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Dimerizations in spin-S antiferromagnetic chains with three-spin interaction
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We discuss spin-S antiferromagnetic Heisenberg chains with three-spin interactions, next-nearest-neighbor
interactions, and bond alternation. First, we prove rigorously that there exist parameter regions of the exact
dimerized ground state in this system. This is a generalization of the Majumdar-Ghosh model to arbitrary S.
Next, we discuss the ground-state phase diagram of the models by introducing several effective field theories and
the universality classes of the transitions are described by the level-2S SU(2) Wess-Zumino-Witten model and
the Gaussian model. Finally, we determine the phase diagrams of S = 1 and S = 3/2 systems by using exact
diagonalization and level spectroscopy.
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I. INTRODUCTION

Models with exact ground states have provided the foun-
dations for investigating strongly correlated systems in a
nonperturbative manner. The Affleck-Kennedy-Lieb-Tasaki
(AKLT) model with an exact valence-bond-solid (VBS)
ground state is a good example of such systems.1 It is now
widely accepted that the VBS state captures the qualitative
nature of the Haldane phase in the integer-S antiferromagnetic
Heisenberg (AFH) chain. For S = 1/2 systems, on the other
hand, the Majumdar-Ghosh (MG) model is known to have a
fully dimerized state as the exact ground state.2 It has been
shown that this state captures the dimer phases that appear
in certain parameter regions of the frustrated AFH chain,3

and experimentally observed states such as in CuGeO3.4

An extension of the exact dimerized ground state to higher
dimensions has also been investigated, because it is relevant
to experimental studies, such as those of the two-dimensional
Shastry-Sutherland model5 compound SrCu2(BO3)2.6

In this paper, we consider an intriguing model which has
a dimerized exact ground state in certain parameter regions:
a general-S spin chain including three-spin, next-nearest-
neighbor interactions, and bond alternation,

H = J1

∑
i

{1 − δ(−1)i}Si · Si+1 + J2

∑
i

Si−1 · Si+1

+ J3

∑
i

[(Si−1 · Si)(Si · Si+1) + H.c.], (1)

where H.c. denotes the Hermitian conjugate. The model (1)
is schematically described in Fig. 1. As we will see below,
our model (1) may be regarded as a natural, but not naive,
extension of the S = 1/2 MG model to a general-S case. Note
that, just as for several extensions of the MG model,3,7,8 our
model (1) has longer-range interaction than nearest neighbor.

Recently, Michaud et al. discussed a special case of this
model with J2 = δ = 0.9 They have shown that this “J1-J3”
model is reduced to the MG model for S = 1/2, and that a
doubly degenerate dimerized state appears as the exact ground
state when the ratio of the couplings is J3/J1 = 1/[4S(S +
1) − 2]. In this sense, one may regard the J1-J3 model as a
generalization of the MG model. Michaud et al. argued that the

J1-J3 model has exact dimerized ground states for any S. While
their conclusion is undoubtedly interesting, the mechanism
that allows the J1-J3 model to possess an exact ground state
is still unclear. In this paper, we prove rigorously that the
fully dimerized state is the exact ground state of the J1-J3

model from a more comprehensive point of view. Namely,
we present a proof of the fact that the general extension of
the J1-J3 model, that is, the “J1-J2-J3” model with bond
alternation (1), has an exact dimerized ground state. Our proof,
besides its rigorousness, gives a physical answer to the natural
question of why an exact ground state is feasible in the general
model (1).

