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Random field x y model in three dimensions
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We study the random field xy spin model at T = 0 numerically on lattices of up to 1000 × 1000 × 1000 spins
with emphasis on the weak random field. Our numerical method is physically equivalent to slow cooling in which
the system is gradually losing energy and relaxing to an energy minimum. The system shows glass properties,
the resulting spin states depending strongly on the initial conditions. Random initial condition for the spins leads
to a vortex glass (VG) state with short-range spin-spin correlations defined by the average distance between
vortex lines. Collinear and some other vortex-free initial conditions result in vortex-free ferromagnetic (F) states
that have a lower energy. The energy difference between the F and VG states correlates with the vorticity of the
VG state. The correlation functions in the F states agree with the Larkin-Imry-Ma theory at short distances. The
hysteresis curves for a weak random field are dominated by topologically stable spin walls ruptured by vortex
loops. We find no relaxation paths from the F, VG, or any other states to the hypothetical vortex-free state with
zero magnetization.
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I. INTRODUCTION

Studies of the effects of a static random field on the
long-range order in a system with a continuous order parameter
have a long history. Larkin1 argued that weak random pinning,
no matter how weak, destroys the long-range translational
order in the Abrikosov vortex lattice. Later, similar ideas
were applied to spin- and charge-density waves,2 magnets,3

Josephson junction arrays, and even cosmology. The question
of interest for superconductors is the distortion of the vortex
lattice due to the collective pinning of vortex lines by randomly
distributed point defects. In magnets, it is a question of long-
range behavior of ferromagnetic correlations in the presence
of torques applied to individual spins by randomly distributed
static local fields. The analytical results obtained for the
magnetic and superconducting systems are similar.

In 1975, Imry and Ma4 made a landmark observation known
as the Imry-Ma argument. It states that a static random field,
no matter how weak, destroys the long-range order in a system
with any continuous-symmetry order parameter in less than
four dimensions. The Imry-Ma correlation length Rf (speak-
ing of ferromagnetic models) in d dimensions scales as Rf ∝
h2/(d−4) with the strength of the random field h. Aizenman and
Wehr5,6 provided a mathematical scheme that is considered
to be a rigorous proof of the Imry-Ma argument. The effects
of random magnetic anisotropy relevant to the properties of
amorphous and sintered ferromagnets have been shown to
resemble those of a random field.3,7–9 It was demonstrated
that random fields grow naturally out of magnetic anisotropy
in disordered antiferromagnets.10 Early results on magnets and
superconductors with quenched randomness have been sum-
marized in Refs. 11 and 12 and also discussed in the context
of spin-glasses.13 The Larkin-Imry-Ma (LIM) approach leads
to exponential decay of correlations at large distances.1–3,14

Recently, this approach has been employed to describe
superconductor-insulator transition in disordered films.15

Despite the appealing simplicity of the Imry-Ma argument,
the renormalization group treatments of the problem by Cardy
and Ostlund16 and by Villain and Fernandez in early 1980s17

had questioned the validity of that argument for distances
R � Rf . The application of scaling and replica-symmetry
breaking arguments to statistical mechanics of flux
lattices,18–26 as well as variational approach,27,28 yielded
power-law decay of correlations at large distances, which
suggested that ordering could be more robust against weak
static randomness than expected from the LIM theory. Such
a quasiordered phase, presumed to be vortex-free in spin
systems and dislocation-free in Abrikosov lattices, received
the name of a Bragg glass.

In parallel with analytical studies, the effect of static
disorder has been investigated by numerical methods. Early
results on 1d (Ref. 29) and 2d (Ref. 30) spin systems with
quenched randomness have established strong nonequilibrium
effects, such as magnetic hysteresis and dependence on initial
conditions, as well as significant departure of the correlation
functions from the prediction of the LIM theory. Gingras
and Huse31 attempted to test numerically the existence of the
vortex-free Bragg glass phase in 2d and 3d random-field xy

spin model. While they found some evidence of the expulsion
of vortices below the critical temperature, rapid freezing
of spin dynamics prevented them from making a definitive
comparison with the Bragg glass theory. For the interested
reader, Ref. 31 also provides a discussion of similarities and
differences of the xy random field spin model and flux-lattice
model in the background of the random pinning potential,
see also the review in Ref. 32. In the absence of topological
defects, numerical evidence of the logarithmic growth of
misalignment with the size of the system has been found in
2d Monte Carlo studies of a crystal layer on a disordered
substrate and for pinned flux lattices.33,34 Power-law decay
of spin-spin correlations has been also reported in Monte
Carlo studies of the random-field Heisenberg model,35 as
well as for the xy model.36 In a follow-up in Ref. 31,
further argument in favor of the Bragg glass phase in the xy

model was presented by Fisher37 who analyzed energies of
randomly pinned dislocation loops. Defect-free spin models
with relatively large random field and random anisotropy
have been studied numerically on small lattices by Fisch.38
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At elevated temperatures, the numerical evidence of the
power-law decay of correlations in a 2d random-field xy model
has been recently obtained by Perret et al.39

In spite of the large body of work, no agreement currently
exists on ordering and correlations in systems with quenched
randomness. The complexity of such systems appears to be in
the same class as the complexity of a spin glass, even in the
limit of a vanishingly small random field. This contributed to
the decline of the analytical effort on random-field models after
intensive work in 1980’s and 1990’s. Numerical work on this
problem has been hampered by the fact that the ordered regions
grow as the random field goes to zero. One can easily come up
with a wrong statement on the long-range behavior if the size
of the system is not sufficiently large. Numerical calculations
on large systems require large computation times, which, to a
large degree, contributed to the decline of the numerical effort
in this field. Nowadays, the increased computational capabil-
ities allow one to readdress the question of the long-range be-
havior of the random-field model in three dimensions. This has
been the main motivation of our work on the magnetic model.

Our main finding is that arguments of analytical theories
about the behavior of systems with quenched randomness,
while having undisputable conceptual value and serving
as reference points for numerical studies, are, probably,
oversimplified. The properties of such systems are dominated
by pinned topological defects and metastability due to large
energy barriers that are practically unsurpassable at any
temperature below the temperature of local ordering. We do
not find any relaxation path from typical initial states, such
as random and collinear initial orientation of spins, toward a
completely disordered vortex-free state.

The paper is organized as follows. The model is formulated
in Sec. II. Some analytical results of the LIM theory are
presented in Sec. IV, as the reference frame for comparison
with numerical results. The effect of disorder on correlations of
spin directions (angular correlations) is discussed in Sec. IV A.
Spin-spin correlation functions are discussed in Sec. IV B. The
leading contribution to the energy is derived in Sec. IV C. An-
alytical formulas for the approach to saturation in the external
field are obtained in Sec. IV D. The zero-field susceptibility
of the Imry-Ma state is obtained in Sec. IV E. Expressions for
the average magnetization of a finite system due to statistical
fluctuations are derived in Sec. IV F. A correlated random field
is considered in Sec. IV G. The details of our numerical method
are discussed in Sec. V A. Section V C gives an overview of
our numerical findings. Relaxation of the spin system from
different initial conditions is studied in Sec. V D. The resulting
spin structures are reviewed in Sec. V E. The relation between
magnetization and vorticity is discussed in Sec. V F. Energies
of different equilibrium states are compared in Sec. V G.
Numerical results on the hysteresis curves are presented in
Sec. V H. Spin-spin correlation functions are computed in
Sec. V J. Section VII contains a discussion of the results and
possible interpretations.

II. THE MODEL

We study the xy model described by the Hamiltonian

H = −1

2

∑
ij

Jij si · sj −
∑

i

hi · si − H ·
∑

i

si , (1)

where si is a two-component constant-length (|si | = s) spin
at the site i of a cubic lattice, hi is a quenched random
field (RF) at that site, and H is the external field. The
summation is over the nearest neighbors. The factor 1/2 in
the first term is compensating for the double counting of
the exchange bonds. In what follows, we assume isotropic
exchange, (Jij ≡ J ). Below, we present numerical results of
the energy minimization in Eq. (1) for the uncorrelated RF,

〈hiαhjβ〉 = 1
2h2δαβδij , (2)

(greek indices being the Cartesian components of the vec-
tors) although computations for a correlated RF have been
performed as well. The correlator above has the same form
for the fixed-length RF, |hi | = h = const, our main choice, as
well as for models with a distributed RF strength h, such as
Gaussian distribution. No difference between the fixed-length
and Gaussian models has been found in numerical calculations.

The continuous counterpart of this model in d dimensions
is

H =
∫

ddr

ad

[
Ja2

2

(
∂sα(r)

∂rβ

)2

− h(r) · s(r) − H · s(r)

]
,

(3)

where s(r) is a dimensionless spin-density field, |s(r)| = s, and
h(r) is the random-field density, r = (x,y,z). In the continuous
model, Eq. (2) corresponds to

〈hα(r′)hβ(r′′)〉 = 1
2h2adδαβδ(r′ − r′′). (4)

Another possible choice could be a random field that is
correlated on a short scale ρ. This would correspond to

〈hα(r′)hβ(r′′)〉 = 1
2h2δαβ�(r′ − r′′) (5)

with �(r) rapidly going to zero at r � ρ, e.g., �(r) =
exp(−r/ρ) or �(r) = exp(−r2/ρ2). Equation (4) can be
generated by the Gaussian distribution42 of the realizations
of the random field h(r),

P [h(r)] ∝ exp

[
− 1

h2

∫
ddr

ad
h2(r)

]
. (6)

It is convenient to express the continuous field model in
terms of the angles φ(r) and ϕ(r) that determine the orientation
of s(r) and h(r) in the xy plane. Writing

s(r) = s[sin φ(r), cos φ(r)], (7)

h(r) = h[sin ϕ(r), cos ϕ(r)] (8)

and assuming that H is directed along the x axis, H = (H,0),
one obtains from Eq. (3),

H = s

∫
ddr

ad

[
J sa2

2
(∇φ)2 − h cos(φ − ϕ) − H cos φ

]
.

