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Electric control of a {Fe4} single-molecule magnet in a single-electron transistor
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Using first-principles methods, we study theoretically the properties of an individual {Fe4} single-molecule
magnet (SMM) attached to metallic leads in a single-electron transistor geometry. We show that the conductive
leads do not affect the spin ordering and magnetic anisotropy of the neutral SMM. On the other hand, the leads
have a strong effect on the anisotropy of the charged states of the molecule, which are probed in Coulomb
blockade transport. Furthermore, we demonstrate that an external electric potential, modeling a gate electrode,
can be used to manipulate the magnetic properties of the system. For a charged molecule, by localizing the extra
charge with the gate voltage closer to the magnetic core, the anisotropy magnitude and spin ordering converges
to the values found for the isolated {Fe4} SMM. We compare these findings with the results of recent quantum
transport experiments in three-terminal devices.
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I. INTRODUCTION

In recent years, molecular spintronics has emerged as one
of the most active areas of research within magnetism at
the atomic scale.1–6 Progress in the field is driven in part
by advances in chemical design and synthesis, which allow
the realization of interesting magnetic molecules with desired
electronic and magnetic properties. A second essential feature
of ongoing research is the improved ability of integrating
individual magnetic molecules into solid-state nanoelectronic
devices.

Typically, magnetic molecules have long spin-relaxation
times, which can be utilized in high-density information
storage. They are also usually characterized by a weak hyper-
fine interaction with the environment, resulting in long spin-
coherence times, which is an essential property for applications
in quantum information processing. Single-molecule magnets
(SMMs) are a special class of spin-ordered and/or magnetically
active molecules characterized by a relatively high molecular
spin and large magnetic anisotropy energy.7 The latter lifts
the spin degeneracy even at zero magnetic field, and favors
one particular alignment of the spin, making the molecule a
nanoscale magnet.

One of the goals of molecular spintronics is to address the
magnetic states of individual magnetic molecules with electric
fields and electric currents. In the last six years, experimental
efforts toward this goal have considered different classes
of magnetic molecules and strategies to incorporate them
into electric nanocircuits. A particularly interesting direction
focuses on quantum transport in a single-electron transistor
(SET), a three-terminal device where a SMM bridges the
nanogap between two conducting nanoleads, and can further be
electrically manipulated by the gate voltage of a third nearby
electrode. In the regime of weak coupling to the leads, the
electric charge on the central SMM is quantized and can be
controlled by the external gate. When Coulomb blockade is
lifted by either gate or bias voltages, transport occurs via
tunneling of single electrons in and out of the SMM. Therefore,
a study of transport in this geometry can provide detailed

information on the magnetic properties of individual SMMs,
both when the molecule is neutral and when it is electrically
charged.

Early SET experiments on SMMs (Refs. 8 and 9) focused on
the archetypal SMM {Mn12} acetate,7,10 characterized by the
ground-state spin S = 10 and a large magnetic anisotropy bar-
rier of approximately 50 K. Unfortunately, these experiments
and studies of self-assembled molecules on gold surfaces11

have shown that the magnetic properties of {Mn12} complexes
are extremely fragile and easily disrupted when the molecule
is attached to metallic leads or surfaces.

More recently, another class of SMMs, namely the tetranu-
clear {Fe4} molecule, has emerged as a candidate in molecular
spintronics that does not suffer the drawbacks of {Mn12}. The
properties of {Fe4} in its neutral state are well studied in the
crystal phase12,13 and include a molecular ground-state spin
S = 5 and an intermediate magnetic anisotropy barrier ≈15 K.
In contrast to what happens with {Mn12}, these magnetic
characteristics remain stable when the molecule is deposited on
a gold surface.14,15 Furthermore, its tripodal ligands are shown
to be advantageous for the preparation of single-molecule
electronic devices. Indeed, recent three-terminal quantum
transport experiments,16–18 with {Fe4} as the central island
of a SET, show that this molecule behaves indeed as a
nanoscale magnet, even when it is wired to metallic leads.
The magnetic anisotropy is significantly affected by adding
or subtracting single charges to the molecule,16 an operation
that can be performed reversibly with the gate voltage. More
refined techniques18 allow the extraction of the magnetic
anisotropy of the neutral and charged molecule from the
transport measurements with unprecedented accuracy.

In this paper, we carry out density functional theory
(DFT) calculations to evaluate the magnetic properties of a
{Fe4} connected to gold electrodes and under the effect of
an external electric field representing a gate voltage. The
geometry considered here is supposed to model the typical
situation realized in current SET experiments, although some
details might be different. The main aim of our work is
to investigate theoretically how the spin ordering and the
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magnetic anisotropy of {Fe4} are affected by weak coupling
to the leads, both when the molecule is in its neutral state
and when a single charge is added to or subtracted from
the device. A second important objective of the paper is
a theoretical analysis of how these magnetic properties can
be modified and controlled by means of an external electric
potential representing a gate electrode.

Although a full-fledged first-principles study of quantum
transport is beyond the scope of this paper, as we explain
in the following, we believe that our analysis of the charged
states under the effect of an external electric field is useful to
develop methods to compute the tunneling conductance within
a master-equation formalism. Reference 19 introduced a DFT
description of the neutral and charged states of an isolated
{Mn12} SMM, which were then used in a master-equation
formalism for quantum transport. Here, the coupling to the
leads was treated phenomenological tunneling amplitudes
taken from experiment. In Ref. 20, charge transport through
a Mn12 SMM attached to two Au electrodes was studied in
the regime of strong coupling between molecule and leads,
by means of a nonequilibrium Green’s function (NEGF)
approach combined with density functional theory. Similar
approach and techniques were used in Ref. 21 to investigate
the bias-dependent transport properties of the same system in
the strong coupling regime. It was shown21 that hybridization
of the Mn12 SMM energy levels in an external electric field
generates features in the I-V curves that depend on the internal
spin configuration of the molecule. Transport calculations
carried out in the same transport regime using NEGFs but
based on microscopic tight-binding models have also been
considered.22 The approach based on NEGFs, suitable for
strong coupling, has the drawback that charging effects,
essential for the description of SET experiments, can not be
adequately incorporated.

In this sense, this paper is a further contribution to these
early attempts to use first-principles methods based on DFT to
investigate quantum transport in a SET with a SMM. We are
aware that the use of DFT can be problematic when it comes to
describing the electronic structure and Fermi level alignment
of molecules coupled to external electrodes, particularly when
charged states are involved. Assessing the limitations of DFT
in this context is also a technical aim of this paper. In this
regard, we discuss potential uncertainties in the relative level
alignment of the electrode and molecular states.

The main findings of our analysis are the following. The
SMM {Fe4} in its neutral state is indeed quite robust against the
presence of metallic leads: both spin ordering and magnetic
anisotropy are essentially identical to the one of the isolated
molecule. For the case of a charged molecule, the effect of
the leads is more complex. Our calculations show that the
extra charge tends to reside primarily on the ligands between
molecule and metallic leads, and only minimally on the
magnetic core. As a result, the addition of electrons affects
the magnetism of the molecule (specifically the magnetic
anisotropy) considerably less than when the molecule is
isolated. We find that an external gate voltage can be used
to localize the extra charge closer to the central magnetic core,
and in this case the magnetic characteristics of the device
converge to those of the isolated {Fe4} SMM. Some details
of the results presented here might depend on the ligands

used to attach the molecule to the leads. The choice adopted
here is quite typical and in part suggested by experimental
work on magnetic molecules functionalized on Au surfaces
and SET devices. Nevertheless, other variations, involving
different chemical entities, are possible, and their effect on
the properties of the system should be further investigated.

The organization of this paper is as follows. In Sec. II,
we present an overview of the theoretical and computational
approach employed in this work. The electronic and magnetic
properties of different charge states of the isolated {Fe4} SMM
is discussed in Sec. III. The effects of the metallic leads
on the properties of the molecule are discussed in Sec. IV.
In Sec. V, we discuss how a confining electric potential
affects the magnetic properties of the molecule. In Sec. VI,
we compare the results of our calculations with recent SET
transport experiments. Finally, in Sec. VII we summarize our
results.

II. THEORETICAL BACKGROUND

A. Spin Hamiltonian and the giant-spin model

In a first approximation, the exchange interaction between
the magnetic ions of a molecular magnet can be described by
an isotropic Heisenberg model

H =
∑
ij

Jij si · sj , (1)

where si is the spin of the magnetic ion i and the constants
Jij describe the superexchange coupling between ions i and
j . Clearly, the validity of Eq. (1) relies crucially on the
assumption that each magnetic ion is characterized by a
well-defined quantum spin, localized at the ion position.
There might be cases where the spin polarization of the
molecule is delocalized, where this assumption may break
down. Such cases are especially probable when an excess
tunneling electron is present. Once the exchange constants
are known, the Hamiltonian can be diagonalized. Since H is
a sum of scalars in spin space, it commutes with the total spin
S. Therefore, the eigenvalues of S2 and Sz can be used to label
the eigenstates of H .

