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Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite
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It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may
be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we
investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations
such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg
interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the
projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin
liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned
above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those
perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a
generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two
of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates
over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent
inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states
with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected
to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the
nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance
the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also
calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of spin-rotation
symmetry-breaking perturbations in these states. We suggest that the measurement of ESR spectra can shed more
light into the nature of the ground state in herbertsmithite.
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I. INTRODUCTION

Two-dimensional spin-1/2 Mott insulators in corner-
sharing lattice geometries, like the Kagome lattice, have been
studied extensively due to their natural tendency to suppress
magnetic ordering, potentially realizing a quantum spin liquid
(QSL) ground state.1–27 While the theoretical understanding
of QSLs suggests several interesting features of these highly
entangled quantum states of matter, such as effective quantum
number fractionalization and/or topological order,1,2,28,29 its
conclusive experimental realization has remained elusive so
far.

Of the several candidate materials investigated, the com-
pound herbertsmithite [ZnCu3(OH)6Cl2] seems particularly
promising.8,9,11–15,26,30–33 Here, the Cu2+ ions sit on an
isotropic Kagome lattice and carry spin-1/2 moments. While
the Curie-Weiss temperature (θCW ∼ −300 K) suggests a
strong and predominantly antiferromagnetic exchange inter-
action, the spins do not show any sign of long-range order or
freezing down to 50 mK.14,15 Inelastic neutron scattering on
powder samples shows magnetic scattering for a broad range
of wave numbers;14,30 furthermore, recent inelastic neutron
scattering on single crystals show that even at temperatures
as low as 1.6 K, a diffuse magnetic scattering continuum
exists over a large energy window (1.5–11 meV) in significant
portions of the Brillouin zone and no spin gap down to at
least 1.5 meV.9 This has raised hopes that a low-temperature
QSL phase may be realized in this material. In a QSL, such
a continuum of scattering is naturally expected due to the

presence of fractionalized spin-1/2 excitations, called spinons,
as opposed to the conventional spin-1 magnon excitations in a
magnetically ordered systems.

While herbertsmithite suffers from intersite disorder, it
seems to mostly come in the form of 14% occupation of
interlayer nonmagnetic Zn2+ ions by excess magnetic Cu2+
ions, with less than 5% Zn2+ impurities in the Kagome planes.8

Hence, it has been suggested that this material is, to a very good
approximation, a realization of spin-1/2 nearest neighbor (NN)
Heisenberg antiferromagnet on the Kagome lattice.14,32,34,35

We term this the NN Heisenberg Kagome antiferromagnet
(HKAF).

The above suggestion has brought in focus the theoretical
studies on the NN-HKAF. These have a long and varied
history, and there exist several proposed candidate ground
states. Such states include valence-bond solids17,18,36–38 and
gapless39–41 and gapped QSLs.10,19,25,42,43 Of these, a gapped
QSL was found recently by density-matrix renormalization
group (DMRG) calculations.5,7,27 However, variational Monte
Carlo (VMC) studies have found a gapless spin-disordered
ground state with energy very similar to that of the DMRG.4

These and other studies also seem to suggest that the strictly
NN-HKAF may be close to a quantum phase transition. Indeed,
recent studies find that the nature of the ground state can
be changed by tuning the small next-nearest-neighbor (NNN)
exchange interaction.6,44,45

For herbertsmithite, this means that, due to the potential
proximity to a quantum phase transition, small perturbing
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interactions may play an important role, particularly at low
energies.46 Hence, it may be important to account for these
smaller perturbing energy scales in order to understand
the experiments on herbertsmithite. Electron spin resonance
(ESR) and magnetic susceptibility measurements suggest
that perturbations break spin-rotation symmetry, with both
a Dzyaloshinsky-Moriya (DM) interaction and an Ising-like
easy-axis exchange, each with strengths of around 10% of the
NN antiferromagnetic exchange interaction.8,13,47,48

In this paper, we study the effect of these further per-
turbations on various QSL states that potentially offer an
explanation of the unusual phenomenology of the nonmagnetic
ground state in herbertsmithite. We contrast these states with
respect to their signature in spin-spin correlations, which is
measured in inelastic neutron-scattering measurements, by
calculating the dynamical spin-structure factor for a host
of candidate Z2 and associated U (1) spin liquid states that
are allowed by the projective symmetry group analysis on
the Kagome lattice.10 In addition, we calculate the ESR
absorption spectra that provide useful information in systems
without spin-rotation invariance and, hence, can help us to
identify the nature of the QSL.49,50 ESR absorption resulting
from DM interactions has been probed in, for instance, the
quasi-two-dimensional system Cs2CuCl4.51 In this compound,
the ESR absorption can be interpreted in terms of deconfined
spin-1/2 spinons, in contrast with the spin chain Cu benzoate,
where bound states dominate the ESR spectra.52,53

Due to the technical nature of the results presented here,
before discussing further details, we briefly summarize, first,
the current situation of the spin liquid physics on Kagome
antiferromagnets in view of herbertsmithite and, second, the
main results obtained in this work.