(9)

For analytical calculations, the above xy random-field spin
model is simpler than the Heisenberg spin model, which, in
general, would have more than two components of s and h. The
reason is that xy spins can be described by one angle per spin,
as dynamic variables. Both models can be modified to study the
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effects of random anisotropy, which applies, e.g., to amorphous
magnets. This would require the replacement of the −hi · si

interaction with −Di(ni · si)2, where Di and ni describe
strength and direction of the local magnetic anisotropy. These
other models will be studied separately. In this paper, we focus
on a 3d xy random field model. We will calculate analytically
and numerically the correlation function (CF) defined by

C(R) = 1

N

∑
i

〈s(ri) · s(ri + R)〉 , (10)

where N is the total number of spins. In analytical calculations,
there is no averaging over i and 〈. . .〉 mean averaging over
realizations of the random field. In numerical work, 〈. . .〉 can
be dropped for large enough system sizes where there is a
sufficient self-averaging.

III. QUALITATIVE ANALYSIS

The idea of an arbitrary weak random field destroying
LRO has been proposed by Imry and Ma.4 According
to their proposal, spins in different regions will order in
different directions dictated by the random field, so that the
magnetization of the bulk will be zero. Since spins are coupled
by a strong exchange, they cannot follow the RF at each lattice
site. Instead, they adjust to the direction of the RF averaged
over large correlated volumes of linear size Rf , determined
self-consistently. The energy per spin of the Imry-Ma (IM)
state can be estimated as

E − E0 ∼ −sh

(
a

Rf

)d/2

+ s2J

(
a

Rf

)2

, (11)

where E0 is the energy per spin of a collinear state. Minimiza-
tion of the energy with respect to Rf yields

Rf ∼ a

(
sJ

h

)2/(4−d)

. (12)

Finiteness of Rf for any d < 4 supports the initial assumption
that spins follow the averaged RF and thus the state is
disordered, m = 0. The resulting energy of the IM state is

E − E0 ∼ −s2J

(
h

sJ

)4/(4−d)

, (13)

which yields E − E0 ∼ −h4/J 3 in 3d. However, the main
contribution to the adjustment energy arises at the atomic scale
and is given by E − E0 ∼ −h2/J in all dimensions.

One can modify the IM argument by taking into account
the adjustment of spins to the RF at all length scales. For
this purpose, consider a reference state perfectly ordered in
some direction. Spins will turn away from this state under the
influence of the RF. More precisely, groups of spins of linear
size R will rotate by an adjustment angle φ (considered as
small to begin with) under the influence of the RF averaged
over this region. The corresponding energy per spin is given
by the generalization of Eq. (11):

E − E0 ∼ −sh

(
a

R

)d/2

φ + s2J

(
a

R

)2

φ2. (14)

Minimizing this expression with respect to φ, one obtains

φ ∼ h

sJ

(
R

a

)(4−d)/2

, (15)

which grows with the distance R, as expected. The square
of the angular deviation increases as φ2 ∼ (R/Rf )4−d , where
Rf is given by Eq. (12). This defines the spin CF at small
distances:

C(R) = s2 cos φ ∼= s2

(
1 − 1

2
φ2

)

= s2

[
1 − A

(
R

Rf

)4−d]
, (16)

where A is a number.
The energy per spin corresponding to spin adjustment at

the distance R is

E − E0 ∼ −h2

J

(
a

R

)d−2

. (17)

One can see that the highest energy gain is provided by spin
adjustments at the atomic scale, R ∼ a. In this case, one
obtains

E − E0 ∼ −h2/J. (18)

Spin misalignments grow large, φ ∼ 1, at R ∼ Rf . Substitut-
ing Rf into Eq. (17), one recovers the IM energy of Eq. (13). It
should be stressed that the IM energy is much smaller than the
main short-distance energy contribution and it is not accessible
numerically.

It has been speculated32 that at R > Rf , when φ be-
comes large, it is distributed with a Gaussian probability,
making the energy associated with the random field scale as
sh(a/R)d/2 exp(−φ2/2) instead of −sh(a/R)d/2φ for small
φ. Then the minimum of the total energy that includes
the exchange energy s2J (a/R)2φ2, would correspond to
φ2 ∼ (4 − d) ln(R/Rf ) in accordance with the Bragg glass
result.18,20,21

IV. ANALYTICAL RESULTS

If the random field is sufficiently strong, then in the
absence of a strong external field, a strong local Zeeman
interaction should align the spins with the random field at
each site independently. The case of a weak random field
is less straightforward. On one hand, such a field cannot
destroy the parallel alignment of neighboring spins created
by the strong ferromagnetic exchange. On the other hand,
neither the exchange nor the local random field can determine
the direction of the local magnetization. The latter can,
therefore, wander around the sample, with some characteristic
ferromagnetic correlation length that can be, in principle, either
finite or infinite. This nonobvious effect of the weak random
field will be the main focus of our investigation.

A. Angular correlations

At H = 0, the correlation function of the spin angles φ can
be computed by noticing that the extremal configurations of
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φ(r) with the Hamiltonian (9) satisfy

J sa2∇2φ = h sin(φ − ϕ) = hx sin φ − hy cos φ, (19)

where hx = h cos ϕ and hy = h sin ϕ. This equation has an
implicit solution

φ(r) = 1

J sa2

∫
ddr ′Gd (r − r′)[hx(r′) sin φ(r′)

−hy(r′) cos φ(r′)], (20)

where Gd (r) is the Green function of the Laplace equa-
tion in d dimensions: G2(r) = −(2π )−1 ln |r| and G3(r) =
−1/(4π |r|). Its Fourier transform is Gd (q) = −1/q2 for all d.
Equation (20) then gives

〈[φ(r1) − φ(r2)]2〉
= 1

J 2s2a4

∫
ddr ′

∫
ddr ′′[Gd (r1 − r′) − Gd (r2 − r′)]

× [Gd (r1 − r′′) − Gd (r2 − r′′)]

×[〈hx(r′)hx(r′′)〉〈sin φ(r′) sin φ(r′′)〉
+ 〈hy(r′)hy(r′′)〉〈cos φ(r′) cos φ(r′′)〉
− 〈hx(r′)hy(r′′)〉〈sin φ(r′) cos φ(r′′)〉
− 〈hy(r′)hx(r′′)〉〈cos φ(r′) sin φ(r′′)〉]. (21)

Here, we used the fact that for a weak random field the
direction of the spin at a particular site must have very
weak correlation with the direction of the random field
at that site, leading to 〈hx(r′)hx(r′′) sin φ(r′) sin φ(r′′)〉 ≈
〈hx(r′)hx(r′′)〉〈sin φ(r′) sin φ(r′′)〉 and so on.

With the help of Eq. (4), one obtains in three dimensions at
H = 0:

〈[φ(r1) − φ(r2)]2〉

= h2

2J 2s2a

∫
d3r[G3(r1 − r) − G3(r2 − r)]2

= h2

J 2s2a

∫
d3q

(2π )3

1 − cos[q · (r1 − r2)]

q4

= h2

8πJ 2s2a
|r1 − r2| (22)

that is,

〈[φ(r1) − φ(r2)]2〉 = 2
|r1 − r2|

Rf

,
Rf

a
= 16π

(
J s

h

)2

,

(23)

where Rf is the ferromagnetic correlation length. As we shall
see later, this formula is in excellent agreement with numerical
results. The linear decay of short-range correlations due to the
random field was first obtained by Larkin in the application
to translational correlations in flux lattices.1 Extrapolating
Eq. (23) to greater distances, one should expect that the spin
field would rotate significantly at distances |r1 − r2| ∼ Rf .
The long-range behavior of spin-spin correlations has been,
however, subject of a significant controversy in the last forty
years.