One noteworthy feature of the model (1) is that it contains
experimentally feasible interactions only.9 This feature will be
relevant to experimental studies directly or indirectly. Thus, it
will be beneficial for experimental studies to investigate the
spin chain (1) away from the exactly dimerized regions. For
simplicity, we consider the phase diagram of Eq. (1) for J2 = 0
in the δ-J3/J1 space. All the physical essence is encoded in
this limited parameter region. Since the exact ground states
are in the dimerized phase, there must be phase transition lines
between the dimerized regions and the origin of the parameter
space which corresponds to the pure Heisenberg model (i.e.,
J2 = J3 = δ = 0). As discussed by Michaud et al.,9,10 the
phase transition occurs at a point J3c/J1 > 0 with δ = 0 and
it is expected that the level-2S SU(2) Wess-Zumino-Witten
theory [SU(2)2S WZW theory] is realized there. This means
that various relevant interactions are canceled at the critical
point. On the other hand, for a fixed J3/J1 < J3c/J1, there

J2

J1(1 − δ)J1(1 + δ) J3

FIG. 1. (Color online) A schematic figure of the J1-J2-J3 model
with bond alternation δ (1). Alternating nearest-neighbor interactions
J1(1 ± δ) are depicted by the red solid and dashed lines. The next-
nearest-neighbor interaction J2 is represented by the blue line. The
three-spin interaction J3 works on a triangle (green shaded area).
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FIG. 2. (Color online) Schematic ground-state phase diagram for
the model (1) with J2 = 0 for S = 1 and 3/2. The solid lines
correspond to the exact dimer ground-state regions. The dashed lines
depict the critical lines between several dimerized phases including
the Haldane phase. These critical lines are expected to be of the
c = 1 Gaussian type. The stars denote multicritical points where
the critical lines merge as described by SU(2)2S WZW theory with
c = 3S/(S + 1).

should be 2S successive dimerization transitions between
2S + 1 phases with different VBS configurations when δ is
varied from δ = −1 to δ = 1. These transitions are expected to
be of Gaussian type. Therefore, the ground-state phase diagram
of the general-S model (1) will consist of phase transitions of
different universality classes. A field-theoretical point of view
allows a comprehensive understanding of such complicated
situations. The field-theoretical description also enables us to
perform an accurate numerical analysis of the phase diagram
by the level-spectroscopy method.11 We will determine the
phase diagram for the S = 1,3/2 and J2 = 0 systems of Eq. (1)
numerically as shown in Fig. 2.

The rest of this paper is organized as follows: In Sec. II, we
prove that there exist regions of the exact dimerized ground
state of the spin-S AFH chain (1) in the (δ,J1,J2,J3) parameter
space. In Sec. III, we discuss the universality class of the phase
transition of this model with J2 = 0 based on a field-theoretical
argument. Furthermore, we determine the phase diagrams
of this model for S = 1 and S = 3/2 numerically, using
exact diagonalization and the level-spectroscopy method.
In the Appendix and Supplemental Material,12 the detailed
calculation for the proof of the exact ground state will be
presented.

II. PROOF OF THE EXACT DIMERIZED GROUND STATES

In this section, we prove that Eq. (1) has parameter regions
of exact dimer ground states for general S. First, let us
reconsider the Majumdar-Ghosh model [Eq. (1) with S = 1/2,
δ = J3 = 0, and J2 = J1/2],

HMG = J1

∑
i

(
Si · Si+1 + 1

2 Si−1 · Si+1
)
. (2)

This model has two fully dimerized states as the exact ground
state,

|�odd〉 =
∏
i∈Z

|S(2i − 1,2i)〉 ,

|�even〉 =
∏
i∈Z

|S(2i,2i + 1)〉 ,
(3)

where |S(i,i + 1)〉 denotes the singlet state formed by the spins
at sites i and i + 1. This can easily be proven if we rewrite
Eq. (2) using the following projection operator:

Qi = (Si−1 + Si + Si+1)2 − S(S + 1). (4)

For the singlet states, the three spins form an S = 1/2
composite spin, so that 〈Q〉i = 0 while 〈Q〉i � 0 for other
states. However, for S � 1, the singlet states (3) are no longer
the ground states of this projection operator.

Next, we consider the J1-J3 model [Eq. (1) with J2 =
δ = 0] which was discussed by Michaud et al.:9

HJ1−J3 = J1

∑
j

Sj · Sj+1

+ J3

∑
i

[(Si−1 · Si)(Si · Si+1) + H.c.]. (5)

This Hamiltonian for J3/J1 = 1/[4S(S + 1) − 2] can be writ-
ten as

HJ1−J3 = J1

16S(S + 1) − 8

∑
i

Pi − J1

2
NS(S + 1), (6)

where N denotes the total number of the spins, and Pi is a
local projection operator defined by

Pi =(Si−1 + Si) · [(Si + Si+1)2 − 1] · (Si−1 + Si)

=(Si + Si+1) · [(Si−1 + Si)
2 − 1] · (Si + Si+1).