In the case of single-molecule magnets, the ground state
(GS) of Eq. (1) is characterized by a relatively large spin S,
and it is separated by a fairly large energy �J ≡ Max{ij}[Jij ]
from excited states with different total spins. Thus, at low
energies <�J the magnetic molecule behaves effectively as
an atom with a relatively large spin S, known as giant spin.
The approximation of restricting to the lowest-spin multiplet
is known as giant-spin model. According to Eq. (1), each spin
multiplet is degenerate. In the next section, we will discuss
how spin-orbit interaction lifts this degeneracy, splitting the
2S + 1 states of the GS multiplet.

Note that the ground-state spin S is not always the
maximum value Smax allowed by Eq. (1). Due to the presence
of antiferromagnetic components, the most common situation
encountered in SMMs is an intermediate value 0 < S < Smax,
which quasiclassically corresponds to a ferromagnetic spin
configuration. Following, we will show how all the physical
quantities entering in the spin Hamiltonian of Eq. (1) and the
value of the giant spin S can be calculated within DFT.

224423-2



ELECTRIC CONTROL OF A {Fe4} SINGLE- . . . PHYSICAL REVIEW B 88, 224423 (2013)

B. Spin-orbit interaction and magnetic anisotropy barrier

Spin-orbit interaction introduces terms to Eq. (1) that
break rotational invariance in spin space. Up to second-
order perturbation theory, these terms, aside from anisotropic
corrections to the Heisenberg model, include the antisymmet-
ric Dzyaloshinskii-Moriya spin exchange and the single-ion
magnetic anisotropy Hia = −∑

i(di · si)2. Because of these
terms, the total spin is no longer a good quantum number.
Within the giant-spin model of SMMs, where the isotropic
exchange is the dominant magnetic interaction, the main effect
of the spin-orbit interaction is to lift the spin degeneracy of the
GS multiplet. To second-order perturbation theory, this can
be described by the following anisotropy Hamiltonian for the
giant-spin operator S = (Sx,Sy,Sz):

H = DS2
z + E

(
S2

x − S2
y

)
. (2)

The parameters D and E specify the axial and transverse
magnetic anisotropy, respectively. If D < 0 and |D| � |E|,
which are defining properties for SMMs, the system exhibits
an easy axis in the z direction. In the absence of magnetic
field, and neglecting the small transverse anisotropy term,
the GS of Eq. (2) is doubly degenerate and it corresponds
to the eigenstates of Sz with eigenvalues ±S. To go from the
state Sz = +S to the state Sz = −S, the system has to climb
an anisotropy energy barrier �E = |D|S2 via transitions to
adjacent excited states with |Sz| < S. This corresponds to
the energy barrier of the classical energy functional H =
DS2 cos(θ )2. When the transverse term is nonzero, Sz is not
a good quantum number. The classical barrier separating the
two degenerate minima is no longer |D|S2 but smaller, and it
decreases with increasing E. Indeed, classically, if E is not
zero, one can rotate the moment through either the hard axis
or the medium axis and obtain barriers that differ by DS2. If
D > 0, the systems have a quasieasy plane perpendicular to
the z axis without energy barrier. Although the correct classical
barrier is (D − E)S2, in this paper we follow the experimental
convention of referring to the classical barrier as DS2 since E

is usually very small.
The anisotropy parameters D and E can be calculated

within a self-consistent-field (SCF) one-particle theory (e.g.,
DFT or Hartree-Fock), by including perturbatively the contri-
bution of the spin-orbit interaction. In the Appendix, we sum-
marize the main steps of the procedure originally introduced
in Ref. 23. (For more recent reviews, see Refs. 24 and 25.)

The perturbative method described in the Appendix works
well for systems with a large HOMO-LUMO gap. Here,
HOMO and LUMO refer to the highest occupied molecular
orbital and lowest unoccupied molecular orbital, respectively.
However, for systems that have nearly degenerate and not fully
occupied HOMO levels, which often is the case for charged
molecules, the perturbative approach breaks down since some
of the energy denominators in Eq. (A7) vanish. To avoid this
problem, the magnetic anisotropy can alternatively be calcu-
lated by an exact diagonalization method. In this approach,
the solutions of the one-particle Schrödinger equation in the
SCF approximation (which does not include SOI), are used to
construct a finite matrix representation of the SOI, which is
then diagonalized exactly. The matrix is then diagonalized
subject to the constraint that the resulting spin is aligned

along a given choice of the quantization axis. The resulting
single-particle solutions {ε′

k,|ψ ′
k〉 = ∑

σ |φ′
kσ 〉|χσ 〉} are used to

compute the trace of the system as a function of direction of the
quantization axis (or average direction of the magnetization).
In Ref. 26, a discussion of the relationship between the
second-order variation in the trace and the self-consistent
second-order variation of total energy is presented.

Once one has obtained the trace as a function of axis of
quantization, one can use relatively standard techniques to
decompose the trace into a spherical harmonic representation
and then determine the magnetic principal axes. Alternatively,
by choosing magnetic principal axes that are equivalent to
those predicted from the second-order expressions, it is always
possible to directly compare exact-diagonalization results with
the second-order results. Using exact diagonalization, one can
further extract parts of the fourth- and higher-order anisotropy
terms as well. However, since self-consistency and other
terms also affect the magnetic anisotropy at fourth order and
beyond, the exact diagonalization results are primarily used
to determine whether the second-order results are expected
to be stable and a good approximation to experiment. In
cases where near degeneracies occur at the Fermi level, the
second-order and exact-diagonalization results can be very
different, especially if the states near the Fermi level are
coupled by the spin-orbit interaction. For such cases, a much
more careful analysis of results is needed and it is reasonable to
expect that some degree of self-consistency with noncollinear
capabilities will be needed.

For electronic-structure methods, such as the Naval Re-
search Laboratory Molecular Orbital Library27,28 (NRLMOL)
used in this work, where the wave functions are expanded in
terms of atom-centered localized basis functions, the second-
order perturbative method allows one to further analyze
the anisotropy Hamiltonian on an atom-by-atom basis. By
expanding the Kohn-Sham orbitals (|φkσ 〉) in Eq. (A7) in
terms of the atom-centered basis, the second-order expression
[Eq. (A5)] can be decomposed into a sum over four centers.29

The superdiagonal terms (all center indices the same) can then
be used to determine an anisotropy Hamiltonian associated
with each atom. In Ref. 29, this decomposition has been used to
verify the perpendicular hard-axis alignment model in the Co4

easy-plane magnetic molecule. In Ref. 30, Baruah’s method
was used to demonstrate that essentially all of the magnetism in
Mn12 acetate was due to the outer eight S = 2 crown Mn ions,
and that the sum of the single-ion anisotropies was very close to
the total anisotropy. Further, the degree to which nonadditivity
occurred was explained by a canting of the atom projected
anisotropy axes relative to the global anisotropy axis.

To complete the discussion about second-order anisotropy
Hamiltonians, derived either perturbatively or via exact diago-
nalization, it is important to note a contribution to van Wullen
and co-workers.31,32 Van Wullen noted that once a method
is used to determine the spin-orbit energy as a function of
axis of quantization that an additional quantum correction
is needed to determine the parameter’s D and E in the
anisotropy Hamiltonian. For example, the Ms = 0 eigenstate
is not aligned with an axis of quantization along the x axis,
the y axis, or any other axis. Therefore, more care must be
taken to determine D once the classical energy as a function of
expectation value of S is known. Accounting for this correction
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changes the definition of D, as originally derived by Pederson
and Khanna, by a factor of (S + 1/2)/S. While this correction
is small in the large-S limit, it can be important for systems
with lower spin.

C. Computational details

In this paper, we use a self-consistent field approximation
based on density functional theory (DFT). A review of this
approach in the study of molecular magnets can be found in
Ref. 25. Here, we recall a few key features that are relevant for
this work.