B. Spin correlations

At short distances, the spin correlation function directly
follows from the angular-deviation correlator computed above:

〈s(r1) · s(r2)〉 = s2〈cos[φ(r1) − φ(r2)]〉

= s2

{
1 − 1

2
〈[φ(r1) − φ(r2)]2〉

}

= s2

(
1 − |r1 − r2|

Rf

)
, (24)

in accordance with Eq. (16) in 3d. More generally, one can
write

〈s(r1) · s(r2)〉 = s2〈cos[φ(r1) − φ(r2)]〉

= s2 exp

{
−1

2
〈[φ(r1) − φ(r2)]2〉

}
. (25)

Substituting here Eq. (23), in 3d, one obtains

〈s(r1) · s(r2)〉 = s2 exp

(
−|r1 − r2|

Rf

)
. (26)

Equation (26) can be obtained in the whole range of
distances by the functional integration over the distribution
of the random field given by Eq. (6). The calculation in 3d

proceeds as follows:

〈s(r1) · s(r2)〉
= s2〈exp i[φ(r1) − φ(r2)]〉

= s2

{∫
D{hx}D{hy} exp

[
−

∫
d3r

(
h2

x + h2
y

)
h2a3

]}−1

×
∫

D{hx}D{hy} exp

(
i

∫
d3r

{
1

J sa2
[G3(r − r1)

−G3(r − r2)][hx sin φ(r) − hy cos φ(r)] − h2
x + h2

y

h2a3

})

= s2 exp

{
− h2

4J 2s2a

∫
d3r [G3(r − r1) − G3(r − r2)]2

}

= s2 exp

{
− h2

2J 2s2a

∫
d3q

(2π )3

1 − cos[q · (r1 − r2)]

q4

}

= s2 exp

(
−|r1 − r2|

Rf

)
, (27)

where we have used Eq. (20).
The increase of spin misalignments with distance according

to Eq. (23) is unquestionable and it is also true that at some
distance, misalignments become large. It was questioned by
many researchers, however, whether the averaging employed
to obtain Eq. (27) provides a correct description of the
behavior at large distances. Theory based upon scaling and
replica-symmetry breaking arguments18,21 yielded 〈[φ(r1) −
φ(r2)]2〉 = A ln |r1 − r2| at R � Rf , with A depending on the
dimensionality only. While this theory was initially developed
for flux lattices, it was later argued that the result must be
relevant for the xy random field spin model as well.28,31,37,39

This would imply universal power-law decay of long-range
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correlations,

〈s(r1) · s(r2)〉 ∼ 1

|r1 − r2| , (28)

in 3d according to Eq. (26). Such a quasiordered phase,
presumed to be vortex-free in spin systems and dislocation-free
in flux lattices, received the name of Bragg glass. As we shall
see below, neither the Imry-Ma nor the Bragg glass arguments
provides a correct description of the random field system that
would agree with numerical results. Crucial for its behavior is
magnetic hysteresis, which implies that energy barriers and
metastable states play an important role regardless of the
strength of the random field. We shall also demonstrate that
the behavior of the random field system cannot be understood
without invoking topological defects.

C. Short-range energy due to random field

The random field contributes to the energy of the system
through Zeeman interaction with the spin field and through
the exchange energy associated with the nonuniformity of the
spin field. The latter can be computed as

〈Hex〉 = 1

2
J

∑
ij

〈s2 − si · sj 〉 = 1

4
J s2

∑
ij

〈(φi − φj )2〉, (29)

where the summation is over N sites i and the nearest
neighbors j of each i site, with six such neighbors in a 3d cubic
lattice, separated by |ri − rj | = a. According to Eq. (23), for
the nearest neighbors, 〈(φi − φj )2〉 = h2/(8πJ 2s2), so that,
per spin,

〈Hex〉
N

= 1

4
J s26

h2

8πJ 2s2
= 3h2

16πJ
. (30)

The total energy is a sum of the exchange energy and
Zeeman energy, given by Eq. (9). Let us consider the case
of H = 0. The contribution of the weak random field to the
energy is a sum of almost independent contributions from
small volumes inside which the deviation, δφ(r), from the
local ferromagnetic alignment of spins φ0 is small. Thus, to
obtain the main part of the energy due to random field, one can
replace φ in Eq. (9) with φ0 + δφ(r),

HSR = s

∫
d3r

a3

[
1

2
J sa2(∇δφ)2 + hδφ sin(φ0 − ϕ)

]
. (31)

The energy minimum is defined by the extremal configurations
satisfying

J sa2∇2δφ = h sin(φ0 − ϕ). (32)

Substituting sin(φ0 − ϕ) from this equation into Eq. (31) and
integrating by parts, one obtains

HSR = s

∫
d3r

a3

[
1

2
J sa2(∇δφ)2 + J sa2δφ∇2φ

]

= s

∫
d3r

a3

[
1

2
J sa2(∇δφ)2 − J sa2(∇δφ)2

]
. (33)

It is clear from this expression that the short-range Zeeman
energy is twice the short-range exchange energy with a minus

sign,

〈HZ〉
N

= −2
〈Hex〉

N
= − 3h2

8πJ
. (34)

The total short-range energy per spin is

〈H〉
N

= 〈Hex〉 + 〈HZ〉
N

= − 3h2

16πJ
, (35)

in accordance with Eq. (18). It is insensitive to the long-range
behavior of the spin field, that is, to the spatial scale of the
rotation of the direction of the local magnetization over the
sample. This is because for a weak random field such rotations
involve large distances, and therefore they contribute much
less to the exchange energy then the weak misalignment of
the neighboring spins due to the random field. As we shall see
below, Eqs. (30), (34), and (35) are in excellent agreement with
numerical results. Small deviations are due to the contribution
of vortices to the short-range behavior.

D. Approach to saturation

In the presence of the external magnetic field, the extremal
configurations satisfy

J sa2∇2φ − H sin φ = h sin(φ − ϕ). (36)

Let the field H be sufficiently large to ensure a small deviation
of spins from the x axis, that is, small angle φ(r). Then Eq. (36)
can be approximately written as

∇2φ − k2
Hφ = − h

J sa2
sin ϕ, (37)

where

1

k2
H

= R2
H =

(
J s

H

)
a2. (38)

The solution of Eq. (37) is

φ(r) = h

J sa2

∫
d3r ′ e−kH |r−r′|)

4π |r − r′| sin ϕ(r′). (39)

Consequently,

〈φ2〉 =
(

h

J sa2

)2 ∫
d3r ′

∫
d3r ′′ e−kH |r−r′|e−kH |r−r′′|

16π2|r − r′||r − r′′|
× 〈sin ϕ(r′) sin ϕ(r′′)〉. (40)

With the help of Eq. (4) one obtains for kHa � 1 (RH � a),

〈φ2〉 = a3

32π2

(
h

J sa2

)2 ∫
d3r

e−2kH r

r2

= 1

16π

(
h

J s

)3/2 (
h

H

)1/2

. (41)

The above formulas describe the approach to saturation on
increasing the field:

1 − m

s
= 〈1 − cos φ〉 = 1

2
〈φ2〉 = 1

32π

(
h

J s

)3/2 (
h

H

)1/2

.

(42)

The square root dependence on H , Eq. (42), must hold
as long as the field satisfies RH > a, which translates into
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H < Js. At H > Js, the length RH becomes small compared
to a and the exchange-generated Laplacian in Eq. (37) is no
longer relevant because the r in the Green function of that
equation cannot be smaller than a. In this case, the approach
to saturation is dominated by the spin torque of the external
field H against the local field h(r). The Laplacian in Eq. (37)
can be safely dropped and one ends up with φ = (h/H ) sin ϕ.
This gives

1 − m

s
= 1

2
〈φ2〉 = h2

2H 2
〈sin2 ϕ〉 = h2

4H 2
. (43)

Equations (42) and (43) are confirmed by numerical results
with high accuracy, see below.

E. Zero-field susceptibility

To have a reference point for comparison with numerical
results, it is important to have the zero-field susceptibility of
the Imry-Ma state. Application of a small field H → 0 in the
x direction slightly perturbs φ(r) created by the random field,

φ(r) → φ(r) + δφ(r). (44)

Linearization of Eq. (36) gives

J sa2∇2δφ − H sin φ = hδφ cos(φ − ϕ). (45)

Neglecting the rapidly oscillating small term in the right-hand
side of this equation, in 3d, we obtain

δφ(r) = − H

Jsa2

∫
d3r ′ sin φ(r′)

4π |r − r′| . (46)

The magnetization per spin in the direction of the field is given
by

〈m〉
s

= 〈cos φ〉 = −〈δφ sin φ〉

= H

Jsa2

∫
d3r ′ 〈sin φ(r) sin φ(r′)〉

4π |r − r′| . (47)

This can be related to

〈s(r) · s(r′)〉 = s2〈cos φ(r) cos φ(r′) + sin φ(r) sin φ(r′)〉
= 2s2〈sin φ(r) sin φ(r′)〉. (48)

Consequently,

m

s
= H

2J s3a2

∫
d3r ′ 〈s(r) · s(r′)〉

4π |r − r′|

= H

2J sa2

∫
d3r ′ exp(−|r − r′|/Rf )

4π |r − r′| . (49)

Integration gives

m

s
= H

2J s

(
Rf

a

)2

. (50)

Zero-field susceptibility defined through

m

s
= χ

H

Js
(51)

is given by

χ = 1

2

(
Rf

a

)2

= 128π2

(
J s

h

)4

. (52)

In the limit of small h, it is very large, which may have
prompted some statements in the past about infinite suscep-
tibility of the Imry-Ma state.9 As we shall see below, the
actual zero-field susceptibility in a zero-magnetization state
is dominated by vortices and is much smaller.