A. Summary of results: Spin liquid physics in herbertsmithite

The current theoretical framework of constructing
QSL states is largely based on slave-particle mean-field
theories.28,29,54–58 In particular, we shall focus on the slave-
fermion mean-field theory where each spin-1/2 operator
is written in terms of a fermion bilinear: Si = 1

2f
†
iασ αβfiβ

[also see Eq. (5)] with the constraint
∑

α f
†
iαfiα = 1. These

fermions, called spinons, carry spin-1/2 and form the low-
energy quasiparticles whose excitation spectrum, as we shall
see below, mainly characterizes the low-energy response of
a QSL state. The slave-particle representation introduces
gauge redundancy [see Eq. (14)], and, hence, the spinons are
minimally coupled to an emergent gauge field. Depending
on the structure of the gauge group, we can broadly classify
quantum spin liquids as SU(2), U (1), or Z2 spin liquids.

The spin-spin interactions give rise to quartic spinon inter-
actions, which, within mean-field theory, are decoupled in the
spinon hopping (particle-hole) and pairing (particle-particle)
channels (see Sec. III B). These decoupling channels together
constitute a QSL ansatz, and different mean-field QSL states
are characterized by the structure of these ansätze. However,
the above gauge redundancy suggests that the mean-field states
are only projective representations of physical states. Hence,
the same physical state may be represented by a set of gauge
equivalent mean-field ansätze.28,29 Different mean-field spin
liquid ansätze form different projective representations of the

lattice (and time-reversal) symmetries of the Hamiltonian, and
the spinons also transform accordingly. Thus, a systematic
understanding of distinct QSLs requires a careful analysis
of the projective symmetry group (PSG)28,29 In the presence
of both spinon hopping and pairing terms, the mean-field
calculations for the spinon ground state can be cast in the form
of a BCS type Hamiltonian for the spinons [see Sec. III B,
Eq. (11)]. If the Hamitonian is spin-rotation symmetric, the
hopping and the pairing channels can be completely separated
into a spin-independent (singlet) part and a spin-dependent
(triplet) part (Sec. III B). In this work we refer to them as singlet
and triplet channels (or terms) respectively. In usual studies
of models with frustrated antiferromagnetic spin-rotation
invariant exchanges, the singlet ansätze give rise to stable QSL
mean-field solutions and, hence, the triplet channels are absent.
Thus, we obtain symmetric QSLs that do not spontaneously
break spin-rotation symmetry. However, it is known that in the
presence of competing ferromagnetic and antiferromagnetic
interactions, both singlet and triplet channels can exist [and
may give rise to exotic three-dimensional gapped U (1) spin
liquid states with topologically protected gapless surface
spinon modes59,60].

A PSG analysis10 of the singlet ansätze on Kagome lattice
shows that there are 20 symmetric Z2 QSLs (for Kramers
doublets) possible on the kagome lattice that do not break
any lattice symmetry. Of these, only eight Z2 QSL states with
gapped or gapless fermionic spinons that can be stabilized
within a spin liquid ansatz that contain both NN and NNN
hopping and pairing terms for the spinons. These eight Z2

QSLs are found in the neighborhood of only four different
parent U (1) QSLs of the many U (1) states possible on the
kagome lattice. Also one of these parent U (1) QSL, one with a
Dirac-like spectrum, has been suggested to be the ground state
of the NN-HKAF model in the recent VMC calculations.4

Hence, we start by looking at these parent U (1) QSLs. Since
the above spin liquids are time-reversal symmetric, there
exists a gauge where the singlet U (1) QSL mean-field ansätze
can be written employing NN real, singlet hopping channel.
In this gauge, the U (1) QSLs are conveniently labeled using
the following notation: U (1)[a,b],10 where a (b) denotes
the magnetic flux of the emergent gauge field through the
triangular (hexagonal) plaquette of the Kagome lattice. Time-
reversal symmetry constrains these fluxes to be either 0 or π .
Accordingly, we have U (1)[0,0], U (1)[0,π ], U (1)[π,π ], and
U (1)[π,0] QSLs.10,39 From these four U (1) QSLs, the eight
Z2 QSL are obtained by tuning in appropriate spinon-pairing
terms (up to second nearest neighbor) allowed by PSG. These
pairing terms necessarily break the gauge structure from U (1)
down to Z2, hence the name. The nomenclature for the Z2

spin liquids is derived straightforwardly from their parent U (1)
states.10 The added Latin/Greek letter distinguishes between
two or more Z2 QSL obtained from the same U (1) parent.10