In a DFT calculation of a magnetic molecule, we obtain
the total energy of the system for specially prepared spin
symmetry-breaking metastable states. In many cases these are
ferromagnetic spin configurations, suggested by experiment.
The energies of these different metastable states can then
be compared and the lowest-energy spin configuration deter-
mined. Alternatively, it is also possible to impose a fixed spin
configuration, which in principle would not remain stable after
convergence. In all these symmetry-breaking calculations, the
state with a given spin configuration is represented by a
single Slater determinant of occupied single-particle states,
constructed in terms of self-consistent Kohn-Sham eigenvec-
tors. In the absence of SOI, the Kohn-Sham wave functions
have a well-defined spin character, majority or minority spin.
Therefore, the single Slater determinant, representing a given
spin configuration, is an eigenstate of the component of the
total spin S in the direction of the quantization axis n̂, which
is the magnetization direction. In general, this single Slater
determinant is not an eigenstate of S2, but in many cases it
will have a large overlap with the eigenstate of S2 with S

equal to the eigenvalue of S · n̂. The GS total spin S of the
molecule (in the absence of SOI) is taken to be equal to one
half of the excess of majority spin electrons S = �N/2 =
(Nmaj − Nmin)/2 for the metastable spin configuration with the
lowest total energy. The spin magnetic moment of the system
in units of the Bohr magneton μB is then μS = �NμB =
2SμB. In the DFT study of SMMs the possible presence
of fractional occupancy of some of the KS wave functions
close to the Fermi energy might result in noninteger values of
Nmaj − Nmin. Typically, this happens when the HOMO-LUMO
gap is very small or vanishing. We will encounter examples
of this difficulty in the study of the charged states of {Fe4}.
The existence of this general problem was first discussed
by Janak et al.33 in reference to near degeneracies between
3d and 4s electrons in neutral isolated atoms. More recent
manifestations of this issue have been identified by Perdew
et al. for systems where charge transfer is important.34 In that
work, Perdew et al. warn the reader that higher-level methods
which include approximate self-interaction corrections are
susceptible to dissociation into fractionally occupied systems.
At present, this problem constitutes a significant practical
and formal challenge to researchers that are interested in
modeling transport processes in closed systems containing
more than two atomic or molecular scale fragments with
variable electronegativities. This is the situation occurring in
the systems considered in this paper.

In Ref. 35, a set of equations was derived which, while
cumbersome to solve, allow one to variationally determine the

electronic occupations that satisfy the conditions proposed by
Janak in Ref. 33. Unfortunately, that method is tedious and
hard to implement in general. Others have proposed solutions
that include nonzero temperature and entropy affects36,37 from
both numerical and formal points of view.

The DFT calculations discussed herein are performed
with the Gaussian-orbital-based NRLMOL program.27,28 All
calculations employ the Perdew-Burke-Ernzerhof38 (PBE)
generalized-gradient approximation for the density functional.
A large basis set is employed in which the exponents for
the single Gaussians have been fully optimized for DFT
calculations. The NRLMOL code employs a variational mesh
for numerically precise integration and an analytic solution of
Poisson’s equation.

All-electron calculations are performed for all elements
of the {Fe4} SMM except for the Au atoms that are used to
construct the leads attached to the molecule, for which we
have used pseudopotentials. All the electronic and magnetic
properties are calculated using an optimized geometry. More
specifically, most of the geometries in this work were opti-
mized using the limited-memory Broyden-Fletcher-Goldfarb-
Shanno method (LBFGS). However, for some of the cases
where charge transfer from the leads to the island was sensitive
to geometry, we switched to the conjugate-gradient method.

In connection with the issue of fractional occupancy
mentioned above, we note that for the calculations presented
here we have used a broadening temperature to minimize the
energy as a function of occupation numbers for states that are
nearly degenerate at the Fermi level. This type of problem
can be particularly difficult for systems where charge transfer
between the leads and the islands is sensitive to geometry. In
all cases, the temperature (0.0001–0.003 a.u.) used for Fermi
broadening was chosen to minimize the energy of the system.
Therefore, we view our results as being as an idealization of
zero temperature.

DFT can be used to extract the parameters defining the
spin Hamiltonian that is supposed to describe the exchange
interaction between the magnetic ions of the molecule. First
of all, DFT can be used to ascertain whether or not there is
a localized spin at each magnetic ion, by calculating the total
spin polarization inside a sphere centered about a given atom.
For typical SMMs, including the one considered in this paper,
while the magnetization density is not localized entirely on the
magnetic ions, the assumption of a well-defined quantum spin
often turns out to be quite reasonable. Once this is established,
the calculation of the total energy for a few spin configurations
permits the computation of the exchange constants of Eq. (1).
We will see an example of this in the next section.

III. ELECTRONIC AND MAGNETIC PROPERTIES OF
ISOLATED {Fe4} SMM

The chemical composition of the molecule used in this
work is Fe4C76H132O18.12 The four Fe atoms in {Fe4} SMM
form an equilateral triangle, as shown in Fig. 1. The molecule
has idealized D3 symmetry with the C2 axis passing through
the central atom and one of the peripheral atoms. Using first-
principles methods, we have calculated, in detail, the electronic
and the magnetic properties of the {Fe4} SMM.
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FIG. 1. (Color online) Ball-stick top view of an isolated {Fe4}
SMM. Red, green, blue, and purple balls correspond to iron, carbon,
hydrogen, and oxygen atoms, respectively.

In the ground state, the central Fe atom is coupled
antiferromagnetically with three peripheral atoms, whereas
the three peripheral atoms are coupled ferromagnetically with
each other, as shown in Fig. 2. Each of the four Fe atoms
has spin SFe = 5

2 , thus the total spin of the ground state is
S = 5. The magnetic interactions between these atoms can be
described by the Heisenberg spin Hamiltonian [Eq. (2)]

H = J (s1 · s2 + s1 · s3 + s1 · s4)

+ J ′(s2 · s3 + s3 · s4 + s4 · s2). (3)

The two exchange parameters J and J ′ can be written in
terms of the expectation values of the Hamiltonian of Eq. (3),
for different spin configurations

J = − 2
75 (Eduuu − Euuuu),

(4)
J ′ = 1

75 (2Eduuu − 3Euudd + Euuuu).

FIG. 2. (Color online) Exchange-interaction constants between
four Fe atoms in {Fe4} SMM.

TABLE I. Properties of the isolated {Fe4} SMM for the three
different charge states.

Charge Spin magnetic HOMO-LUMO Anisotropy
state moment μS(μB ) energy gap (eV) barrier (K)

Q = 0 10.0 0.85 16.05
Q = +1 9.3 0.80a 53.42
Q = −1 9.0 0.06 1.88

aNote that the energy gap reported for the cation refers to the energy
difference between the half-filled HOMO and empty LUMO. See
Fig. 3(c).

Here, Eduuu, Edduu, and Euuuu are the energies of the molecule
where the spin orientations at their respective atomic positions
(1,2,3,4) are labeled as d = down or u = up. Using NRLMOL,
we have calculated the energies of different spin configuration
and upon substitution in Eq. (4), we obtain J = 9.94 meV and
J ′ = 0.64 meV. DFT calculations overestimate J and J ′ since
estimated values from susceptibility measurements39 are 2.62
and 0.14 meV, respectively. However, we note that the ratio
of these two parameters agrees quite well for both theory and
experiment. These values of the exchange constants ensure
that the GS of the spin Hamiltonian (4) has indeed a total
spin S = 5

2 , well separated from excited states characterized
by other values of S.

Using first-principles methods, we have calculated the
electronic and magnetic properties of {Fe4} SMM for the
neutral (Q = 0) and two charged states, namely, the anion
(Q = −1) and the cation (Q = +1). (We will refer to the value
Q as the extra charge added to the system.) A summary of the
results is shown in Table I. These results can be understood
with the help of the structure of the single-particle energy
levels around the Fermi level in the absence of SOI, plotted in
Fig. 3 for the three charge states Q = 0, ± 1.

The neutral molecule has a stable S = 5
2 GS, as anticipated.