Note that the initial magnetization of the Imry-Ma state in
the limit of a very weak field and the approach to saturation at
a higher field can be presented as

m

s
= 1

2

(
Rf

RH

)2

, RH � Rf , (53)

1 − m

s
= 1

2

(
RH

Rf

)
, RH � Rf , (54)

where RH and Rf are given by Eqs. (38) and (26), respectively.
Both formulas provide m ∼ s at RH ∼ Rf , which translates
into

H

Js
∼ 1

256π2

(
h

J s

)4

. (55)

For a weak random field, h < Js, this gives a very small value
of H .

F. Average magnetization of a finite system

As we have seen, at h < Js, the regions that are ferro-
magnetically ordered can be quite large. A system of size
L < Rf will always exhibit ferromagnetic order. Thus it may
be difficult to numerically test the Imry-Ma statement that a
random field, however weak it may be, destroys the long-range
order in three dimensions. Even when Rf is small compared
to L it may not be easy to distinguish between spontaneously
magnetized states and zero-magnetization states because of
the magnetization arising from statistical fluctuations. The
problem is similar to that of a finite-size paramagnet: N

spins randomly distributed between spin-up and spin-down
states will have an average total magnetization proportional to√

N and thus average magnetization per spin proportional to
1/

√
N .

The magnetization of the system is given by

m = 1

N

∑
i

si , (56)

where N is the total number of spins. The absolute value of m

is related to the spin correlation function of Eq. (10) as

m2 = C(∞) + 1

V

∫
ddR [C(R) − C(∞)] , (57)

where C(∞) describes long-range order (LRO) and V = L3

is the system volume. Plotting m2 vs 1/V shows if there is an
LRO in the system in the limit V → ∞.

Substituting here C(R) = s2 exp(−R/Rf ) (no long-range
order) in 3d, one obtains

m = s

(
8πR3

f

V

)1/2

=
√

8πs

(
Rf

L

)3/2

, (58)

where L is the size of the system, N = (L/a)3. At, e.g., h =
0.5J s, the Imry-Ma correlation length is Rf ≈ 200a. For L =
1000a, this gives m ≈ 0.45s. Such a large value of m for a not
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very weak random field in a system of the maximum size that
we can access numerically suggests that any evidence of the
long-range ferromagnetic order based upon finite m should be
dealt with care. However, LRO, if it is present, reduces the
value of the 1/V term in Eq. (57).

G. Correlated random field

All the above formulas have been written for the uncorre-
lated random field described by Eq. (4). Meanwhile, in physical
problems involving flux lattices and random magnets, the static
randomness can be correlated over a certain distance ρ > a.
Such situation is described by Eq. (5). It is easy to see that it
leads to the following modification of Rf in Eq. (23):

Rf

a
= 16πa3

�

(
J s

h

)2

, (59)

where

� =
∫

d3r�(r) (60)

is the correlated volume, with �(r) describing the short-range
correlations of the random field.

For an uncorrelated random field, one has � = a3 and
Eq. (59) goes back to Eq. (26). In the case of a correlated
random field, � > a3 and Rf is reduced. For, e.g., � =
exp(−r/ρ), one obtains � = 8πρ3 and

Rf

a
= 2

(
a

ρ

)3 (
J s

h

)2

. (61)

Notice that the reduction in Rf is by a factor 8π (ρ/a)3, which
can be quite significant. This, in principle, may allow one to
test the effect of a very small h in a finite-size system. When
the above formulas produce Rf < ρ, this means that Rf = ρ.

V. NUMERICAL RESULTS

A. Numerical method

The task is to find energy minima of Eq. (1) by a numerical
algorithm starting from an initial state (IC) and using some
relaxation protocol. It turns out that there are multitudes of
local energy minima and the situation resembles that of a spin
glass. At the end of relaxation, the system ends up in one
of them. We do not attempt to search for the ground state of
the system, which would require different numerical methods.
Rather, we are interested in representative local minima
obtained by relaxation from typical IC such as random and
collinear initial conditions. This corresponds to experimental
situations, and the results for physical quantities in the final
state are reproducible up to statistical noise due to different
realizations of the random field and different realizations of
the relaxation protocol that may have a stochastic part. The
larger the system size, the smaller the fluctuations. For smaller
sizes, averaging of the results over realizations of the random
field is necessary.

One could use the Landau-Lifshitz equation of motion with
damping (with no precession term for the xy model) to find
local energy minima. One can expect an even faster relaxation
if one rotates every spin, sequentially, straight in the direction

of the effective magnetic field

Hi,eff =
∑

j

Jij sj + hj + H, (62)

that is,30

si,new = Hi,eff/|Hi,eff|. (63)

We call this the finite rotation (FR) method. Although this
method works very well in cases when there is only one energy
minimum (such as the collinear state for pure ferromagnetic
models), it leads to slow relaxation in the case of glassy
behavior characterized by many local minima. The problem
is that the relaxation described by Eq. (63) is initially too
fast and the system falls into the nearest local minimum that
is not the deepest and not the most representative. As in the
multidimensional space of our model, there are narrow valleys
rather than simple local minima, the system quickly falls into
one of these valleys and then begins a long travel along it.

To counter this slow relaxation, it is convenient to combine
the FR method with so-called over-relaxation,40 that is, in fact,
a conservative pseudodynamics described by

si,new = 2(si,old · Hi,eff)Hi,eff

H 2
i,eff

− si,old. (64)

Here, spins are sequentially flipped onto the other side of the
effective field (half of the precession period for the Heisenberg
model) and the energy is conserved. This method is very
convenient to quickly explore the hypersurface of constant
energy of the system. Whereas the FR method searches for
a minimal energy, the over-relaxation method searches for
the maximal entropy. It is a standard numerical method for
classical spin systems, usually combined with Monte Carlo
updates (see, e.g., Ref. 41).

For instance, starting from the collinear state and using
the over-relaxation method, one can describe an RF-induced
transition of the system from the initial state that has the
minimal statistical weight to a more disordered state having the
same energy but a much higher statistical weight. This process
describes an irreversible relaxation in which the magnetization
value m decreases from 1 to a smaller value. The resulting
final state is above the ground state, so it can be interpreted
as a thermal state with some small temperature. Adding the
energy-lowering evolution described by Eq. (63) one can find
the lowest-energy state in this particular region of phase space.

Practically, it is convenient to combine both methods.
In the main method we used, Eq. (63) is applied with the
probability α, while Eq. (64) is applied with the probability
1 − α. The optimal value of α that plays the role of a relaxation
constant is in the range 0.1 − 0.01, typically 0.03. Physically,
this corresponds to slow cooling the system. Such a choice
results in convergence acceleration by factors greater than
10 in comparison to α = 1. The efficiency of the combined
weak damping method for glassy systems is shown in Fig. 1,
assuming that deeper minima have broader basins of attraction.

Starting from the collinear state, we also used a two-
stage relaxation method. The first stage, which we call
“chaotization,” is the conservative pseudodynamics given by
Eq. (64). The second stage is the combined relaxation process
described above. In some cases, during chaotization, damped
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FIG. 1. (Color online) Efficiency of the weak-damping (slow-
cooling) method for glassy systems.

oscillating behavior was observed. In this case, suppression
of oscillations and a faster convergence can be achieved by
performing Eq. (64) with a probability 1 − η and leaving
the spin unchanged with the probability η. The constant η,
which has an optimal value of about 0.01, plays the role of a
decoherence constant in the numerical method.

To check the predicted absence of ordering in RF magnets,
one has to numerically solve models of a size L � Rf , which
must be strongly fulfilled in accordance with the discussion
in Sec. IV F. This sets a lower bound on the numerically
accessible HR ≡ h. With a Mac Pro with 96 GB RAM
running Wolfram MATHEMATICA, we can compute 3d models
up to the size L = 800, i.e., half a billion spins, including
correlation functions. The memory usage during relaxation
to the energy minima is about 30 GB, while computation of
the correlation function takes 85 GB. This means that we
cannot further increase the size while computing correlation
functions, although we can compute the relaxation of a system
of L = 1000, a billion spins. Our MATHEMATICA program,
which uses compilation and parallelization, is comparable in
speed with programs written in Fortran and C. Relaxation of
a 3d system of L = 800 for moderately small HR takes 1–2
days.

We also compute the vorticity by analyzing rotation of spin
vectors along any unitary square plaquette in xy planes. If spins
rotate by 0 angle along the plaquette, there is no singularity
of the spin field at this plaquette. If spins rotate by ±2π ,
there is a vortex or antivortex. For initial states that have no
global vorticity, such as collinear and random initial state, the
numbers of vortices and antivortices are always the same. Thus
we just count them as “vortices” and define vorticity fV as the
fraction of plaquettes that contain singularities. In the random
state, one has fV = 1/3, while in the energy minima that we
find fV is zero or a small number. In the latter case, there
are vortex loops in the system. In the numerical work, we use
J = a = s = 1.

Our lowest value of HR for collinear IC in 3d is 0.7, which
corresponds to Rf = 103 and is still much smaller than our
largest size, L = 800, and the convergence of our method is

still fast enough. For HR = 0.5, one has Rf = 201, so that
that the ratio Rf /L is not small enough even for L = 800
and here the convergence of our method is noticeably slower.
Although we can reach an energy minimum in this case
spending more time, the resulting correlation functions depend
on the realization of the random field and are bumpy. This is
the consequence of insufficient self-averaging for an Rf /L not
small enough. In this case, additional averaging over random
field realizations is needed, which for L = 800 would take too
much time. To the contrary, if Rf /L � 1 is strongly satisfied,
self-averaging is sufficient and correlation functions have a
smooth shape. Also, in this case, convergence of our method
is pretty fast. For instance, relaxation of the system of L = 800
out of a collinear state takes only about 5 hours. For smaller
sizes, we do averaging over the realization of the random field
to achieve a better precision.