Both the U (1) and Z2 QSLs have characteristic spinon band
structure. We note that, while this spinon dispersion is not
a gauge-invariant quantity, it is still useful to understand
its general features in order to capture various properties of
these states like the nature of the experimentally observable
spin-structure factor.61 Hence, we summarize the general
characteristic features of the spinon spectra (discussed in detail
in Sec. IV A) in the second column of Table I.
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TABLE I. Structure of low-energy spinon excitations in the
U (1) and Z2 under consideration in the mean-field parameter
regime described in Sec. III B. These behaviors persist within the
neighborhood of the respective parameter sets; it gives a general
understanding of these states. The singlet case shows the evolution
from U (1) to Z2 spin liquids on addition of the bold terms in Table
II. The “singlet + triplet” case shows the evolution of all these states
on addition of nearest-neighbor triplet terms. For Z2 spin liquids, F.S.
indicates a Fermi surface of Fermionic quasiparticles, obtained on
diagonalization of the mean-field Hamiltonian HQ. The low-energy
excitations lie about the spinon Fermi level, which is set by the half
filling constraint on the spinons [Eq. (6)].

QSL label Singlet ansatz10 “Singlet + triplet” ansatz

U (1)[0,0] Fermi surface (F.S.) F.S. is altered
but not gapped out

U (1)[0,π ] Dirac point (D.Pt.) D.Pt. is gapped outa

U (1)[π,π ] Flat bands & D.Pt. Bands acquire dispersion,
D.Pt. remains intact

U (1)[π,0] Flat bands Bands acquire dispersion
Z2[0,0]A F.S. gapped out to Band touching points

Band touching points remain
Z2[0,π ]β F.S. becomes fully gapped Gap is altered
Z2[0,0]B F.S. shrinks compared F.S. gapped out to

to parent U (1) band touching points
Z2[0,π ]α D.Pt. changes to Band touching points

band touching points remain
Z2[0,0]D F.S. shifted compared F.S. gapped out to

to parent U (1) band touching points
Z2[0,π ]γ D.Pt. changes to Band touching points

band touching points remain
Z2[π,π ]B Negligible change Bands gapped to D.Pt.

compared to and band touching
parent U (1) points

Z2[π,0]B Flat bands are gapped F.S. gapped to
to form a F.S. band touching point

aThis state is unstable to confinement.

More recent work, however, indicates that the NN-HKAF
model likely sits close to a quantum phase transition between
a Z2 spin liquid and a valence-bond-solid state on tuning the
second-neighbor interaction or a magnetically ordered state
on tuning the Dzyaloshinsky-Moriya interaction.5–7,11,12,16,46

It is this proximity to the quantum phase transition that may
make the system very sensitive to small perturbations which
then can have a sizable effect.46 The perturbations to the
HKAF seen in herbertsmithite are then likely to be relevant
to a proper description of the material, and we endeavour to
gain an understanding of how the aforementioned symmetric
spin liquid states are affected under these perturbations,
particularly the breaking of spin-rotation symmetry induced
by DM interaction and Ising anisotropies.

Since the spin-rotation symmetry is broken, the singlet
and the triplet spinon decoupling channels (both hopping and
pairing) can no longer be separated, and a more general QSL
ansätze incorporating both singlet and triplet decomposition,
and allowing their intermixing, needs to be introduced.62 While
it is possible to use such a general four-component spinor
representation, as in the case of a triplet BCS Hamiltonian,
here, we find that since the DM vectors and the Ising

anisotropies both are perpendicular to the Kagome plane,
we can use a two-component spinor representation. The
effect of such spin-rotation symmetry-breaking terms on the
low-energy excitations of these spin liquids is also summarized
in Table I (third column). Generally, the triplet terms decrease
the density of states at the spinon Fermi level in most of the
U (1) and Z2 QSLs.

Beyond mean-field theory, apart from the gapless/gapped
spinon excitations, there exist additional low-energy exci-
tations, depending on the gauge structure. For example, in
gapless U (1) QSL in two spatial dimensions, there is an
emergent gapless photon. For Z2 spin liquids, the “magnetic
flux” associated with the Z2 gauge field leads to gapped
topological excitations called visons.63 In this work, we shall
be mostly concerned with the question of the nature of the
ground state and spinful excitations, such as spinons and spin-1
excitations.