The HOMO-LUMO gap of the neutral isolated Fe4 molecule
is about 0.85 eV, where both HOMO and LUMO levels are

FIG. 3. (Color online) Energy levels (eV) of different charge
states of isolated the {Fe4} SMM without spin-orbit coupling. Ef

represents the Fermi level. The numbers on the right of the HOMO
and HOMO-1 levels in (c) are the fractional occupancies of the
corresponding level.
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minority- (down-) spin states [see Fig. 3(b)]. Apart from a
small swapping of two levels below the HOMO, the level
structure for the Q = −1 charge state can be obtained from
the energy levels of the neutral system simply by filling the
neutral LUMO with a spin-down electron [see Fig. 3(a)]. As a
result, the total spin of the anion is S = 9

2 . Note also that the
HOMO-LUMO gap of the anion is now reduced to 0.06 eV
compared to the neutral molecule. The electronic states change
significantly for the Q = +1 charge (cation) state: the two
doubly degenerate spin-up HOMO-1 and spin-down HOMO
states of the neutral molecule swap place [see Fig. 3(c)].
Furthermore, since there is now one fewer electron, the new
HOMO is now half-filled. This implies that the total spin of
the cation is again reduced with respect to the neutral molecule
by 1

2 , that is, S = 9
2 . The fractional occupancy of the HOMO

plays an important role in the enhancement of the magnetic
anisotropy, discussed in the following. Our DFT calculations
yield values of the total spin S in agreement with the level
structure of Fig. 3. In particular for the charged states Q = ±1,
even when the initial spin configuration is set to be S = 11

2 ,
the system converges eventually to the value S = 9

2 .
For the neutral molecule, the magnetic anisotropy landscape

is characterized by an easy axis in the direction perpendicular
to the plane containing the four Fe atoms (the z axis).
As shown in Table I, we find that the anisotropy barrier
for this case is about 16 K, which is in agreement with
previous calculations.40 (In Ref. 40, the authors have used
two different {Fe4} complexes. The molecular symmetry for
one of these complexes is C2, whereas the the other one has D3

symmetry. Our calculations agree well with the one that has
D3 symmetry.) Note that a well-defined energy gap between
occupied and unoccupied states (regardless of the spin) ensures
that the perturbative and exact calculation of the anisotropy
coincide.

The magnetic anisotropy of the Q = +1 charge state has
also uniaxial character in the z direction, with a barrier of about
53 K, significantly larger than that obtained for the neutral
molecule. On the other hand, for the Q = −1 charge state the
anisotropy is reduced to about 1.9 K, with an easy axis in the
XY plane of the Fe atoms.41 The large change in the anisotropy
for the two charged states has a very different origin for the
two cases and can be understood in the following way.

For the Q = −1 case, the small gap between the like-spin
HOMO and LUMO states might at first suggest a breakdown of
the perturbative treatment. In fact, these two states are coupled
only minimally by SOI. The most important coupling occurs
between the spin-down HOMO and the spin-up LUMO+1
states. The energy difference between these two states is
≈0.25 eV. This value and the corresponding energy denomina-
tor in Eq. (A7) are large enough for perturbation theory to work
(as a comparison with the exact approach clearly shows) and,
at the same time, small enough for this individual transition
to completely determine the main features of the anisotropy
landscape. In particular, it turns out that this term in Eq. (A7)
favors an easy axis along a direction in the XY plane of the Fe
atoms. Since this magnetization direction is unfavorable for
other terms in Eq. (A7) (which prefer the z direction), there
are positive and negative contributions in the total-energy dif-
ference for the two magnetization directions [calculated with
Eq. (A5)], which in the end lead to a reduced anisotropy barrier.

The large enhancement of the magnetic anisotropy barrier
found for the Q = +1 state can also be understood with the
help of the single-particle energy diagram shown in Fig. 3(c).
We observe that the half-filled doubly degenerate spin-up
HOMO level lies just above a (close-to-100%) filled doubly
degenerate spin-down HOMO-1 level. The term involving
transitions between these two occupied and unoccupied levels
totally dominates Eq. (A7). In fact, the smallness of the
corresponding energy denominator (a few meV) renders the
perturbative approach inadequate. This is a classical example
of a quasidegeneracy at the Fermi level, where the exact treat-
ment of SOI is necessary. As it is often the case, the inclusion
of SOI lifts the quasidegeneracy for a particular direction of
the magnetization, leading to a substantial decrease of the
total energy for that direction and, consequently, to a large
anisotropy energy barrier.

IV. {Fe4} SMM ATTACHED TO METALLIC LEADS

In this section, we investigate how the electronic and
magnetic properties of the {Fe4} SMM change when the
molecule is attached to metallic leads, as in transport experi-
ments. The system that we have in mind is a single-electron
transistor device, where metallic nanoleads, separated by a
nanogap created by either break junction or electric migration,
are bridged by a molecule functionalized with convenient
chemical ligands.

First, in our theoretical modeling we are forced to find
a convenient finite representation of otherwise semi-infinite
leads in the form of finite clusters. For the calculations reported
in this paper we have chosen to model a metallic nanolead with
a finite cluster of 20 gold (79Au) atoms, arranged in a special
tetrahedral structure, which can be viewed as a fragment of the
face-centered-cubic lattice of bulk Au (see Fig. 4). This metal
cluster, Au20, has been previously investigated by Li et al. in
Ref. 42, where it was shown that 20 Au atoms arranged in this
geometric configuration form a very stable system. Its very

FIG. 4. (Color online) {Fe4} SMM connected to Au20 leads. Two
types of leads are used in these calculations. In the type-1 lead, a H
atom is added to the S atom near the gold lead (top figure). In the
type-2 lead, a H atom is added to a C atom in the phenyl group near
the {Fe4} molecule (bottom figure).
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large HOMO-LUMO gap (1.77 eV) makes Au20 chemically
very inert. What is also important is that its unique tetrahedral
structure makes this cluster an ideal model for Au surfaces at
the nanoscale.

In fact, the tetrahedral Au20 is the best representation of bulk
Au at the nanoscale. It is known, for example, that this cluster,
at least qualitatively, already shows all the characteristics of
the bulk band of gold.43 Our DFT calculations find that the
ionization potential of Au20 is 7.3 eV to be compared with work
function of gold, which is 5.1 eV. The bulk work function can
be viewed as the ionization of an infinite cluster. This should
differ from that of a finite cluster by approximately 27.2116/R

(2.86 eV) where R = 9.5 bohrs is approximately the radius of
the cluster. Our rationale for using this cluster to model metal
leads is that during the fabrication of the nanometer-spaced
electrodes, via self-breaking by electromigration for example,
the ensuing Au nanoleads will relax into the most stable
configuration which might be well described by tetrahedral
Au20.

Second, since ultimately we would like to investigate
transport properties of this system in the Coulomb blockade
regime, it is essential that coupling between the leads and
molecule is weak. After constructing the two leads in the form
of two Au20 clusters, we have connected the molecule via
phenyl groups, as shown in Fig. 4. The functionalization of
the ligands of {Fe4} SMM by means of phenyl groups is well
known and suitable to attach the molecule to Au surfaces.12,15

A similar (but not identical) way of connecting the {Fe4}
SMM to Au leads is employed in SET experiments in
the Coulomb blockade regime,16–18 and it ensures that the
electronic coupling between the molecule and electrodes is
weak. To maintain proper bonding and ionic neutrality of the
entire cluster, we have further removed one hydrogen (H) atom
from the molecule close to the contact point and have added
it to the ligand part of the cluster. We have considered two
different ways of doing this. In the first case (hereafter called
type-1 lead), we have added the H atom to the sulfur (S) atom
near the Au cluster. In the second case (hereafter called type-2
lead), we have added H to the carbon (C) atom near the contact
point as shown in Fig. 4. After connecting the leads with the
molecule, we have relaxed the entire system again. Typically,
we find that the system with type-2 leads is more stable, that
is, its energy is approximately 0.6 eV lower than the energy
of the system with type-1 leads. We will nevertheless report
results for both cases unless otherwise specified. The two types
of linkers adopted here should be viewed as a theoretical
modeling of standard experimental realizations presently in
use. Other variations obtained by modifying the details of the
chemical composition of the ligands are possible, but will not
further be pursued here. The effect of these modifications on
the magnetic properties is the subject of future research.

A summary of the magnetic properties of the neutral
molecule attached to A20 leads is shown in Table II. We can
see that the combined molecule plus leads system maintains
a sizable HOMO-LUMO gap of about 0.75 eV. The first
important result is that coupling the leads does not cause a
change of the spin of the molecule, which remains equal to the
value of the isolated neutral {Fe4}, S = 5. Second, the leads
have a very small effect also on the magnetic anisotropy of the
system: the magnetic anisotropy landscape has still an easy

TABLE II. Properties of neutral {Fe4} SMM attached to A20 leads,
compared to the properties of the isolated molecule (first row). Type
1 and type 2 (called in the paper also type-1 and type-2 leads) refer to
the two different choices to place a hydrogen atom to the ligand (see
Fig. 4).

Spin magnetic HOMO Anisotropy
moment -LUMO energy
μS(μB ) gap (eV) (K)

{Fe4} 10 0.85 16.05
{Fe4}+type 1 10 0.87 15.99
{Fe4}+type 2 10 0.57 15.47

axis along the same z direction (see white arrow in Fig. 4),
with an energy barrier quite close to the 16 K of the isolated
molecule.