Computations in 2d are numerically less challenging, in
particular, because of the much shorter Rf . Finding a local
minimum of the energy at T = 0 for L = 10000 (100 millions
of spins) and HR = 0.1 does not present problems.

B. General results

Our main finding is that for a weak random field the state
of the system is always a glassy state with many local energy
minima, so that the final state that we find depends on the initial
state or initial condition, as well as somewhat on the details of
the relaxation protocol. This to a some degree disqualifies
earlier attempts to describe the random field system by a
unique magnetic state. Instead, the system exhibits magnetic
hysteresis similar to that in conventional ferromagnets with
pinning of the domain walls.

Starting from a random initial condition we find states
having small values of m (decreasing to zero in the large-size
limit) and substantial vorticity. For Rf � 1, there is a strong
short-range order everywhere except the vicinity of vortex
loops. The correlation function in this state decays to zero
but the correlation length is defined by the average distance
between the vortices rather then by Rf , the former being much
shorter. We call this state a vortex glass (VG).

Starting from the collinear initial condition, for HR � 2,
we find only partially disordered states having m still of order
1 (stable in the large-size limit) and zero or extremely small
vorticity. In this state, the correlation function follows Eq. (26)
at short distances but reaches a plateau at longer distances, thus
showing a long-range order. We call this state ferromagnetic,
although it should be stressed that the system does not order
spontaneously on lowering temperature but freezes into the
vortex glass state instead. For HR � 2, starting from the
collinear initial state, vortex loops are spontaneously generated
and magnetization is strongly reduced.

The energy of the VG state is always higher than the
energy of the ferromagnetic state. (This holds for both xy and
Heisenberg models in 1d, 2d, and 3d, as well as for random
anisotropy models.) Thus the vortex glass state is a metastable
state that could, in principle, relax to the ferromagnetic state
by eliminating vortex loops that cost energy. However, this
does not happen because vortex loops are pinned by the
random field. It is possible that the ferromagnetic state is also
a metastable state, while there is a true ground state with
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m = 0, in accordance with the implicit theorem by Aizenman
and Wehr.5,6 However, we were unable to find this state by
relaxation from typical states. To the contrary, sampling local
energy minima shows that starting with a low m state it is easier
to find lower energy states with higher m than with lower m.

C. Relaxation from the collinear state leading
to a ferromagnetic state

During relaxation from any of the initial states we have
tried, the system’s energy decreases. Starting from the collinear
initial condition, m decreases until it reaches a constant value
for HR � 2 and goes to zero at HR � 2. Direction of the
magnetization vector m practically does not deviate from the
initial direction. Figure 2 shows relaxation curves for HR =
1.5 with m approaching a nonzero constant and for HR = 3
with m going to zero. One MCS (Monte Carlo step) means
one complete spin update of the system. We use this standard
notation although we are not using Monte Carlo method.
One can see that the pure finite rotation method (α = 1) is
slow for our problem in comparison to the combined method
predominantly using over-relaxation (α = 0.03). For HR = 3,
the system gets stuck in a metastable state with m ≈ 0.3 and
�E = −0.668. However, the combined method finds the state
with a very small m and the lower energy �E = −0.671.
Here, �E ≡ E − E0, where E0 is the exchange energy of the
collinear state, −3J for the 3d model with periodic boundary
conditions (pbc). These results are in accordance with the
mechanism of relaxation sketched in Fig. 1.

In fact, already the pure over-relaxation method (α = 0)
provides a fast relaxation of m at a constant energy. For this
reason, in some computations, we used the two-stage method,
as shown in Fig. 3. The idea is that the conservative over-
relaxation method has a potential for the maximal possible
disordering since it leads to states that can be interpreted as
thermal states with a small T (the over-relaxation plateau
in Fig. 3). As the energy-relaxation mechanism is switched
on, this temperature goes to zero and ordering in the system

FIG. 2. (Color online) Magnetization relaxation curves starting
from a collinear initial condition. The method with a small damping
constant, α = 0.01–0.03 is most efficient.

FIG. 3. (Color online) Two-stage relaxation starting from a
collinear state for HR = 1.5 and L = 800 and one-stage relaxation
for HR = 0.5 and L = 1000, our largest system size. Note a slow
relaxation for HR = 0.5.

increases, as is seen in the Fig. 3. The states obtained in these
computations are vortex free.

Figure 4 obtained by multiple relaxation events of a system
with the same realization of the RF from differently oriented
collinear states shows different local energy minima achieved
in different cases. This confirms glassy nature of a random
field magnet. All these states are vortex-free, as above.

Figure 5 shows similar computations with different re-
alization of the RF. One can see that Fig. 5(a) is similar
to Fig. 4. Comparison of the two panels of Fig. 5 shows
that the statistical scatter decreases with the system size
because of self-averaging. For the standard deviation �m of
the magnetization in the final state, one has �m ≈ 0.025 for
L = 128 and �m ≈ 0.0097 for L = 256. On the other hand,
�mL3/2 ≈ 36 for L = 128 and �mL3/2 ≈ 39 for L = 256

FIG. 4. (Color online) Relaxation starting from differently ori-
ented collinear states for the same realization of the random field,
showing glassy nature of the RF magnet.
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FIG. 5. Relaxation from collinear states for different realization
of the random field. Statistical scatter decreases with the system size
due to self-averaging. (a) L = 128 and (b) L = 256.

that are nearly the same. This is in accord with the picture
of correlated regions of linear size Rf that are oriented
independently from each other, leading to

�m ∝
(

Rf

L

)3/2

. (65)

Using Rf of Eq. (23) and the numerical factor from the
computational results above, one can estimate the statistical
scatter in all other cases. The structure of the ferromagnetic
state shown in Fig. 6 has no singularities.

With increasing system size, the numerically found m does
not decrease to zero. The stability of the ferromagnetic state is
clearly seen from the finite-size analysis shown in Fig. 7. Here,
all points except for L = 800 have been obtained by averaging
over realizations of the random field, the number of realizations
indicated by the italicized numbers. Although there is self-
averaging in the system, averaging over realizations allows to
further reduce data scatter. One can see that the points fall on
straight lines with a finite offset, in accordance with Eq. (57).
The error bars are the uncertainties of the average values

FIG. 6. (Color online) Spin configuration obtained for HR = 1
from the collinear initial condition.

computed as �m/
√

n, where �m is the standard deviation
defined by Eq. (65) and n is the number of realizations.

D. Relaxation from the wavy state

One can argue that the ferromagnetic state obtained from
the collinear initial state is an artefact and ferromagnetism here
is preselected. An argument in support of ferromagnetic state
can be obtained by starting from a special kind of initial state
that has m = 0 and no vortices or helicity. In this state, which
we call a wavy state, spins rotate in one direction and then in

FIG. 7. (Color online) Magnetization squared in the ferromag-
netic state vs system volume V = N . Italicized numbers are those of
RF realizations used to compute the averages of m. Upright numbers
below points indicate the system’s linear size L. Straight dashed lines
are guides for the eye.

224418-10



RANDOM FIELD xy MODEL IN THREE DIMENSIONS PHYSICAL REVIEW B 88, 224418 (2013)

the opposite direction when the observer is moving in any of
the three directions in the cubic lattice. It is defined by

(sx,sy) = (cos (�) , sin (�)) , (66)

where

� = 2πkxnx

Nx

(−1)[kxnx/Nx ] + (x ⇒ y) + (x ⇒ z) . (67)

Here, Nx,y,z are lattice sizes, nx,y,z = 1, . . . ,Nx,y,z are lattice
positions, kx,y,z are corresponding wave vectors and [x] means
integer part. The wavy state is topologically equivalent to the
collinear state because it can be transformed into the latter by
continuous deformations without changing the topology. This
state resembles a spring that tends to straighten when released.
Its energy is ∼J (a/L)2 above that of the collinear state. An
example of a wavy state is shown in Fig. 8. Figure 9 shows
magnetization relaxation curves starting from the collinear and
wavy initial conditions that lead to the same final state with
a high m. It must be noted that restoration of a large m out
of the wavy state does not always take place. For HR � 2,
vortices are generated spontaneously out of any vortex-free
state, including the wavy state, so that the final state is a vortex
glass with m close to zero. Even for HR = 1.5, the system
randomly lands in (vortex-free) states with small and large m,
see Fig. 10. Note that states with higher m in Fig. 10 typically
have a lower energy.

E. Vortex-glass state

The vortex-glass state contains singularities, vortices and
antivortices, shown in Fig. 11. In our 3d case, these are vortex
lines going through the sample and vortex loops.

For larger HR , vortex loops are created by the random
field even starting from the collinear initial condition. For any
system size, there is a critical value HR,c ≈ 2 above which

FIG. 8. (Color online) Wavy state of spins in the xy plane.