Having identified the spin liquids, we turn to their
dynamical spin-structure factor, which is just the Fourier
transform of spin-spin correlation function. The dynamical
spin-structure factor has been recently measured in inelastic
neutron-scattering experiments on a single crystal sample of
herbertsmithite. It shows diffuse scattering with no signature
of the spin gap down to at least 1.5 meV.9

In our computations, almost all of the above spin-liquid
ansätze show patterns of diffuse intensity in the dynamical
structure factor throughout the Brillouin zone, the overall
shape of which is largely influenced by the parent U (1)
spin liquid. The structure factor of the U (1) states have
characteristic flat and dispersive features within the diffuse
continuum. In the Z2 spin liquids, the dispersive features are
broadened and become significantly more complex. A central
result is that, for some Z2 spin liquids, these dispersive features
are only slightly stronger than the diffuse background, so
the dynamical structure factor looks mostly diffuse. This is
particularly true for the states labeled Z2[0,π ]β and Z2[0,π ]α
[the dynamical structure factor is shown later in Figs. 10(e)
and 10(f), respectively]. This may be consistent with present
neutron-scattering results where similar diffuse scattering is
seen over a large energy window in large parts of the Brillouin
zone.9 It is found that the spin-rotation symmetry-breaking
terms primarily introduce nonzero intensity at the center
of the Brillouin zone. They also split the spinon bands, so
diffuse scattering is found more evenly throughout all of the
Brillouin zone in the presence of DM and Ising interactions.
The inelastic neutron scattering indeed shows some intensity
at the center of the Brillouin zone, with a broad maximum
near 0.4J .

To better understand the effect of triplet terms on the ansätze
we consider the ESR absorption spectra that show a nontrivial
response solely from spin-rotation breaking terms. The ESR
signal shows the largest absorption intensity at a δ-function
peak at the Zeeman field energy scale. Triplet terms create
additional “satellite” absorption peaks, offset by their energy
scale. The number, position, and broadening of these extra
absorption peaks differentiate among the different ansätze.
Particularly for the aforementioned Z2[0,π ]β and Z2[0,π ]α
states, the absorption spectrum provides a distinct qualitative
features [as in Figs. 14(e) and 14(f)] that can be verified
experimentally.

224413-3



TYLER DODDS, SUBHRO BHATTACHARJEE, AND YONG BAEK KIM PHYSICAL REVIEW B 88, 224413 (2013)

The rest of this paper is organized as follows. We begin
in Sec. II by discussing the spin model used to capture the
behavior of herbertsmithite. Following the introduction of
the spin Hamiltonian, in Sec. III we describe the fermionic
slave-particle construction of mean-field states. In Sec. IV we
describe the projective symmetry group analysis of the Z2

ansätze, describing their respective U (1) parent QSL states
as well as the effect of the spin-rotation symmetry-breaking
terms. The spin correlations of these states are characterized
in in Sec. V. Finally, in Sec. V E we discuss the implications
of these correlations in light of the recent neutron-scattering
results. We summarize our results in Sec. VI. The details of
different calculations are given in various appendices.

II. SPIN-1/2 MODEL ON THE KAGOME LATTICE

The starting point for our analysis is the spin-1/2 model
with antiferromagnetic nearest-neighbor Heisenberg interac-
tions on the Kagome lattice,

HNN-KHAF = J
∑
〈ij〉

Si · Sj . (1)

where J ∼ 17 meV ∼ 200 K denotes strong antiferromag-
netic interactions and forms the largest energy scale in
herbertsmithite.14,15 Experiments also indicate that there may
be three kinds of interactions acting as perturbations to the
above Hamiltonian.

(1) DM interaction:

HDM = D
∑
〈ij〉

D̂ij · Si × Sj . (2)

This has been estimated to have energy scale of |D| ∼ 15 K
(perpendicular to the Kagome planes) from ESR experiments13

and fitting of the anisotropy of the magnetic susceptibility
data.8 In Eq. (2), the orientation of Dij = ẑ is out of the plane
when the bonds are counted in a counterclockwise way around
each triangle (Fig. 1). The in-plane components of the DM
interactions (∼ 2 K) appear to be negligible in comparison
with the out-of-plane component, and we will neglect it in our
calculations.