(7)

It follows from Sα
i |S(i,j )〉 = −Sα

j |S(i,j )〉 (α = x,y,z) that
Pi projects out (i.e., annihilates) the singlet states,

Pi |S(i,i + 1)〉 = Pi |S(i − 1,i)〉 = 0. (8)

Therefore, Eq. (3) is an exact eigenstate of the J1-J3 model.9

In order to show that Eq. (3) is the exact ground state, we
have to prove that Pi is positive semidefinite. For this purpose,
let us introduce the following two local projection operators:

Ri ≡ 1
2Pi + (S + 1)Qi, R′

i ≡ 1
2Pi − SQi. (9)

Since [Pi,Qi] = 0 and also [Ri,R
′
i] = 0, Ri and R′

i project out
|S(i − 1,i)〉 and |S(i,i + 1)〉. Here one can show that Ri and
R′

i are positive semidefinite, while Qi is not. Let |ψ〉 be an
eigenstate of Ri and R′

i simultaneously. We can confirm the
non-negativity of its eigenvalues without making any ad hoc
assumptions:

〈ψ | Ri |ψ〉 � 0, 〈ψ | R′
i |ψ〉 � 0, (10)

where the equalities are satisfied for the singlet states. The
relations (10) are proven by expanding the three-site wave
functions explicitly into Ising-like bases (see the Appendix).
Then Pi is also proven to be positive semidefinite due to the
relation

Pi = S

2S + 1
Ri + S + 1

2S + 1
R′

i . (11)
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Thus the J1-J3 model has an exact doubly degenerate dimer-
ized ground state. In terms of Ri and R′

i , it is obvious that Qi

is not positive semidefinite:

Qi = 1

2S + 1
(Ri − R′

i). (12)

Thus, the naive extension of the MG model HMG =
(J1/2)

∑
i Qi + const to the general-S case fails to have an

exact dimerized ground state.
The above argument enables us to generalize the J1-J3

model to Eq. (1) with δ = 0, by constructing the Hamiltonian
in the following form:

H̃J1−J2−J3 =
∑

i

(ARi + BR′
i), A,B � 0, (13)

where H̃J1−J2−J3 ≡ HJ1−J2−J3 − E0 with E0 being the ground-
state energy of HJ1−J2−J3 . Furthermore, the model can be
extended to δ �= 0 cases as

Hδ−J1−J2−J3 = HJ1−J2−J3 +
∑
i∈Iδ

δ′(Si + Si+1)2, (14)

where Iδ stands for a set of odd (even) integers for δ > 0
(δ < 0). δ′ > 0 and the other parameters are related as

δ′ = 1 + δ

1 − δ

[
A(2S2 + 3S) + B(2S2 + S − 1)

]
, (15)

J3

(1 − |δ|)J1 − 2J2
= 1

4S(S + 1) − 2
. (16)

Since the operator (Si + Si+1)2 is obviously positive semidef-
inite and projects out the singlet state |S(i,i + 1)〉, a nonzero
δ lifts the doublet degeneracy of |ψodd〉 and |ψeven〉. For δ > 0
(δ < 0), the fully dimerized state |ψodd〉 (|ψeven〉) is the unique
ground state of the model (14). The parameter regions of the
exact ground state given by Eq. (16) are shown in Fig. 3.

The point of our proof lies in finding that the operator Pi in
Eq. (6) can be written as two positive semidefinite operators Ri

and R′
i , both of which project out the singlet states |S(i − 1,i)〉

and |S(i,i + 1)〉. Our proof clarifies that the operators Ri and
R′

i that project out the singlet states are essential for realizing
the exact dimerized ground state.