We can gain some insight about the robustness of the
magnetic structure of {Fe4} SMM under the influence of
metallic contacts by investigating the changes in the single-
particle energy levels and level alignment and occurring when
the leads are connected to the molecule. We have calculated
separately the energy levels of the isolated Au lead(s) and the
{Fe4} + phenyl group, along with the levels of the combined
system [Au leads + {Fe4} + phenyl group]. The results are
shown in Fig. 5. The states at and near the Fermi level of
the two subsystems are dominated by the d levels of Au atoms
and the p levels of the C atoms of the phenyl group. Thus, when
the two systems are combined, the charge transfer taking place
to align the Fermi energies of the two subsystems is restricted
only within the contact region, leaving the magnetic properties
of the {Fe4} inner core unchanged. Figure 5(b) shows that the

FIG. 5. (Color online) Shifts in the energy levels (eV) of neutral
{Fe4} SMM when connected to two Au20 leads (of type 2). Please
note that the energies are not scaled. (a) Isolated Au lead, (b)
leads + {Fe4} + phenyl, and (c) {Fe4} + phenyl. The labels Aud and
phenyl Cp in (b) indicate that the main contribution to those levels
comes from d levels of the Au leads and p levels of C in the phenyl
ligands, respectively.

224423-7



NOSSA, ISLAM, CANALI, AND PEDERSON PHYSICAL REVIEW B 88, 224423 (2013)

FIG. 6. (Color online) HOMO and LUMO of the neutral molecule.

energy levels of the combined system close to the Fermi level
correspond primarily to states remote from the magnetic core.
This is also supported by Fig. 6, where we plot the probability
density for the HOMO and LUMO states of the {Fe4} + leads
system. Both states have negligible contributions on Fe atoms
or atoms immediately nearby to these. As we will see in the
following, this implies that the magnetic properties will remain
unchanged even when extra charge is added to (or subtracted
from) the system.

Figure 5(b) shows that both the nondegenerate spin-down
HOMO and the nondegenerate spin-down LUMO of the
neutral system lie quite close in energy to degenerate levels
(occupied and nonoccupied, respectively). Therefore, we can
expect that subtle energy-level swaps may occur when one
electron is added to or subtracted from the system. As it
is evident from Fig. 7, this is exactly what the calculations
show. For the case of leads of type 2, the HOMO of the anion
(Q = −1) is now a half-occupied doubly degenerate spin-up
level, lying very close to a nondegenerate spin-down LUMO.
This leads to a GS spin S = 11

2 , and to a spin magnetic moment
close to μs = 11μB (see Table III).44A similar situation occurs
for the Q = +1 charge state, which has a GS spin S = 11

2 .
We find that this state is, however, almost degenerate with
another state with S = 9

2 . For leads of type 1 (which are
less stable), the spin configurations S = 11

2 and 9
2 are almost

degenerate for both charged states Q = ±1. Note that the

TABLE III. Magnetic properties of the three charge states when
the {Fe4} SMM is attached to Au leads as in Fig. 4.

Spin magnetic Anisotropy

Charge
moment μS(μB ) energy (K)

state Type 1 Type 2 Type 1 Type 2

Q = 0 10.0 10.0 15.99 15.47
Q = +1 9.0 10.95 17.73 14.74
Q = −1 9.6 10.65 11.23 16.97

FIG. 7. (Color online) Energy levels (eV) for the three charge
states Q = 0, ± 1 for the {Fe4} SMM connected to two Au20 leads
(of type 2). Please note that the energies are not scaled. (a) Anion. (b)
Neutral [same as in Fig. 5(b)]. (c) Cation. The labels Aud and phenyl
Cp in (b) indicate that the main contribution to those levels comes
from d levels of the Au leads and p levels of C in the phenyl ligands,
respectively.

spin magnetic moment of the Q = −1 charge state is now
closer to μS = 9μB. The quasidegeneracy of two different
spin configurations is a situation where the assumption of
the existence of a well-defined giant-spin model may not be
entirely adequate.

As shown in the Table III, in contrast to the case of the
isolated {Fe4} SMM where the anisotropy of the charged states
are significantly different from that of the neutral molecule,
when the leads are attached to the molecule the anisotropy
energy of the charged states remains close to the value of the
neutral system. We also note that magnetic properties of the
charge states have some dependence on the type of the lead
attached to the molecule.

As anticipated above, an explanation of this behavior is
already suggested by the energy diagram of Fig. 5(b) and
the plots of Fig. 6 demonstrating that both the HOMO and the
LUMO of the neutral system are states predominately localized
around the Au leads and within the phenyl group, respectively.
Therefore, we expect that when we add or remove an electron
from the system it largely resides in the lead and phenyl
group, leaving the magnetic states in {Fe4} molecule relatively
unchanged. The easy axis, in all cases, points perpendicularly
to the Fe4 plane, as shown in Fig. 4, except for Q = −1 charge
state of type-1 lead, which is in the plane.

Further support to this picture is provided by calculating
the real-space location of the extra charge when an electron is
added or subtracted to the system. As an example, we consider
here the case of the anion, where one electron is added to
the system. Since part of this extra charge might end up in
interstitial regions between atoms (this is the case for the extra
charge on the Au leads), particular care must be taken in

224423-8



ELECTRIC CONTROL OF A {Fe4} SINGLE- . . . PHYSICAL REVIEW B 88, 224423 (2013)

FIG. 8. (Color online) The two quasidegenerate HOMOs and the
LUMO of the anion charge state. Approximately 20% of the HOMO
wave functions reside on the Au leads, primarily on the interstitial
space between Au atoms (see Fig. 9). This contribution is not visible
on the scale of this plot.

drawing conclusions based only on the atomic-position plot
of the HOMO states, shown in Fig. 8, which might miss this
contribution. To capture the interstitial contribution, we draw
instead a large sphere enclosing a given region of the system.
NRLMOL is able to calculate the extra charge contained
globally in that region, including interstitial contribution. By
repeating the same calculation with different spheres centered
at different locations, we can eventually determine the amount
of extra charge in different relevant parts of the system.

In Fig. 9(a), we consider a sphere (yellow color) containing
both the lead and the phenyl group linker. We find that the
amount of extra charge contained in this region is 40% of one
electronic charge. The remaining 20% is located on atoms in
the nearest surrounding of the {Fe4} core. In Fig. 9(b), the
sphere encloses only the Au lead but no linker. For this case
we find that each Au leads contains 21% of extra electronic
charge. We conclude that when one electron is added to the
system, a total of 42% of the extra charge resides on the leads,
38% on the ligands and only 20% is around the magnetic core
of {Fe4}. This 20% of added charge is not directly on the Fe
atoms and therefore does not change the magnetic properties
of {Fe4} significantly.

Further evidence of this important conclusion is provided by
the comparison of the calculated local spin magnetic moments

FIG. 9. (Color online) Evaluation of the fraction of extra charge
for the anion state (Q = −1, one extra electron added) with respect to
the neutral state, contained in different regions of the {Fe4} molecule
plus leads and phenyl groups. In (a), each yellow sphere surrounding
the lead and the phenyl group contains about 40% of an electron
charge. In (b), each yellow sphere, surrounding only the Au lead,
contains 21% of electron charge. Therefore, the amount of charge
transferred to the leads is about 42% and to the phenyl groups is 38%.
The rest of the extra charge ≈20% is in the {Fe4} region.

of the Fe atoms for the isolated {Fe4} molecule and for
molecule-plus-lead system, for different charge states. The
results are shown in Fig. 10. We note from the figure that for the
isolated molecule the magnetic moments change considerably
for the charged states, whereas for molecule plus lead system,
the corresponding change is very small. Clearly, when the
molecule is attached to the Au leads, adding or removing one
unit charge affects the magnetic states of the {Fe4} minimally,
which is also why we do not see a large change in magnetic
anisotropy for different charge states.

We conclude this section with a few comments on the
important issues of the nature of the charged states, and the
coupling between molecule and leads, emerging from the
DFT calculations. First, we have seen that when one electron
is added or subtracted to the system {Fe4} + (finite) leads,
the extra charge is predominantly localized on the ligands
(≈40%) and on the leads (≈40%). If we could increase
the size of the leads, a larger fraction of the extra charge
would be likely to spread on the metallic leads. Therefore,
one could argue that the charged states Q = ±1 investigated
above are not a fully adequate description of the charged states
involved in the sequential tunneling processes taking place
in a SET, where the additional charge should be essentially
localized on the central island. Second, and partly connected
to this issue, the nonzero amplitude of the LUMO wave
function of the neutral system (which is quite close to the
HOMO wave function of the anion) seems to indicate that
the ligands considered here do not behave as tunnel barriers
of a SET, but rather model an example of strong coupling
between molecule and leads.45 Both these features could be
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FIG. 10. (Color online) Local magnetic moments of Fe atoms.
The negative and the positive moments in the two figures imply that
moments of central and vertex atoms are opposite to each other.

due to limitations of the DFT approach considered here, which
tends to overdelocalize any added charge. Such drawbacks
can possibly be improved by more refined DFT treatments,
involving, for example, self-interaction corrections. While we
believe that these refinements are important and should be
further investigated, the goal and strategy of this paper is to
simulate with DFT a realistic example of SMM attached to
leads, being aware of these limitations.