(2) XXZ anisotropy: The susceptibility anisotropy also
indicates a sizable easy-axis spin-spin interaction along an
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FIG. 1. (Color online) Bond labels and directions for nearest-
neighbor (dark blue, solid) and next-nearest-neighbor (light brown,
dashed) bonds on the Kagome lattice. The nearest-neighbor directions
also indicate the directions of the Dzyaloshinsky-Moriya terms. The
bonds labeled 1 are the ones on which mean-field parameters are
defined as in Table II; parameters on other bonds are determined
from these through the application of symmetry operations.
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FIG. 2. (Color online) Symmetry transformations of the Kagome
lattice, including translations T1 and T2, a rotation C6, and reflection σ .

axis perpendicular to the Kagome plane,

HIsing = �
∑
〈ij〉

Sz
i S

z
j , (3)

where � ∼ J/10 ∼ 20 K.
(3) Next-nearest-neighbor coupling: As discussed in the

introduction, even small J2 can drastically affect the stability
of spin liquids of the HKAF, as found in recent numerical
calculations. Accordingly, we consider adding an isotropic
next-nearest-neighbor antiferromagnetic Heisenberg interac-
tion J2,

HNNN = J2

∑
〈〈ij〉〉

Si · Sj . (4)

The complete Hamiltonian is then obtained by adding
Eqs. (1)–(4). All these terms have full symmetries of the
Kagome lattice, shown in Fig. 2, and enumerated below. These
are as follows:

(1) Translations T1 and T2 in the Kagome plane.
(2) A sixfold rotation C6 around the center of a hexagon.
(3) A reflection σ through a hexagon.
With this Hamiltonian, we now construct possible Z2 spin

liquid states with fermionic spinons, both gapped and gapless,
and then contrast their properties in context of experiments
on herbertsmithite. We shall limit ourselves to Z2 spin liquid
ansätze that can be realized with just first- and second-neighbor
terms (both hopping and pairing). Since mean-field theory
only gives an order of magnitude estimate of the microscopic
parameters, we shall investigate the existence of the above spin
liquids in somewhat a broad range of the parameters, especially
J2, whose effect is known to be quite sensitive in stabilizing
Z2 spin liquids.7

III. SLAVE-FERMION CONSTRUCTION OF QUANTUM
SPIN LIQUID STATES

A. Spinon representation

In the slave-fermion formalism, as noted earlier, we
represent a spin-1/2 operator, at a site i, in terms of a fermion
(spinon) blinear,

Si = 1
2f

†
iασ αβfiβ, (5)

where α,β ∈ {↑,↓} are the two flavors of spinons.54–57 Here,
σa(a = 1,2,3) are the Pauli matrices. The Hilbert space of the
spinons is twice as large as the original S = 1/2 Hilbert space.
The physical spin wave functions are obtained by projecting
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the spinon wave function in the subspace of single spinon per
site. This is the equivalent of having the following constraints
for every lattice site:

f
†
iαfiα = 1

(6)
fiαfiβεαβ = f

†
iαf

†
iβεαβ = 0,

where ε12 = −ε21 = 1 is the 2 × 2 completely antisymmetric
tensor.

B. Mean-field decoupling

With the above spinon representation, we can rewrite the
bilinear spin Hamiltonian of Sec. II as a quartic fermion
Hamiltonian in terms of the spinon operators. We write the
Heisenberg, DM, and Ising anisotropic exchange interactions
on the nearest-neighbor bonds as in the following:

Si · Sj = 1

16
(−3χ̂

†
ij χ̂ij + Ê†

ij · Êij )

+ 1

16
(−3η̂

†
ij η̂ij + Ŷ†

ij · Ŷij ), (7)

ẑ · Si × Sj = i

8

(
χ̂
†
ij Ê

z
ij − Ê

z†
ij χ̂ij

)+ i

8

(
η̂
†
ij Ŷ

z
ij − Ŷ

z†
ij η̂ij

)
, (8)

Sz
i S

z
j = 1

16

(−χ̂
†
ij χ̂ij − Ê

z†
ij Êz

ij + Ê
x†
ij Êx

ij + Ê
y†
ij Ê

y

ij

)
+ 1

16

(−η̂
†
ij η̂ij − Ŷ

z†
ij Ŷ z

ij + Ŷ
x†
ij Ŷ x

ij + Ŷ
y†
ij Ŷ

y

ij

)
. (9)

We have defined

χ̂ij = f
†
iαδαβfjβ, Êa

ij = f
†
iατ a

αβfjβ
(10)

η̂ij = fiα(iτ 2)αβfjβ, Ŷ a
ij = fiα(iτ 2τ a)αβfjβm,

(a = x,y,z) as the singlet and triplet hopping (particle-hole)
channels and singlet and triplet pairing (particle-particle)
channels, respectively. Note that unlike the usual slave fermion
decomposition, where only the singlet decoupling channels are
used, we have introduced both singlet and triplet decoupling
channels. As discussed earlier, since spin-rotation symmetry
is already broken in the Hamiltonian, there is no a priori
reason to choose only the singlet or triplet channel. Indeed,
in the following we shall see that the triplet channel plays an
important role in our calculations.