FIG. 9. (Color online) Magnetization relaxation from the
collinear and wavy initial states.

vortex loops emerge. Slightly above HR,c, these vortex loops
are short, as shown in Fig. 12(top). With increasing HR ,
vortices quickly proliferate into the system and the number
and length of vortex loops increase. It is difficult to prove
whether there exists a size-independent threshold value HR,c.
Computations show that HR,c slowly decreases with the size.
However, this question seems to be not very important because
the vorticity increases with a very small slope above the
threshold. It may be that in the bulk there are vortex loops
at any finite HR but the vorticity for small HR is extremely
low.

Meanwhile, starting from random initial conditions one
arrives at states with long vortex lines that typically do
not close into loops but cross the system’s boundaries, see
Fig. 12(bottom). As vortices and antivortices can exist in
all three available planes, different singularities may exist at
nearly the same point, e.g., a vortex in the xy plane may occupy
the same point as an antivortex in the yz plane. For this reason,

FIG. 10. Local energy minima, labeled by the corresponding
magnetization values, obtained by evolution from wavy states,
Eq. (66), with all possible kx,y,z = 0,1,2,3.
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FIG. 11. (Color online) Spin configuration obtained for HR = 1
from a random initial conditions. Vortices/antivortices are shown by
blue/red circles.

some points in the figure may contain both black and red points.
In fact, for vortex loops there is no clear separation between
vortices and antivortices.

Obtaining VG states with our algorithm amounts to slow
cooling the system from a disordered state. We have checked
with Monte Carlo simulations that slow lowering the tem-
perature leads to the same effect: the system does not order
ferromagnetically but rather freezes into the VG state that for
HR < HR,c, has a higher energy than the ferromagnetic state.

F. Magnetization and vorticity

The magnetization m and vorticity fV as functions of HR

are shown in Fig. 13. Here, the same realization of the random
field was used and only its strength HR was changed in small
steps, using final states for a given HR as initial conditions for
the next value of HR . Different random field realizations result
in slightly different curves.

At HR = 5, vorticity is very high and it decreases upon
lowering HR . The magnetization remains very small as the
system enters the vortex glass phase with a small but nonzero
fV . For L = 216, the number of vortex lines in the system
becomes small below HR = 1 [see Fig. 12(bottom)] and m

starts to increase. For larger L, this happens at smaller HR. In
some cases, the system reaches a collinear state with m = 1 at
HR = 0. In other cases, as in Fig. 13, the system ends up in a
topologically stable state with nonzero helicity (for pbc) and
m < 1.

The magnetization in the ferromagnetic state decreases with
HR as shown in Fig. 13, starting from the pure limit m = 1 at
HR = 0. For HR < 1.8, this state is vortex-free. Proliferation
of vortices for HR > 1.8 results in the shoulder of this curve
and full destruction of the order at HR > 4.

FIG. 12. (Color online) Vortex loops in the 3d xy RF model.
(Top) Short vortex loops created by random field HR = 2.1 starting
from collinear initial conditions. (Bottom) Long vortex loops created
by random initial conditions for HR = 1. Such weak RF cannot
generate singularities starting from a collinear IC. A rotatable version
of the bottom figure can be found in Supplemental Material.43

Vortices/antivortices are shown by black/red.
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FIG. 13. (Color online) Magnetization vs the random field
strength HR for the model with pbc of the size L = 216.

The magnetization of the VG state for HR < HR,c is small
and it scales as m ∝ 1/L3/2, in accordance with Eq. (58), as
shown in Fig. 14. Putting together data obtained for different L
and HR data, averaged over many RF realizations, one obtains
the dependence of the correlation radius of the VG phase RV

that replaces Rf of Eq. (23). The result is

RV ∝ 1/H 1.2
R , (68)

which is much shorter than Rf at small HR . The numerical
factor in this formula cannot be found by this method because
the form of the CF in the VG state is different from the simple
exponential. The precise form of RV will be found in the
section on correlation functions below.

On the other hand, vorticity data in the VG state in Fig. 13
can be roughly fitted to the form

fV ≈ 0.002(HR/J )2.4. (69)

FIG. 14. Finite-size analysis of the magnetization in the vortex-
glass phase.

Combining the two formulas above yields

RV ∝ 1/f
1/2
V . (70)

It is clear that vortices are the main reason for the decay
of spin-spin correlations in the vortex glass for RV � Rf .
Thus there must be a relation between RV and the vorticity
fV defined as the fraction of unit plaquettes with vortices or
antivortices. Naively, one could expect that RV is proportional
to the distance between the singularities, so that in 3d, one
has RV ∝ 1/f

1/3
V . As vortex lines are linear objects, RV is

proportional to the average distance between vortex lines. This
makes the situation effectively two-dimensional.

G. Energy

Figure 15 obtained from the same computation as Fig. 13
shows that the energy of the vortex-glass state is higher than
the energy of the ferromagnetic state everywhere except for
HR > 2.5, where creation of vortices becomes energetically
favorable. However, at these large values of HR the destruction
of the ferromagnetic state begins, see Fig. 13. Thus the vortex-
glass state is metastable in the most interesting region of small
HR . The energy of the ferromagnetic state follows Eq. (35)
in the range HR � J . The energy per spin in the vortex-glass
state can be fitted to

E − E0 ≈ −0.042J (HR/J )2.4 ≈ −21fV J, (71)

where Eq. (69) was used. Note that by forming vortices the
system is lowering its energy with respect to the energy of
the collinear state. At the same time, creating vortices in the
ferromagnetic state costs energy.

We have studied the correlation between the energies of
metastable states and their magnetizations and vorticities. For
this purpose, for HR = 1.5 and L = 120, we first allowed the
system to relax towards states with a preset value of mz by
applying a self-adjusting field H as a Lagrange multiplier.
Doing so, we moved from mz = 0 to mz = 1 starting from

FIG. 15. (Color online) Energy vs the random field strength HR

in the ferromagnetic and vortex-glass states. The dashed green line
labeled “theory” is Eq. (35). (Inset) Fitting the energy in the vortex-
glass state.
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FIG. 16. (Color online) Energies of metastable vortex-glass
states sampled vs their magnetization. Energy values in the vortex-
glass state show a perfect correlation with their vorticities. Energies
of vortex-free ferromagnetic states are comparable to those in Fig. 23.

the random state at mz = 0 and using the state with the
preceding value of mz as the initial condition for finding the
state with the next value of mz. In another computation, we
moved from mz = 1 to mz = 0 starting from the collinear
state at mz = 1. For each of these states with preset mz,
we set H to zero so that the system falls into the nearest
local energy minimum, using the larger-than-usual relaxation
constant α = 0.1. The energies and vorticities of the found
metastable states are plotted in Fig. 16 vs m. While increasing
preset mz, we obtain VG states the vorticity of which perfectly
correlates with their energy. While decreasing preset mz, we
obtain vortex-free ferromagnetic states with lower energies.
An interesting finding is that there are no local energy minima
for m � 0.65 in this plot, so that for all preset mz above
this value the system typically slides into the deepest energy
minimum with m ≈ 0.65.

These results seem to be in contradiction with the theorem
of Aisenman and Wehr5,6 stating that the system must have
m = 0 in the ground state. One possibility to reconcile our
findings with that theorem is this. Starting from a vortex-free
state, such as the states with m ≈ 0.65, one can argue that there
can be very rare configurations of the random field that would
energetically favor the formation of vortices. The vorticity in
these states is very small and locally they are very close to
the vortex-free states. However, even a very small but finite
vorticity could destroy spin correlations at large distances and
render m = 0. Such states are not found if one starts with the
collinear initial condition because they require surmounting
energy barriers. On the contrary, starting from random initial
conditions one ends up in states with a much larger vorticity
and higher energy.

This argument is quite plausible in 2d, where vortices are
point objects. However, it is less transparent in 3d, where there
are vortex loops and vortex lines traversing the entire system.
Configurations of the random field that favor long vortex lines
should be statistically very rare and there must be many more
short vortex loops. However, the concentration of such vortex
loops should be very small so that they would not disturb the

magnetic order at large distances as the vortex lines do. Thus
it is not clear whether a very diluted gas of vortex loops in
an infinite sample destroys the long-range order. If it does, it
would be more along the lines of the Bragg glass theory.

H. Approach to saturation, hysteresis, and memory

Figure 17, which shows approach to saturation for large H ,
is in accord with Eq. (42). For a strong random field, such
as HR = 3 in Fig. 18, hysteresis curves have a standard form.
The irreversibility is related to the energy barriers at the atomic
scale that changes the systems’ vorticity. The relation between
vorticity and hysteresis is clearly seen in Fig. 18. In the course
of the reversal, the magnetization m decreases down to zero
and then grows in magnitude again (not shown).

Figure 19 shows hysteresis curves of a random-field xy

magnet for HR = 1.5 and L = 216. The initial magnetization
curve that begins with mz = 0 at H = 0 has a rather small
slope, in a striking disagreement with the large zero-field
susceptibility that follows from the Green-function method,
Eq. (52). This high rigidity of the vortex-glass state is due to
the pinning of vortices that Imry-Ma scenario does not account
for.