V. EFFECT OF AN EXTERNAL ELECTRIC POTENTIAL

In SET devices, the charge of the central island weakly
coupled to metallic electrodes can be varied experimentally
one by one by applying an external electric field via a third
gate electrode, which overcomes the charging energy e2/C of
the island. Here, we investigate the effect of an external gate
electrode, whose electric potential tends to confine the extra
charge closer to the molecule. Note that in phenomenological
studies of SETs based on model Hamiltonians, a gate voltage
only shifts the energies of the isolated “quantum dot” without
affecting its wave functions. As we show in the following, in
our case the gate voltage can be used to localize a wave function
closer to the molecule and modify its coupling to the leads. The
resulting charged states should be a better representation of the

states involved in tunneling transport in SET when Coulomb
blockade is lifted.

We model the external potential by a simple Gaussian
confining potential of the form

U = V0e
−αx (x−x0)2−αy (y−y0)2−αz(z−z0)2

. (5)

Here, V0 is the magnitude of the potential centered at (x0,y0,z0),
which in our case is the position of the central Fe atom of the
{Fe4}. The constants α are the width of the potential along the
corresponding directions and are chosen so that the potential
drops quickly at distances larger than {Fe4}. The sign of V0

determines whether the extra electron will be confined into or
repelled from the {Fe4} molecule. Thus, for the anion case a
negative V0 will attract the electron, whereas for the cation
case a positive V0 will attract the “hole” inside the molecule.
The form of the potential given in Eq. (5) is admittedly not
the most realistic representation of the potential generated by
a gate electrode. It is chosen simply as a convenient expedient
to mimic the effect of the gate in our finite-size system. In
a real device, the main effect of a gate voltage is to control
independently the chemical potential (that is, the energy levels)
of the central island with respect to the chemical potentials of
the bulk leads, which are essentially unaffected by the gate. In
our finite system, where the leads themselves are nanoclusters,
an extended planar charge distribution, which certainly is
a more realistic representation of the gate electrode, would
strongly affect also levels of the leads. Our choice of the gate
potential realizes the wanted effect of the gate on the molecular
levels.

We start by looking at the effect of the gate voltage on the
anisotropy of the isolated {Fe4} SMM. We have first considered
a gate voltage that depends only on the variable z. The resulting
electric field points along the the z axis, which is the easy axis
of the molecule.

From Fig. 11 we note that in the anion case a confining
potential for the extra electron (V0 < 0) reduces the anisotropy
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FIG. 11. (Color online) Variation of the magnetic anisotropy
energy as a function of a confining potential V0 applied along the C3

axis (perpendicular to the plane of the {Fe4} triangle) of an isolated
{Fe4} SMM.
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TABLE IV. The effects of confining potential on neutral {Fe4}
SMM. � is the anisotropy energy and D and E are the parameters of
the Hamiltonian (2), all in units of K. Here, the units of α are bohrs2.

Anisotropy

V0 (eV) αx αy αz � (K) D (K) E (K)

0.0 0 0 0 16.06 −0.63 0.00
−5.0 0.01 0 0.01 17.00 −0.64 −0.03
−5.0 0.01 0 0 15.77 −0.60 −0.02

barrier, whereas repelling the extra charge away from the
molecule increases the anisotropy. The neutral molecule
displays an opposite behavior as a function of V0. In both cases,
the behavior of the anisotropy is close to a linear function
of V0. As expected, the variation of the anisotropy energy
for the neutral molecule is limited, less than 10% for the
largest applied voltage. The cation is special. We have seen
that at zero voltage, the system has a large anisotropy barrier
(see Table I) due to a quasidegeneracy at the Fermi level.
The external potential lifts this degeneracy and the anisotropy
energy decreases sharply for both signs of V0.

The confining potential that we have applied above does not
break the C3 symmetry of the system and hence the parameter
E in Eq. (2), characterizing the transverse component of the
magnetic anisotropy, is zero. However, the symmetry can be
broken by applying an electric field along directions other
than the easy axis. Table IV shows the effect of this broken
symmetry on the anisotropy of the isolated {Fe4} SMM.

It is evident from Table IV that E is no longer zero
if the electric field is applied along directions other than
the easy axis. A nonzero E allows different eigenstates of
the z component of the giant spin to mix with each other.
A transverse component in principle can cause quantum
tunneling of the molecule giant spin. Thus, this method can be
used as electric control of magnetic properties. It can play
a significant role in transport, for example, by modifying
spin selection rules and by opening alternative channels via
quantum tunneling of the magnetization.

We now discuss the effect of the applied gate voltage when
the {Fe4} molecule is attached to Au leads. In this case, we
have applied the field only along the easy axis of the molecule
attached to the leads of type 2, as shown in Fig. 4. We have seen
in the previous section that since HOMO and LUMO states
and states close in energy to these are primarily localized
on the Au leads and phenyl linker, an added or removed
electron leaves {Fe4} largely unaffected. But, the presence of
a confining potential (V0 < 0 for electrons), applied only on
the {Fe4} part of the system, brings the states localized within
{Fe4} SMM closer to LUMO levels. Thus, when an electron
is added to the system, the fraction of this extra charge that
goes inside the molecule increases as we increase the confining
potential. Similarly, when an electron is subtracted from the
system, an applied positive gate voltage (V0 > 0) tends to
localize a fraction of the positive extra charge (a hole) closer
to the molecule.

As an example, we consider the effect of a confining
potential for the anion case (Q = −1, one electron added
to the system). Figure 12 shows the change in fractional
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FIG. 12. (Color online) Fraction of the added charge (blue cir-
cles) confined inside {Fe4}, as a function of the confining potential
strength, and corresponding change in the magnetic anisotropy (black
diamonds) of the leads plus molecule system in the anion state
Q = −1. The external potential corresponds to an electric field along
the z direction (see Fig. 4).

charge that enters into the {Fe4} molecule as the strength of
confining potential is increased, and the corresponding change
in magnetic anisotropy energy of the system. Clearly, as the
voltage is increased, more of the added electron is pushed
inside the molecule. As the charge fraction approaches unity,
the anisotropy decreases and converges to the value obtained
for the anionic state of the isolated {Fe4} SMM.

It turns out that not only the anisotropy energy, but other
magnetic properties converge to the properties of the anion
state of the isolated {Fe4} as the extra charge, under the effect
of the external potential, moves closer to the center of the
molecule. The easy axis of the system, which in the zero
potential points perpendicular to the plane of the Fe4 triangle
and towards the leads, eventually rotates into the plane of the
Fe4 triangle, exactly as in the case of the anion state of the
isolated {Fe4} SMM. Similarly, as the added charge moves
inside the inner magnetic core of {Fe4}, the total spin of the
system is reduced from S = 11

2 to the value of the anion state
of the isolated molecule S = 9

2 .
Similar results are obtained for the cation. As we apply an

increasingly positive voltage, a larger fraction of a (negative)
electron charge is pushed outside {Fe4} or, equivalently, a
larger fraction of (positive) hole is attracted inside the {Fe4}.
As a result, the anisotropy energy increases and it reaches a
value of 22.8 K for V0 = 5 eV, with more than half of the
extra (positive) charge now inside {Fe4}. Similarly, the spin
also switches from S = 11

2 at V0 = 0 to S = 9
2 at V0 = 5 eV.

Again, this is consistent with both the spin and the anisotropy
converging towards the corresponding values of the isolated
cation state.

A summary of the dependence of the anisotropy energy as
a function of the external potential for all three charge states
is shown in Fig. 13. While the anisotropy of the neutral state
displays a weak dependence on the field, the anisotropy of the
two charged states is significantly affected. These calculations
demonstrate that, for a SET with a {Fe4} SMM as a central
island, by manipulating the position of the additional charge
with a gate voltage, it is possible to modify the magnetic
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properties of the SMM. This in turn can have important effects
on the tunneling transport of the device.