These quartic operators are then decomposed by introduc-
ing eight auxiliary fields corresponding to χ , η, E, and Y
for all the particle-hole and particle-particle channels. The
saddle-point approximation in terms of these auxiliary fields
then gives the mean-field quadratic fermion Hamiltonian, HQ,
characterized by the nonzero decoupling channels.

In the singlet case, HQ is conveniently written using a
two-component Nambu basis νi , which most clearly reveals
the underlying gauge redundancy of HQ. The Hamiltonian is
given by28,29,56,58

Hsing
Q =

∑
ij

ν
†
i U

sing
ij νj , (11)

where the Uij matrix satisfies Uji = U
†
ij and

νi =
(

fi↑
f

†
i↓

)
, U

sing
ij =

(
χ∗

ij −ηij

−η∗
ij −χij

)
. (12)

The exact constraint of single spinon per site [Eq. (6)] is
then relaxed to an average constraint and imposed by Lagrange
multipliers, given by28,29,56,58

μa
∑

a

ν
†
i τ

aνi . (13)

where μa (a = 0,1,2,3) are the Lagrange multipliers. We note
that the Nambu (νi) basis components involve operators of the
same spin type. This form clearly demonstrates the explicit
SU(2) gauge redundancy,28,29,56,58

νi → Wiνi
(14)

Uij → WiUijW
†
j ∀Wi ∈ SU(2).

The introduction of triplet terms necessitates, in principle,
a four-component basis.59,62 However, since in the following
we will use only the z components of the triplet terms, we may
use the same basis νi as the singlet case, writing terms with
the matrix form U

trip
ij , given as

U
trip
ij =

(
Ez∗

ij Y z
ij

−Y z∗
ij Ez

ij

)
. (15)

The quadratic form for the triplet part is now given by
ν
†
i U

trip
ij νj . Importantly, this form has the same gauge redun-

dancy as the singlet case, so the projective symmetry group
classification will be similar, as to be discussed in Sec. IV.
These terms combine in the quadratic Hamiltonian to give

HQ =
∑
ij

ν
†
i

(
U

sing
ij + U

trip
ij

)
νj + H.c. (16)

As pointed out earlier, with the introduction of the DM
and Ising anisotropy terms on the NN bonds, the singlet and
triplet channels mix and the saddle point is characterized by a
combination of the two kinds of channels. For example, in the
hopping sector, we can rediagonalize the interactions to write
(for NN bonds)

JSi · Sj + �Sz
i S

z
j + Dẑ · Si × Sj

⇒ ω−χ̂
†
−χ̂− + ω+χ̂

†
+χ̂+ + J + �

8
Êx

†
Êx + J + �

8
Êy

†
Êy,

(17)

where we withhold the i,j subscripts on all operators for the
rest of this section, and

ω± = −J + �

8
± 1

4

√
J 2 + D2,

χ̂± =
√

J 2 + D2 ∓ J

ξ±
χ̂ ∓ i

D

ξ±
Êz, (18)

|ξ±|2 = 2
√

J 2 + D2(
√

J 2 + D2 ∓ J ).

For the pairing channels, the same is true with η in place of χ ,
and Y in place of E.

Both x and y components of the triplet terms lead to
unstable mean-field states, so we will only consider ansätze
with singlet (χ , η) and z-component triplet (Ez, Y z) terms. We
can write the mean-field Hamiltonian in the basis described
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TABLE II. The general structure of the singlet QSL ansatz for
the Z2 spin liquids. The particular bonds chosen for UNN and UNNN

are shown in Fig. 1. The bold terms shown in UNN and UNNN give
the spinon pairing and hopping terms whose existence is required to
break the U (1) parent spin liquid’s gauge group down to Z2. We note
that we have chosen a gauge in which τ 2 terms for Z2[0,0]A and
Z2[0,π ]β ansätze are zero.10

SL Label UNN UNNN

Z2[0,0]A τ 2,τ 3 τ 3

Z2[0,π ]β τ 2,τ 3 τ 3

Z2[0,0]B τ 2,τ 3 τ 3

Z2[0,π ]α τ 2,τ 3 τ 3

Z2[0,0]D τ 3 τ 2,τ 3

Z2[0,π ]γ τ 3 τ 2,τ 3

Z2[π,π ]B τ 2 τ 3

Z2[π,0]B τ 2 τ 3

by (12) and (15). On a NN bond, we have

HNN
ij = ω−(χ∗

−χ̂− + η∗
−η̂−) + ω+(χ∗

+χ̂+ + η∗
+η̂+)

+ H.c. − ω−|χ−|2 + |η−|2 − ω+|χ+|2 + |η+|2.
(19)

On a NNN bond (since there is only antiferromagnetic
Heisenberg term, and no D or �) we decouple only in the
singlet channels,

HNNN
ij = −3J

8
(χ∗χ̂ + η∗η̂) + H.c. + 3J

8
(|χ |2 + |η|2).