III. PHASE DIAGRAM OF J2 = 0 CHAINS

In this section, we discuss the phase diagrams of the
model (1) using a field-theoretical approach. For simplicity we
consider only J2 = 0 cases in the δ-J3/J1 space. The phase
diagram of a related model including bond alternation and
next-nearest-neighbor interaction J2 is investigated in detail in
Ref. 13.

A. Effective field theories

We introduce effective field theories of the AFH chain (1)
for J2 = 0, such as the O(4) and O(3) nonlinear σ models
(NLSMs). All the field theories are derived from the SU(2)k
WZW theory. These field theories give the basic language
needed to understand the statics and dynamics of this system.
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FIG. 3. (Color online) The parameter space of the model (1) for
several S � 1 with (a) δ = 0 and (b) |δ| = 0.3. The solid (dotted)
lines denote the regions where the dimerized state is the exact ground
state (eigenstate).

1. The multicritical point

At a point (δ,J3) = (0,J3c) with J3c > 0, the Gaussian
critical lines merge. This point is a multicritical point and the
semi-infinite line J3 > J3c on the horizontal axis is a first-order
transition line. The low-energy physics at the multicritical
point is described by the SU(2)2S WZW theory and the central
charge c = 3S/(1 + S).9 The SU(2)2S WZW theory has the
following Euclidean action:

A2S = S

8π

∫
S2

d2x Tr(∂μU∂μU−1) + 2S	WZ. (17)

U ∈ SU(2) is a primary field of the SU(2)2S WZW theory. The
second term is the Wess-Zumino term,

	WZ = − i

24π

∫
B3

d3x εαβγ Tr(U−1∂αUU−1∂βUU−1∂γ U ).

(18)

The two-dimensional space {(τ,x)|τ,x ∈ R2} is identified as
the two-dimensional sphere S2 by a one-point compactification
of infinity. B3 is a three-dimensional ball whose boundary is
∂B3 = S2. The primary field U ∈ SU(2) can be represented
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by a 2 × 2 matrix with four real parameters φα (α = 0,1,2,3),

U = φ0I + iφ · σ . (19)

I = diag(1,1) is the 2 × 2 unit matrix. σ = (σ1,σ2,σ3) denotes
the Pauli matrices. The parameters φα are constrained to the
three-dimensional sphere S3,

3∑
α=0

φα
2 = φ0

2 + φ2 = 1. (20)

Therefore, the SU(2)2S WZW theory is equivalent to the O(4)
NLSM

A2S = S

4π

∫
dτdx

3∑
α=0

(∂μφα)2 + 2S	WZ. (21)

The contraction (∂μφα)2 = (∂τφα)2 + (∂xφα)2 is assumed.
Whereas a (2 + 1)-dimensional version of the O(4) NLSM (21)
is fully exploited to understand the deconfined quantum
criticality of two-dimensional quantum antiferromagnets,14,15

the (1 + 1)-dimensional version (21) is not used in one-
dimensional quantum spin systems. In the following, we will
see that the representation (21) also gives insight into the
problem of one-dimensional quantum antiferromagnets. φ0

and φ represent order parameters of the dimerization and the
Néel order, respectively:(

S(S + 1)φ0(x)√
S(S + 1)φ(x)

)
	

(
(−1)j Sj · Sj+1

(−1)j Sj

)
. (22)

The SO(4) symmetry of the WZW theory is easily broken by
relevant interactions. Indeed, the SO(4) group is homomorphic
to SU(2)L × SU(2)R . The subscripts L and R denote the
holomorphic (right-moving) and the antiholomorphic (left-
moving) degrees of freedom. The manifestation of the SO(4)
symmetry means the decoupling of the holomorphic and
antiholomorphic parts of the effective field theory, which is
nothing but the fixed point theory (21). For instance, the
most relevant interaction in the WZW theory is TrU = 2φ0.
It apparently lowers the SO(4) symmetry to SO(3) if TrU
acquires a nonzero expectation value as in the dimerized phase.