VI. COMPARISON WITH SET EXPERIMENTS

Recent SET experiments16,18 have permitted the first
measurements of the magnetic characteristics of the {Fe4}
SMM weakly coupled to Au leads, for both neutral and charged
states. Comparison with our theoretical results has to be done
with caution since important details (e.g., the type of linker
used, see below) might differ in the two cases. In a first study,
Zyazin et al.16 have studied quantum transport in the inelastic
cotunneling regime. By measuring the zero-field splitting of
magnetic excitations and their dependence on the magnetic
field, it was possible, with the help of the model Hamiltonian
of Eq. (2), to extract values of the giant spin S and the magnetic
anisotropy energy � = DS2 for three adjacent charge states N

(neutral), N + 1 (anion), and N − 1 (cation). For the neutral
state, the spin of the molecule was found to be equal to expected
value SN = 5 and the anisotropy energy to be consistent with
the value in the bulk phase, �N = 1.4 meV = 16.24 K. These
results are in good agreement with our theoretical estimate for
the Q = 0 charge state (see Table III).

For the charged states, the situation is more complicated.
For the reduced molecule (anion state, one electron added),
the experimental measurements gave SN+1 = 11

2 for the spin
and �N+1 = 2.7 meV = 31.30 K for the anisotropy. For
the oxidized molecule (cation state, one electron removed),
the measurements gave SN−1 = 9

2 and �N−1 = 1.8 meV =
20.90 K, respectively. Comparing these findings with the
results of our calculations (see Table III), we can see that, for a
given choice of lead type (type 1 or type 2), the theoretical value
of the spin is consistent with the experimental one for either
cation or anion, but not for both. We can also conclude that
the experiment typically finds larger values for the anisotropy
barrier, for both reduced and oxidized states, than the values
predicted by theory.

Several reasons can be responsible for these discrepancies.
First, the functionalization of the molecule used in the
experiment is slightly different from the one used in the
calculations. In fact, in the experiments, two different types of
ligands were used. In one case (labeled as sample A), the {Fe4}
SMM was connected to the Au lead by the phenyl group. In the
second case (labeled as sample B), the {Fe4} was connected
via a thiol group C9S. The coupling molecule lead turns out to
be weaker in sample A than in sample B.46 As shown above,
in all our calculations we have used a different type of linker,
which was a combination of a phenyl group and a thiol group.

Second, in experiment, different charge states are achieved
by adding or removing electrons to the central region of SET
via a gate voltage. In the theoretical calculations, the two
relevant charged states are constructed by adding or removing
an electron to a system consisting of the {Fe4} connected
to finite leads. The extra charge is allowed to relax in the
self-consistent field, and it occupies regions away from the
{Fe4}, which affects the magnetic properties of the system.
Indeed, confining the extra charge on the SMM with an external
gate modifies the anisotropy barrier.

Third, the evaluation of the magnetic properties from
experiment done in Ref. 16 relies on the use of the model
Hamiltonian of Eq. (2). The fitting of the experimental
results maintains a degree of uncertainty and arbitrariness. For
example, although in the experiment three different adjacent
charge states are detected, it is not possible to establish
uniquely the absolute charge state at a given gate. In other
words, it not possible to be sure whether Vg = 0 corresponds to
the neutral case. This implies an uncertainty in the choice of the
corresponding spin Hamiltonian. Furthermore, the extraction
of a spin Hamiltonian could be problematic in cases of level
degeneracy at the Fermi level, not uncommon for charged
states. In this case, we have seen the the giant-spin model of
Eq. (2) might become inadequate.

Finally, the method of Ref. 16 relies on the measurement
of inelastic cotunneling excitations, which is quite sensitive to
the coupling between molecule and leads, and therefore it is
a procedure not immune of uncertainties. Indeed, in a more
recent paper, Burzurı́ et al.18 introduced a novel gate-voltage
spectroscopy technique which permits the measurement of the
anisotropy of an individual SMM in different charge states by
tracking the dependence of the charge degeneracy point as a
function of magnetic field. This method is much more sensitive
and accurate than the method based on conventional transport
spectroscopy employed in Ref. 16. The spin Hamiltonian
provides a good fit of the data if SN = 5, �N = 16.2 K for the
neutral state, SN+1 = 9

2 , and �N+1 = 16.0 K for the reduced
state and SN−1 = 11

2 and �N−1 = 16.5 K for the oxides state.
Furthermore, the orientation of the easy axis is found to exhibit
only small variations among different charge states. Although
some details might differ,47 these results are quite consistent
with the small variations in anisotropy magnitude and the
unchanged orientation of the easy axis that we find for the
three charge states in our theoretical analysis (see Table III).

As we mentioned above, the small variation in the
anisotropy for different charged states found in our calculations
is related to the fact that any extra charge added to the
molecule + leads system tends not to reside directly on the
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magnetic atoms, but mainly on the ligands and on the Au
leads. We pointed out that this could be, in part, an artificial
effect due to the way we constructed charged states in our
finite-size system and to the delocalizing character of our DFT
approach. On the other hand, it is interesting that our estimates
for the magnetic anisotropy are essentially consistent with the
experimental results of Ref. 18, which are obtained exactly
at charge degeneracy points. At these special values of the
external gate voltage, the energy of two adjacent charge states
is the same. We can imagine that at the degeneracy point the
extra charge can swap energy-free from the electrodes and the
molecule and might be localized primarily in a region where
the molecule is connected to the leads. If this were the case,
the charge distribution shown in Fig. 9 could be in fact a
more realistic description of the charge states than previously
anticipated. We could also surmise that, exactly as it happens in
our calculations when we apply an external confining potential,
changing the gate voltage to move away from the degeneracy
point and make a given charge state more stable could strongly
affect the the magnetic anisotropy. Indeed, the results of the
the first experiment,16 where the anisotropy was not extracted
at degeneracy points but in the middle of a Coulomb blockade
diamond, show a significantly enhanced anisotropy for charged
states. The two experimental results could simply indicate that
in one case the extra charge is localized closer to the SMM than
in the other, exactly as it happens in our theoretical modeling.

VII. CONCLUSIONS

In this paper, we have studied the electronic and magnetic
properties of a {Fe4} SMM in a single-electron transistor
(SET) geometry, using DFT as implemented in NRLMOL.
We have modeled the system by a {Fe4} functionalized with
phenyl groups attached to two metal leads described by
Au20 nanoclusters. Our calculations show that the magnetic
structure of the neutral {Fe4} SMM, that is, its spin ordering
and magnetic anisotropy, remains stable in the presence of
metallic leads. Specifically, the ground-state spin is S = 5 and
the anisotropy energy is of the order of 16 K, as for the isolated
{Fe4}. This result is ascribed to the fact that, when attaching
leads to {Fe4}, any charge transfer between the molecule and
the metal leads occurs primarily in the contact region and on
the ligands, but does not involve the magnetic core of the
molecule.

Based on the properties of the HOMO and LUMO of the
neutral system, when an electron is added to or subtracted
from the molecule-lead system, we find that the added charge
(Q = ∓1) is primarily located on the ligands and on the leads.
As a result, while the total spin of this finite system changes by
�S = ± 1

2 , the magnetic anisotropy displays small variations
both in magnitude and orientation with respect to the neutral
state. In contrast, the anisotropy of the anion and cation states
of an isolated {Fe4} is quite different from the values of the
neutral molecule since the added extra charge penetrates the
region of the Fe atoms. The theoretical study of charged
states Q = ±1 for the molecule-lead system is technically
challenging, due to occurrence of small HOMO-LUMO gaps
and consequent fractional occupancies of the states around
the Fermi level. Furthermore, DFT tends to overdelocalize
any added charge in the peripheral parts of the system.

Nevertheless, the analysis of these states presented here sheds
light on the properties of a {Fe4} SET when individual electrons
are added or subtracted to the “quantum dot” by overcoming
the Coulomb charging energy with a gate voltage.

We have shown that an external electric potential, modeling
a gate voltage, can be used to manipulate the charge on the
molecule-lead system and with that the magnetic properties of
the device. In particular, for the two charged states Q = ±1
when the extra charge, under the effect of the potential,
is progressively removed from the ligands-leads region into
the magnetic core of the molecule, the magnetic properties
converge to the properties of the anion and cation states
of the isolated {Fe4}. This is an example of the electric
control of magnetism of a SMM in a SET. The charged
states of the molecule-leads system in the presence of external
fields studied in this paper can be used to construct the
transition-matrix elements entering a quantum master equation
describing tunneling transport in a SET. With the limitations
inherent to the DFT approach mentioned above, these states
incorporate charging effects for the SMM weakly coupled to
metal leads.