(20)

The quadratic Hamiltonian Hij = HNN
ij + HNNN

ij can now be
solved to obtain the spinon wave function, |ψ〉spinon.

To gain insight on the actual values of different mean-
field parameters that characterize the different QSL ansatz, we
perform self-consistent mean-field calculations, the details of
which are outlined in Appendix C. We note that in the self-
consistent calculation, we find that the next-nearest-neighbor
exchange, J2, necessary to stabilize six of the eight Z2 spin
liquids in Table II is J2 > 0.4J . This large value of J2, required
to stabilize nonzero next-nearest-neighbor hopping and pairing
interactions for the spinons, is certainly an artifact of our mean-
field treatment.

These mean-field results leading to stable solutions act as
a guide for choosing a representative mean-field parameter
set for calculation of the dynamical spin-structure factor. The
general qualitative features of the structure factor so obtained
are expected to be less sensitive to the details of the exact
parameter values. In any case it is likely that the parameter
values obtained from a mean-field theory are renormalized by
quantum fluctuations. Hence, we take mean-field parameters
of singlet Z2 terms, wherein pairing and hopping terms are of
similar magnitudes, to demonstrate the qualitative features of
these Z2 states in comparison to the U (1) ones. We will also
take next-nearest-neighbor terms on the order of 0.4 times
the magnitude of the nearest-neighbor terms and a triplet-
singlet ratio of 0.1 ∼ D/J when considering a spin-rotation
symmetry-breaking ansatz.

IV. PROJECTIVE SYMMETRY GROUP AND
MEAN-FIELD ANSÄTZE

The spinon wave function |ψ〉spinon so obtained is not a valid
spin wave function, since it only satisfies constraint Eq. (6)
on average. Hence, it must be projected into a single-spinon-
per-site subspace to obtain the spin wave function through
numerical Gutzwiller projection.28

Alternatively, it is possible to consider the low-energy fluc-
tuations about the mean-field solution. The gauge redundancy
of the spinon description [Eq. (14)] immediately suggests that
the low-energy effective theory contains spinons minimally
coupled to a lattice gauge field. The structure of the gauge
group can be determined from the structure of the mean-field
QSL ansatz for HQ

28,62 in the following way. Each mean-field
ansatz is characterized by Uij ∈ SU(2) on the bonds [Eqs. (12)
and (15)]. Taking the product of such Uij s over various closed
loops (C) starting from a specific base site (i), we obtain the
“flux” of the Uij link fields, which has the following form:29

WC(i) =
∏

(jk)∈C

Ujk =
∑

a=0,x,y,z

Aa
C(i)τ a, (21)

where Aa
C(i) are numbers specific to the loop and τ a are

the identity (a = 0) and Pauli matrices (a = 1,2,3) in the
gauge space. For U (1) QSLs, Aa(i) for different loops are
proportional to each other for the same a and at least one of
Aa(i) is nonzero for a = 1,2,3 (say 3). Then it is possible to
write29

U (1)QSL : WC(i) ∝ τ 3∀C. (22)

This means that there exists a gauge in which all Uij ∝ τ 3

and, hence, HQ of the form in Eq. (11) is invariant under all
gauge transformation: νi → eiθz

i τ 3
νi where, θi ∈ [0,2π ]. Thus

the gauge group is U (1) and, accordingly, we have a U (1)
QSL.29

For Z2 spin liquids, two or more loops based at the same site
have Aa

C(i) that are not proportional to each other and a similar
analysis as above shows that the gauge transformation of the
following form is only possible: νi → ζiνi , where ζi = ±1.29

This is a Z2 gauge group describing Z2 spin liquids. The above
argument can be extended to the case of the most general triplet
ansatz with a four-component spinon representation.62

The gauge group so obtained is called the invariant gauge
group (IGG) because the mean-field ansatz remains invariant
under such gauge transformations. Due to the above gauge
redundancy, the lattice symmetries (and time reversal) under
which the Hamiltonian is invariant act projectively on the
mean-field ansätze. This means that usual physical symmetry
transformations on the ansatz transforms it to its gauge
equivalent form; hence, an added set of gauge transformation
is required following the actual symmetry transformation to
bring the ansatz back to itself. The PSG characterizes, for a
given set of symmetry transformations SG, the possible distinct
sets of gauge transformations {GS} for each operation S ∈ SG,
where

(GSS)Uij (GSS)† = Uij . (23)