There is a large m at H = 0 along the H -down branch in
Fig. 19 that does not depend strongly on the system size, which
is in accord with Fig. 7. While the dependence of mz on H

along the hysteresis curve is rather steep at small fields, it is
nearly smooth and has only small Barkhausen jumps (not seen
in the figure), with the slope in the ball park of that given by
Eq. (52). The magnetization of the sample does not rotate as
a whole from positive to negative values of mz. Instead, on
average, the deviations of spins to the right and to the left from
the positive z direction in different regions of space increase
smoothly as H grows negative. In the process of spin reversal,
the regions with right and left spin deviations occupy rather
large volumes separated by transient regions where spins are
still directed in the positive z direction. Such transient regions
form walls of topological origin, see the cross-section of the
sample in Fig. 20. They are pinned by the random field.

FIG. 17. (Color online) Approaching saturation in the 3d RF xy

model. Dashed line is Eq. (42).
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FIG. 18. (Color online) Hysteresis curves for the 3d RF xy model
for HR = 3. Irreversibility is clearly related to vorticity.

As the magnetization reversal proceeds along the hysteresis
curve, the walls rupture, with the ruptured area bounded by
the vortex loop, as shown in Fig. 21. The loops then grow and
eat the walls away, completing the reversal. This happens at
H = −HV ≈ 0.075 in Fig. 19, where mz has a shoulder and
the vorticity has a peak. Such a behavior is typical for an xy

random magnet of large size compared to the ferromagnetic
correlation length. Systems of smaller sizes typically switch
their magnetization via rotation as a whole that leads to a
jump from positive to negative values at a coercive field. This
behavior is similar to that of a single-domain magnetic particle.

For H > −HV , the upper hysteresis branch is quasire-
versible: removing the field leads to partial restoration, a large
magnetization of the ferromagnetic state in H = 0, which
can interpreted as a memory effect. The simulated relaxation
curves are shown in Fig. 22. The recovery happens because the
ferromagnetic state with spin walls exhibits elasticity. As the

FIG. 19. (Color online) Hysteresis curves for the 3d RF xy model
for HR = 1.5. The straight dashed line labeled “Theory” is based on
Eq. (52). Dense and rarified points are results for different realizations
of the random field. They overlap because of sufficient self-averaging
in the system.

FIG. 20. (Color online) Walls of spins opposite to the field,
pinned by the random field.

field is reversed, it stores energy and tends to return to the initial
state when the stress due to the opposite field is removed. This
behavior is a good evidence of the stability of the ferromagnetic
state. The incomplete restoration of the magnetization in this
experiment should be due to energy barriers not related to
vortices.

FIG. 21. (Color online) Walls of spins ruptured by vortices (black
points). A movie of the evolution of the state of the system in the
course of the process of formation and rupture of walls of spins can
be found in Ref. 43.
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FIG. 22. (Color online) Magnetization recovery from the
quasireversible branch of the hysteresis curve (H > −HV in
Fig. 19), computed after setting H = 0. The red curve corresponding
to the initial value mz = −0.8 does not go into the positive region
because this initial state is beyond the quasireversible branch and has
a large vorticity.

The magnetization-recovery experiment provides an access
to more ferromagnetic states than just relaxation from a
collinear state. Because of small barriers, there is a big number
of metastable ferromagnetic states that differ by energy and
magnetization m, shown in Fig. 23. States with smaller m

occur due to relaxation from states with smaller mz in the
upper hysteresis branch in Fig. 19. This is also seen in Fig. 22.
The rightmost state in Fig. 23 is obtained by relaxation from
any state with m � 0.7 because there are no local energy
minima in this range. There is a significant interval of m

values in the ferromagnetic states in Fig. 23, all having very
close energies, in contrast with much larger energy differences
between vortex-glass states in Fig. 16. One can clearly see that

FIG. 23. Energies of vortex-free ferromagnetic states (local en-
ergy minima) obtained by magnetization recovery of the type shown
in Fig. 22. The rightmost state is obtained by relaxation from any
state with m � 0.7.

FIG. 24. (Color online) Energies of the states created by the
external field H vs mz (with the energy due to H subtracted).
The lowest-energy state corresponds to mz = 0 for HR � 2.6 and
to mz > 0 for HR � 2.6.

the lowest-energy state is at m ≈ 0.5, a value that varies a bit
depending on the random field realization. The energy values
in Fig. 23 are comparable to those of the ferromagnetic states
for L = 216 in Fig. 16 and the states in Fig. 10.

Another method of accessing the energies of the states
versus their magnetization is to plot the energy obtained in
the computation of the hysteresis (with the energy due to the
external magnetic field H subtracted) versus mz. In this way,
one can access not only local energy minima, as in Fig. 23,
but also the energies of all unstable states supported by the
external field. Figure 24 shows the computed energies for
different values of HR . A striking feature is the transition
between the energy minimum at m = 0 to an energy minimum
at m > 0 on HR that occurs at HR ≈ 2.6. One can see that for
HR = 1.5, the results are very close to those for the local
energy minima in Fig. 23 but also contain unstable states
with m � 0.7. Suppression of ferromagnetic states at large
HR was already seen in Fig. 13. The energy maximum at
mz ≈ −0.8 corresponds to the shoulder at this mz in Fig. 19.
On decreasing HR , its increasing part is due to the energy input
into compressed spin walls while its decreasing part is due to
rupture of spin walls by vortex loops.

I. Ordering by decreasing rotating field

Another type of numeric experiment showing ferromag-
netic ordering is relaxation in the presence of a rotating external
field H with the magnitude slowly decreasing to zero. This is
a version of the method of stimulated annealing that helps the
system to overcome barriers that prevent it from relaxing to
states with a lower energy. If there were states with a small
or zero magnetization having a lower energy than in our other
numerical experiments, these states were likely to be reached
by this method.

The numerical results shown in Figs. 25 and 26 show that
also in the decreasing rotating field experiment, ferromagneti-
cally ordered states are reached. For a field magnitude H large
enough, the direction of m follows that of H, while both H and
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FIG. 25. Magnetization vs decreasing magnitude of a rotating
field H.

m are decreasing. As H goes below 0.015 (see Fig. 25), the
direction of m decouples from that of H and, after oscillations
around an energy minimum corresponding to a significant
value of m, the system reaches this energy minimum. In the
above numerical experiment, the final magnetization value is
m = 0.5148. It turns out that our method leads to energy values
very close to those of Fig. 23. Thus no states with a smaller
m and lower energy have been found, which, again, proves
robustness of the ferromagnetically ordered state.

In another type of numerical experiment, a field slowly
oscillating parallel to a fixed direction with the amplitude
slowly decreasing to zero had been applied. Here, one could

FIG. 26. (Color online) Components of the magnetization vector
m in the rotating-field experiment.

FIG. 27. (Color online) Correlation functions of the 3d RF xy

model in the vortex glass state obtained starting from random initial
conditions. Natural (top) and scaled (bottom) presentations. RV is
given by Eq. (72).

obtain states with a small magnetization. However, the energy
of such states was higher than the energy of the F state because
of the vorticity generated by rupturing spin walls, see Sec. V H.

J. Correlation functions

We have computed correlation functions in the energy
minima of our system that we have found by our relaxation
algorithm. After computing CFs, we averaged them over
directions of R ≡ r1 − r2.

In the vortex-glass state obtained from random initial
conditions, correlation functions shown in Fig. 27 decay to
zero but their form and correlation radius is different from
Eqs. (26) and (23). The results can be fitted by the stretched
exponential

〈s(r1) · s(r2)〉 = s2e−(|r1−r2|/RV )3/2
, RV � 14 (J s/HR)1.2 .

(72)
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FIG. 28. (Color online) Correlation functions of the 3d RF xy

model in the ferromagnetic state obtained starting from collinear
initial conditions.

Note that the dependence of RV on HR is much weaker than
Rf ∝ 1/H 2

R of Eq. (23) and thus RV � Rf at small HR . Using
the vorticity dependence of Eq. (69), one can express the VG
correlation length RV as

RV � 0.6/f
1/2
V , (73)

c.f. Eq. (70). This dependence is in agreement with the 2d

nature of vortices discussed below Eq. (70).
If the initial state is collinear and HR is not too large,

the correlation functions have plateaus at large distances. At
R � Rf , they exactly follow Eq. (26). The results for our
largest size L = 800 are presented in Fig. 28. For HR = 1 and
1.5, there is enough self-averaging and we show correlation
functions obtained for only one random field realization.
They have well-defined plateaus with small fluctuations. For
HR = 0.7, correlation functions obtained with one random
field realization are too bumpy and averaging over realizations
is needed. The bumps at R = 800 and

√
2 × 800 are artifacts

of periodic boundary conditions. The length of the plateaus
show that the large magnetization in the ferromagnetic state is
not a fluctuational magnetization.

The perfect plateau for HR = 2.5 shows that the appreciable
vorticity fV = 0.01766 in this state does not yet disrupt
ferromagnetic order at long distances. This should be the
consequence of vortices forming small closed loops such as
in Fig. 12(top). Meanwhile, one can expect that even a small
concentration of vortex lines that go through the whole sample,
as is the case in the vortex-glass state, see Fig. 12(bottom), will
destroy the long-range order.