The SO(4) symmetry is naturally manifested in the lattice
model (1). Let us roughly determine a point where the SO(4)
symmetry is realized in the phase diagram. First of all, it
must be on the horizontal axis, δ = 0, because the bond
alternation (−1)j Sj · Sj+1 ∼ S(S + 1)φ0 cannot respect the
SO(4) symmetry. The Hamiltonian (1) with J2 = 0 and δ = 0
is written in terms of the (φ0,φ) fields as follows:

H ∼
∫

dx

a
[−J1S(S + 1)φ(x) · φ(x + a)

− J3[S(S + 1)]2φ0(x)φ0(x + a) + · · · ]. (23)

a is the lattice spacing of the spin chain. The SO(4) symmetry
exists only when the right-hand side of Eq. (23) takes the form
of −JS(S + 1)

∑3
α=0 φα(x)φα(x + a) + · · · .

That is, the SO(4) symmetry is realized in the spin chain (1)
at (

δ,
J3c

J1

)
=

(
0,

CS

S(S + 1)

)
. (24)

CS is a nonuniversal constant which may depend on the spin
quantum number S. It is generally difficult to determine the
precise value of CS . But one can speculate that the constant
CS satisfies 0 < CS � 1

4 because it lies between the origin
(0,0) and the exactly dimerized point ( 1

4S(S+1)−2 ,0). In fact,
J3c/J1 = 0.111 in the S = 1 AFH chain (1) leads to CS=1 =
0.222, which satisfies 0 < CS=1 < 1

4 .
The effective field theory of the AFH chain (1) in the

vicinity of the multicritical point has the following Euclidean
action:

A 	 A2S −
∫

dτdx [cδJ1δ Tr U + c3(J3 − J3c)(Tr U )2].

(25)
cδ and c3 are positive dimensionless constants. Every effective
field theory in distinctive regions of the phase diagram
originates from the perturbed SO(2)2S WZW theory (25).

The qualitative effects of the perturbations are easily seen
as follows. When we move away from the multicritical point
vertically (J3 = J3c), the φ0 field is pinned to either of φ0 = ±1
in order to optimize the potential Tr U = 2φ0. The pinning
value depends on the sign of δ. But, irrespective of the sign,
the spin chain (1) is drawn into the fully dimerized phase. On
the other hand, when we move away horizontally (δ = 0), the
φ0 field is pinned to ±1 if J3 > J3c and 0 if J3 < J3c. Only the
former case corresponds to the fully dimerized phase where
the one-site translational symmetry is spontaneously broken.

2. Between the multicritical point and the origin

The perturbed WZW theory (25) with δ = 0 and J3 < J3c

is equivalent to the O(3) NLSM,16

A =
∫

dτdx
v

2g
(∂μn)2 + i�Q (26)

with a topological angle � = 2πS. n = (nx,ny,nz) is a three-
dimensional unit vector. The n field is related to the original
spin variable Sj via

Sj 	 (−1)j Sn(x)

√
1 −

(
L(x)

S

)2

+ L(x). (27)

Each component of n(x) represents a triplet one-magnon
excitation near the wave number q = π/a, and L(x) = 1

gv
n ×

∂t n describes two-magnon excitations near q = 0. The term
i�Q in Eq. (26) is the so-called � term. g = 2/S is a coupling
constant. Q is an integer, which represents a winding number
of the configuration of the n field on the two-dimensional
sphere S2. As Haldane first proposed,17 the O(3) NLSM (26)
describes a gapped spin chain when S is an integer.

3. On the critical line

Bond alternation modifies the coupling of the � term,18

� = 2πS(1 − δ). (28)

By increasing |δ| from zero, we can change the coupling �

from � ≡ 0 (mod 2π ) to � ≡ π (mod 2π ) in the case of
integer S, and from � ≡ π (mod 2π ) to � = 0 (mod 2π ) in
the case of half-integer S. The O(3) NLSM (26) with � ≡ π
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(mod 2π ) is equivalent to the massless free-boson theory,

A = 1

2

∫
dτdx (∂μϕ)2. (29)

The boson field ϕ is compactified as ϕ ∼ ϕ + √
2π . For

S = 1, the critical theory (29) describes the low-energy physics
exactly on the c = 1 Gaussian critical line. This will also be
the case for the S = 3/2 case.

