properties of p-H2 films
strongly depend on density.

Importantly, we note that small variations of the crossed
AM-H2 potential parameters may lead to appreciable dif-
ferences on the computed p-H2 properties. Therefore, since
there are few potentials in the literature which describe the
interactions between alkali metal atoms and p-H2 molecules
accurately, and those which have been reported probably are
not too versatile, we must be cautious with our conclusions.
More realistic and transferable alkali-H2 potentials than
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currently available are urgently needed to provide decisive
hints in the quest for realizing p-H2 superfluidity. Nevertheless,
in view of the great fundamental interest of possible p-H2

superfluidity, we strongly encourage experimental realizations
of molecular hydrogen films adsorbed on Na substrates.
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possible to obtain virtually exact results for [Â,Ĥ ] �= 0 operators
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