VI. THE IMRY-MA ARGUMENT AND VORTICES

Surprising robustness of the ferromagnetic state found in
our different calculation requires an explanation. According
to the Imry-Ma scenario, starting from a collinear state,
spins would relax towards directions of the random field
averaged over correlated regions of linear size Rf , so that
the magnetization would go to zero if Rf is small compared to

the size of the system. In our computations, we indeed observe
a fast initial disordering but then the magnetization stops to
decrease at an appreciable value (see Figs. 2 and 3). What
could be the factor that prevents it from relaxing to zero?

The answer to this question seems to be that the magnetiza-
tion cannot smoothly follow the average random field without
the formation of vortices in 2d and vortex loops in 3d. The
latter cost energy that prevents relaxation towards a completely
disordered state. Thus the ferromagnetically ordered state is
topologically protected.

This can be demonstrated by considering the average of the
random field over the correlated region around each point r,
the so-called moving average, for instance,

h̄(r) = 1

Vf

∫
|r′|�Rf

ddr′h(r′ + r), (74)

where Vf is the correlated volume, Vf = (4π/3) R3
f in 3d.

This is exactly a mathematical implementation of the original
Imry-Ma argument. The averaged random field h̄(r) describes
a disorder correlated at length Rf . Since its components h̄x(r)
and h̄y(r) are sums of many random variables, they have
a Gaussian distribution at any point r and are statistically
independent. The spin field in the Imry-Ma state, aligned with
h̄(r), should be of the form

sIM(r) = h̄(r)

|h̄(r)| . (75)

Now, it can be shown that such defined spin field has
singularities. This happens when |h̄(r)| = 0, that is, both
components of h̄(r) turn to zero. Regions of positive and
negative sx(r) in an xy plane, generated by Eq. (75) are shown
in Fig. 29. The areas of positive and negative sx(r) are on
average the same and the boundaries between domains are the
random lines shown in Fig. 29(top). The domain boundaries
for sy(r) are also random lines statistically independent from
the former. Thus the domain boundaries for sx(r) and sy(r) will
cross at some points, as shown in Fig. 29(bottom). At these
points, vortices or antivortices will be generated because of
the denominator in Eq. (75), as illustrated in Fig. 30. In 3d,
there will be vortex loops that cost much more energy than a
vortex in 2d.

Let us now estimate the energy gain in the IM state with
vortices. There is about one vortex per IM domain with size
Rf , having the energy

EV ∼ J s2

(
Rf

a

)
ln

(
Rf

a

)
. (76)

The corresponding exchange energy per spin is

Eex−V ∼ J s2

(
a

Rf

)2

ln

(
Rf

a

)
, (77)

which should replace the second term in Eq. (11). Minimiza-
tion with respect to Rf in that expression gives

Rf ∼ a

(
J s

h

)2

ln2

(
J s

h

)
, (78)
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FIG. 29. (Color online) (Top) Domains of positive and negative
hx(r) in a xy plane. (Bottom) Singularities at the crossings of domain
boundaries for hx(r) and hy(r) in a xy plane.

which is longer than the IM correlation radius because of the
large logarithm. The corresponding energy gain

E − E0 ∼ −J s2

(
h

J s

)4 [
ln

(
J s

h

)]−3

∼ �EIM

ln3(J s/h)

(79)

is the IM energy gain divided by a large logarithmic term.
On the other hand, the ferromagnetic state we have found

numerically can be understood as an incompletely disordered

FIG. 30. (Color online) Formation of vortices and antivortices at
the crossings of domain boundaries for hx(r) and hy(r).

IM state, in which the energy gain is �EIM reduced by a
numerical factor of order one rather than by a large logarithmic
term. The energy of this ferromagnetic state should be lower
than that of the IM state with vortices, in accordance with
our numerical results (see, e.g., Figs. 15 and 16). The rapid
relaxation out of the collinear state followed by a plateau in
Figs. 2 and 3 can be explained as follows. Spins are readily
relaxing in the direction of the net RF in the regions of linear
size Rf until their further rotation toward the totally disordered
IM state requires creation of vortices. As the latter costs energy,
relaxation stops at this point.

Of course, there is a nonzero probability that the random
field at the location of the vortex is vortexlike and almost
parallel to the spin field. In this case, the energy gain from
the vortex will be significantly higher. However, since the
Imry-Ma state in which the spin field follows the direction
of the average local random field is unique for every choice
of the correlated volume Vf , so should be the positions of
the vortices. The fraction of the lucky vortices mentioned
above is determined by the probability of the corresponding
lucky configuration of the random field, which is small.
Consequently, it cannot affect the above argument.

VII. DISCUSSION

We have studied states of local energy minima of the
random field xy model focusing on weak random fields. The
minimal random field value h ≡ HR in our work is defined
by h/J = 0.3, see Fig. 27. This should be considered weak
for the following reason. In the cubic lattice, each spin has
six nearest neighbors that are nearly collinear for small h,
the exchange field is J0 ≡ 6J . Thus physically it makes more
sense to consider the dimensionless parameter h/J0, which in
our computations has the minimal value h/J0 = 0.05 being
manifestly small. In terms of J0, formulas of the LIM theory
do not contain large numbers. For instance, Rf in Eq. (23) can
be rewritten as Rf /a = (4π/9)(J0s/h)2.

Computations have been performed on lattices up to
1000 × 1000 × 1000 spins. Our main finding is that com-
pletely disordered (m ∼= 0) states are dominated by vortices
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and have higher energy than vortex-free ferromagnetically
ordered states. There are unsurpassable energy barriers be-
tween different states even in the case of a weak random
field because switching between different spin configurations
involves large groups of correlated spins. This makes the
magnetic states depend strongly on the initial conditions.
At first glance, this may appear conceptually similar to
the behavior of a conventional ferromagnet with pinning of
domain walls. Prepared with random orientations of spins,
it would freeze in a state with small magnetic domains and
high energy due to many domain walls. In a similar fashion,
the random-field magnet freezes in a high-energy state due to
many vortices pinned by the random field. When prepared with
collinear spins, the conventional ferromagnet would remain in
a magnetized state because pinning prevents domain walls
from proliferating into the sample and achieving the ground
state with zero total magnetization. Similarly, the random field
magnet prepared with collinear spins relaxes to a state with
nonzero magnetic moment.

There is an essential difference between the two systems
though. While the conventional ferromagnet tends to relax
toward an m = 0 state via diffusion of domain walls out
of local energy minima, the random field magnet in our
computations does not have this tendency to relax to the
zero-magnetization state out of the magnetized state. In
fact, the energies of zero-magnetization states found in our
various types of computations are always higher than the
energies of magnetized states. One possibility is that the
zero-magnetization state is not the ground state. Another
possibility is that there are energy barriers to relaxation out of
the magnetized state that involve collective behavior of large
volumes of spins and they are actually greater for a weaker
random field. This would be very different from shallow
local energy barriers for the diffusion of domain walls in
conventional ferromagnets.

The bottom line of our analysis is that the Imry-Ma state
in which the system breaks into finite-size domains providing
zero total magnetic moment is impossible without formation
of vortex loops. They become very long and possess very
large energy when the random field becomes very small. This
makes the barriers associated with the formation of the zero-
magnetization state unsurpassable at any temperature even in
the limit of weak random field. The above argument is based
upon the h dependence of Rf and it stands as long as Rf

is small compared to the size of the system. One can ask
how close the vortex-glass state is to the Imry-Ma state. To
address this question, for HR = 1.5, we have created an Imry-

Ma state of Eq. (75) and let it relax. As a result, the vorticity
decreased from fV ≈ 0.008 in the Imry-Ma state to fV ≈
0.0006 in the vortex-glass state. This means that the system
tries to annihilate vortices to reduce its energy but it cannot
do it completely because some vortices are pinned. A similar
conclusion regarding dislocations in two-dimensional pinned
flux lattices has been reached in Ref. 44.

On the other hand, it must be stressed that the ground
state of the system was not systematically searched for, and,
moreover, it is of little relevance in glassy systems. A single
vortex loop going across the whole sample will totally destroy
magnetic order while its excess energy, as well as its vorticity,
will be vanishingly small. It cannot be excluded that such
type of states has the lowest possible energy. However, these
states are exotic and they were not studied here. Consequently,
we cannot rule out the existence of a completely disordered
vortex-free ground state in our computations. However, finding
such a state may require a special initial condition or
a more sophisticated numerical algorithm anticipating the
result.

It is generally believed, see, e.g., Refs. 32 and 37, that in the
presence of quenched randomness, the elastic interactions, like
the ones in the atomic or vortex lattices, or exchange in spin
lattices, provide the elastic-glass ground state that is character-
ized by the power-law decay of correlations at large distances.
We have not found such a behavior for the random field xy spin
model in three dimensions. The relation between that model
and randomly pinned flux lattices in superconductors has been
discussed in some detail in Ref. 31. The role of topological
defects in flux lattices is played by dislocations as compared to
vortices in spin models. Large areas of defect-free flux lattices
have been observed in experiment, see, e.g., Ref. 45. When
analyzing such experiments, one should remember, however,
that for weak disorder the correlation length in 3d can be
very large, making it difficult to distinguish large defect-free,
slightly disordered domains from the Bragg glass. While it is
possible that some of the conclusions of this paper apply to
pinned flux lattices, the latter requires a separate study because
the two models have different symmetry and different kinds
of interaction with the random field.
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