We have compared the results of our numerical calculations
with the results of two recent experimental studies of tunneling
transport in a {Fe4} three-terminal device in the Coulomb
blockade regime.16,18 This comparison must be made with
caution since some important details (e.g., the precise atomic
and electronic structure of the ligands) are different and
might explain some of the discrepancies between theory
and experiment that we find. Nevertheless, one of these
experiments18 finds that the anisotropy for the two charged
states Q = ±1 displays only small variations in magnitude
and orientation from the corresponding values of the neutral
states, in agreement with our theoretical findings. Interestingly
enough, the experimental values are extracted by tracking
the dependence of the charge degeneracy point between two
adjacent charged states as a function of the magnetic field. Our
numerical calculations show that the essential independence of
the magnetic anisotropy on the charged states is related to the
position of the added charge being far away from the magnetic
core of the molecule. Thus, the agreement between theory and
experiment might indicate that for a {Fe4} SET the charge of
an added (subtracted) electron close to a charge-degeneracy
point is primarily located on the ligands and in the contact
region with the leads. If correct, this would be an example in
which a magnetic property of SMM-based SET can provide
information on the electronic properties of the charged states.

For molecule-lead systems with finite gaps, we expect
our results to provide accurate predictions of experiment.
However, for those cases where HOMO-LUMO gaps are very
small and the electronic states at the Fermi level are partially
occupied, further understanding will require variationally
accounting for the electronic occupations along the lines
suggested in Ref. 35.

Another point of view is that such fractionally occupied
solutions are also strongly affected by self-interaction cor-
rections and that accounting for such corrections will often
significantly decrease the possibility of fractionally occupied
solutions. Self-interaction corrections are also likely to provide
a more complete understanding of the nature of charged
states investigated in this paper. Addressing spin-dependent
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conductance in macromolecular to mesoscale devices will
require efficient solutions to these problems and renewed
efforts at extracting quantitative model Hamiltonians for such
systems.

The analysis of different charge states of a molecule
attached to leads and their dependence on an external potential,
carried out here, can be viewed as the first step to study
transport in the Coulomb blockade regime combining ab initio
and master-equation methods. Indeed, while it is not possible
to read off current-voltage characteristics directly from the
results presented here, the charge states constructed in this
paper are the basic ingredients to calculate transition-matrix
elements that enter in a master-equation formalism describing
charge transport. This is the goal that we are presently
pursuing, which will be the topic of a separate publication.
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APPENDIX: SPIN-ORBIT INTERACTION:
PERTURBATIVE METHOD

The starting points are the matrix elements of the spin-orbit
interaction (SOI) operator

U (r,p,s) = − 1

2c2
s · p × ∇
(r) (A1)

(p is the momentum operator; s is the electron spin operator;

 is the Coulomb potential; and c is the speed of light), taken
with respect to the unperturbed single-particle spinor wave
functions |ψkσ 〉 = |φkσ 〉|χσ 〉, which are solutions of the SCF-
approximation Schrödinger equation

H |ψkσ 〉 = εkσ |ψkσ 〉. (A2)

Here, φkσ (r) ≡ 〈r||φkσ 〉 is the orbital part of the wave function;
the two-component spinors |χσ 〉, σ = (1,2) are the eigenstates
of s · n̂, where the unit vector n̂ = n̂(θ,ϕ) is an arbitrary
quantization axis.

The matrix elements can be written as23

Ukσ,k′σ ′ = 〈ψkσ |U (r,p,s)|ψk′σ ′ 〉
= −i

∑
i

〈φkσ |Vi |φk′σ ′ 〉〈χσ |si |χσ ′ 〉, (A3)

where the matrix elements of the operator V = (Vx,Vy,Vz) are
defined as

〈φkσ |Vx |φk′σ ′ 〉

= 1

2c2

(〈
∂φkσ

∂z

∣∣∣∣

∣∣∣∣∂φk′σ ′

∂y

〉
−

〈
∂φkσ

∂y

∣∣∣∣

∣∣∣∣∂φk′σ ′

∂z

〉)
, (A4)

with similar expressions involving cyclical permutations of
x, y, and z. Note that Eq. (A4) avoids the time-consuming
calculation of the gradient of the Coulomb potential, replacing
it with the calculation of the gradient of the basis functions
in which φ(r) is expanded. The above representation of the

spin-orbit interaction arises by an integration by parts of the
matrix element defined in Eq. (A4). It is similar to the form of
spin-orbit interaction that comes out of the Dirac equation.

In the absence of an external magnetic field, the first-order
perturbation-theory correction to the total GS energy caused
by the SOI is zero because of time-reversal symmetry. The
second-order correction is nonzero and can be written as

�2 =
∑
σσ ′

∑
i,j

Mσσ ′
ij sσσ ′

i sσ ′σ
j , (A5)

where

sσσ ′
i ≡ 〈χσ |si |χσ ′ 〉 (A6)

and

Mσσ ′
ij ≡ −

∑
k=occ

∑
k′=unocc

〈φkσ |Vi |φk′σ ′ 〉〈φk′σ ′ |Vj |φkσ 〉
εkσ − εk′σ ′

, (A7)

where the sums over k and k′ involve occupied and unoccupied
states, respectively.

Equation (A5) is the central equation in the study of the
magnetic anisotropy. Since the spin matrix elements sσσ ′

i

depend on the orientation of the arbitrary axis of quantization
n̂, so does also the total-energy shift. This is precisely the
origin of the magnetic anisotropy brought about by SOI.

We now consider the case of a closed-shell molecule, a
system with a well-defined highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO)
gap in order to avoid problems with partial occupancy, with
�N excess of majority spin electrons.

We have the important relation23

〈χ1|si |χ1〉 = −〈χ2|si |χ2〉 = 〈Si〉
�N

, (A8)

where 〈Si〉 is the GS expectation value of the ith component
of the total spin of the system for the given choice of the
quantization axis. On the basis of our discussion of the giant-
spin model, 〈Si〉 can be reinterpreted as the expectation values
of the components of the giant-spin operator S for the spin-
coherent state |S,n̂〉 with S = �N/2.

Using the resolution of the identity in spin space∑
σ |χσ 〉〈χσ | = 1, we can write

〈χ1|si |χ2〉〈χ2|sj |χ1〉 = 〈χ1|sisj |χ1〉 − 〈χ1|si |χ1〉〈χ1|sj |χ1〉

= 〈χ1|sisj |χ1〉 − 〈Si〉〈Sj 〉
(�N )2

(A9)

and a similar expression for 〈χ2|si |χ1〉〈χ1|sj |χ2〉.
With the help of Eqs. (A8), (A9), and 〈χσ |(si)2|χσ 〉 = 1

4 ,
Eq. (A5) takes the form

�2 = α +
∑
ij

γij 〈Si〉〈Sj 〉, (A10)

where α = ∑
ij (M12

ii + M21
ii ) is a constant independent of the

quantization axis. The anisotropy tensor γij is given by

γij = 1

(�N )2

∑
ij

(
M11

ij + M22
ij − M12

ij − M21
ij

)
. (A11)
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The tensor γij can now be diagonalized by a unitary transfor-
mation and �2 becomes

�2 = α + A(〈S ′
x〉)2 + B(〈S ′

y〉)2 + C(〈S ′
z〉)2 (A12)

= α + A〈(S ′
x)2〉 + B〈(S ′

y)2〉 + C〈(S ′
z)

2〉, (A13)

where A,B,C are the eigenvalues of γij and the S ′
i are the

three spin components rotated along its three principal axes
[Eq. (A13) follows from Eq. (A12) thanks to the properties of
spin-coherent states].

This expression for �2 is exactly the expectation value
〈S,n̂|H|S,n̂〉 of the quantum spin Hamiltonian

H = α + A(S ′
x)2 + B(S ′

y)2 + C(S ′
z)

2 (A14)

in the spin-coherent state |S,n̂〉. Equation (A14) is equivalent
to Eq. (2) up to an irrelevant constant.
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calculations, carried out with a finite smearing of the Fermi-Dirac
distribution.

45Note, however, that the amplitude of the LUMO wave function is
quite small in the central region. Therefore, an electron tunneling in
from one of the leads would still find a bottleneck when tunneling
out to the other lead.

46Note that in Ref. 16, the results reported for the anion and cation
were obtained for samples A and B, respectively.

47In general, in Ref. 18 it is found that upon reduction, either from
N → N + 1 or from N − 1 → N , the spin S always decreases
and the anisotropy parameter D, defined via � = DS2, always
increases. The results of our calculations (see Table III) show that
both the anion and the cation have preferably S = 11

2 for a lead of
type 2, whereas S = 9

2 for a lead of type 1. However, states with
swapped spin configurations S = 11

2 ↔ S = 9
2 are quite close in

energy for both charged states.
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