B. Level spectroscopy

The phase diagrams of the J2 = 0 chains for S = 1 and
S = 3/2 are determined by level spectroscopy which identifies
the phase transition as a level-crossing point of the lowest
excitation levels obtained by exact diagonalization. The finite-
size effect in this method is very small, since the logarithmic
corrections are canceled at the level-crossing point, and only
the power dependence of the size effect remains. The present
Haldane-dimer and dimer-dimer transitions can be determined
by level crossings of the lowest two excitations with different
parities under antiperiodic boundary conditions.11 These level
crossings can also be interpreted as points of change of the
(m,n)-type VBS configurations, which are defined as

∣∣�(m,n)
VBS

〉 ≡
N/2∏
k=1

(B†
2k−1,2k)m(B†

2k,2k+1)n|vac〉, (30)

where B
†
i,j ≡ a

†
i b

†
j − b

†
i a

†
j and |vac〉 is the vacuum with respect

to bosons.19 Here, the Schwinger boson operator a
†
j (b†j )

increases the number of up (down) S = 1/2 variables under
symmetrization. The integers m and n satisfy m + n = 2S.
The level-crossing points also correspond to zero points of the
expectation values of the twist order parameters.20 Moreover,
for S = 1 the two excitation spectra for the level crossing
can be related to the two different types of string order
parameters.21

The phase diagrams obtained by this method are shown in
Fig. 4. The extrapolation of the numerical data has been done
assuming the function δc(N ) = δc(∞) + A/N2 + B/N4. The
finite-size effect becomes larger for small-δ regions, but the
extrapolated values [(J3/J1)c = 0.11 for S = 1, (J3/J1)c =
0.062 for S = 3/2] well agree with the ones obtained in Refs. 9
and 10. The global structure of the phase diagram Fig. 4(a) is
similar to that for the S = 1 chain with a bilinear-biquadratic
interaction. This is due to the fact that the three-spin interaction
and the bilinear-biquadratic interaction will take almost the
same form in the continuum limit.22

We calculate the conformal charge c along the critical line
for the S = 1 system using the standard finite-size scaling of
the ground state,

E0(N ) = ε0N − πv

6N
c, (31)

where the spin-wave velocity is calculated as

v = lim
N→∞

E(N,S = 1,k = 4π/N ) − E0(N )

4π/N
. (32)

As shown in Fig. 5, although the finite-size effect remains
large, c → 1.5 = 3S/(S + 1) around the multicritical point
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FIG. 4. (Color online) Ground-state phase diagram of the bond-
alternating Heisenberg model with three-spin interactions [Eq. (1)
with J2 = 0] for (a) S = 1 and (b) S = 3/2. The multicritical points
are located at (J3/J1)c = 0.11 for S = 1 and at (J3/J1)c = 0.062 for
S = 3/2.

δ = 0, whereas c → 1 for δ �= 0 as was predicted by the field-
theoretical arguments.

IV. SUMMARY

We have discussed the dimerizations of the spin-S AFH
chains with three-spin interactions and bond alternations. We
have rigorously proven that the AFH chains can possess exact
dimerized ground states: Two local projection operators Ri

and R′
i defined in Eqs. (A3) and (A4) are introduced and

the Hamiltonians with exactly dimerized ground states are
written as a linear combination of them. Then the exact ground
states turn out to lie on the surface J3

(1−δ)J1−2J2
= 1

4S(S+1)−2 .
This argument is considered to be a generalization of the
Majumdar-Ghosh model to arbitrary S. It is also possible to
construct higher-dimensional versions of the present model,
such as the Shastry-Sutherland model.

We have further discussed the ground-state phase diagram
of the models whose Hamiltonian is defined by (1) by
introducing several effective field theories. At the multicritical
point the low-energy physics is described by the O(4) nonlinear
σ model. However, on the phase transition lines except at
the multicritical point, the low-energy physics is described
by the O(3) nonlinear σ model. We have also obtained
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FIG. 5. (Color online) Conformal charge on the Haldane-dimer
transition line in the S = 1 chain obtained from the size scaling of the
ground state for N = 8–18. The value approaches c = 1 (c = 3/2)
for δ �= 0 (δ = 0).

the phase diagram for S = 1 and S = 3/2 chains by the
level-spectroscopy method, and confirmed that the central
charge on the critical lines changes rapidly from 3S/(S + 1)
to 1 when the bond alternation increases.
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APPENDIX: POSITIVITY OF Ri AND R′
i

We prove the positivity of the operators Ri and R′
i defined

in Eqs. (A3) and (A4) for an arbitrary simultaneous eigenstate
|ψ〉. Indeed, one can take such a state, because [R2,R

′
2] = 0.

Thanks to the translational symmetry of the J1-J3 model, we
may assume i = 2 without loss of generality. Since Ri and R′

i

are involved with three neighboring spins Si−1, Si , and Si+1,
one needs only a three-site subspace, in which an arbitrary
state |ψ〉 can be written as

|ψ〉 =
∑

m1,m2,m3

Cm1,m2,m3 |m1,m2,m3〉 , (A1)

with ∑
m1,m2,m3

∣∣Cm1,m2,m3

∣∣2 = 1, (A2)

where mj (j = 1,2,3) is the Sz quantum number of each spin
on site j and thus |mj | � S.

After straightforward calculations,12 one finds that the
eigenvalues of the state |ψ〉 are non-negative,

〈ψ | R2 |ψ〉 =
∑

m1,m2,m3

∣∣αCm1,m2,m3 + βCm1−1,m2+1,m3

+ γCm1,m2−1,m3+1 + θCm1−1,m2,m3+1

∣∣2
, (A3)

〈ψ | R′
2 |ψ〉 =

∑
m1,m2,m3

∣∣α′Cm1,m2,m3 + β ′Cm1−1,m2+1,m3

+ γ ′Cm1,m2−1,m3+1 + θ ′Cm1−1,m2,m3+1

∣∣2
, (A4)

where

α =
√

(S + m1)(S + m2 + 1)(S − m2 + 1)(S − m3),

β =
√

(S − m1 + 1)(S − m2)(S − m2 + 1)(S − m3),
(A5)

γ =
√

(S + m1)(S + m2)(S + m2 + 1)(S + m3 + 1),

θ =
√

(S − m1 + 1)(S − m2 + 1)(S + m2 + 1)(S + m3 + 1),

and

α′ =
√

(S − m1 + 1)(S − m2)(S + m2)(S + m3 + 1),

β ′ =
√

(S + m1)(S + m2)(S + m2 + 1)(S + m3 + 1),

γ ′ =
√

(S − m1 + 1)(S − m2)(S − m2 + 1)(S − m3),

θ ′ =
√

(S + m1)(S − m2)(S + m2)(S − m3).

(A6)

When the pair 1,2 is a singlet state, one can find that

αCm1,m2,m3 + βCm1−1,m2+1,m3

= γCm1,m2−1,m3+1 + θCm1−1,m2,m3+1

= α′Cm1,m2,m3 + β ′Cm1−1,m2+1,m3

= γ ′Cm1,m2−1,m3+1 + θ ′Cm1−1,m2,m3+1 = 0,

(A7)

or when the pair 2,3 is a singlet state, we have

αCm1,m2,m3 + γCm1,m2−1,m3+1

= βCm1−1,m2+1,m3 + θCm1−1,m2,m3+1

= α′Cm1,m2,m3 + γ ′Cm1,m2−1,m3+1

= β ′Cm1−1,m2+1,m3 + θ ′Cm1−1,m2,m3+1 = 0.

(A8)

Therefore, Ri and R′
i are positive semidefinite and project out

|S(i − 1,i)〉 and |S(i,i + 1)〉. It may also be possible to rewrite
Ri and R′

i themselves into quadratic forms.
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