A particular set {GS} characterizes a corresponding HQ and,
hence, the mean-field ground state. Therefore, elements of
the IGG are the gauge transformations GI associated with
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the identity operation I of the symmetry group SG. In other
words, the symmetry group SG = PSG/IGG. One can choose
a gauge where the elements of the IGG are site independent,
namely GI (i) = ±I for Z2 transformations, GI (i) = eiθτ 3

(θ ∈ [0,2π )) for U (1) transformations, and GI (i) = eiθn̂·�τ
(n̂ ∈ S2, θ ∈ [0,2π )) for SU(2) transformations, characteriz-
ing Z2, U (1), or SU(2) spin liquids, respectively.29

Determination of the allowed sets {GS}, and thereafter the
ansätze HQ, comes from the group multiplication table of
SG. For every group multiplication rule written in the form
ABC−1 = I , a similar constraint is put on the PSG, namely
(GAA)(GBB)(GCC)−1 ∈ IGG, a pure gauge transformation.
These constraints determine the allowed PSG {GSS} for the
symmetry group of the Kagome lattice. The singlet Z2 spin
liquids have been determined by Lu et al.,10 and the same PSGs
apply in the triplet case, since we use the same basis (12).
However, the resulting ansätze differ between these cases,
primarily in the existence and structure of the triplet terms.
We will leave these details to Appendix B and summarize the
results here.

A. Singlet mean-field ansätze

In this section, we characterize the singlet spin liquid
ansätze on the Kagome lattice that are of interest to us.10 These
include the eight Z2 spin liquids that occur in the vicinity
of one of four different parent U (1) spin liquids and can be
stabilised by tuning spinon hopping and pairing terms up to
the second-nearest-neighbor sites. We shall begin by briefly
describing the spinon excitation spectra of the four parent
U (1) spin liquids at the nearest-neighbor level. The Z2 states
are obtained on appropriate introduction of additional hopping
and pairing terms that break the IGG to Z2, as shown in
Table II.

The nomenclature of the four U (1) QSLs have already
been introduced in Sec. I A. These are identified as U (1)[0,0],
U (1)[0,π ], U (1)[π,π ], and U (1)[π,0] phases. In Appendix A
we show the signs of the hopping parameters used (in the
gauge that we have chosen). Here we summarize the features
of their spinon spectrum in the above gauge. We note once
again that though gauge dependent, the spinon spectra provides
valuable clues to the nature of the experimentally measurable
and gauge-invariant spin-spin correlation functions. We plot
the dispersion along the high symmetry direction � → M →
K → � of the original Brillouin zone (Fig. 3).

U (1)[0,0]: The uniform U (1)[0,0] state has a Fermi surface
of spinons. Since this state has uniform hopping, its dispersion
is simply the band structure for the Kagome lattice and is seen
in Fig. 4(a). It has a flat band at the maximum of the dispersion.

U (1)[0,π ]: This ansatz breaks translational symmetry of
the Kagome lattice and has Dirac points in its dispersion, as
seen in Fig. 4(b). It has a doubly degenerate flat band at the
maximum of the dispersion, similarly to the U (1)[0,0] case.

U (1)[π,π ]: This state has a Dirac point at the center of the
Brillouin zone, but also has double-degenerate flat bands at the
Fermi level, as seen in Fig. 4(c).

U (1)[π,0]: We find that there are at least two distinct U (1)
states with a [π,0] hopping flux pattern. Only one of them
can stabilize a Z2 spin liquid (Z2[π,0]B) on addition of the
appropriate next-nearest-neighbor hopping and pairing terms;

FIG. 3. The cut along the high symmetry direction of the primitive
and extended first Brillouin zone is shown respectively. The boundary
of the primitive (extended) Brillouin zone is shown in light (dark)
gray. While the spinon dispersion is periodic within the primitive
Brillouin zone, the spin-structure factor is periodic in the extended
Brillouin zone (see text for details).

therefore, this is the state that we will consider. Like the
U (1)[π,π ] state, there are also flat bands at zero energy, as
seen in Fig. 4(d). However, there is a gap to the subsequent
single-spinon excitations throughout the entire Brillouin zone.

On adding appropriate spinon hopping and pairing terms
up to second nearest neighbor, the IGG of the above spin
liquids is broken down from U (1) to Z2.10 There are eight
such Z2 spin liquids as given in Table II. The addition of these
terms changes the structure of the low-energy quasiparticle
excitations, with parameters as discussed in Sec. III B. In
some cases, a gap is opened (Z2[0,π ]β). In others, the line
degeneracy of zero-energy excitations from the U (1) state’s
Fermi surface remains (Z2[0,0]B and Z2[0,0]D). For some
other states, only band touching points remain (Z2[0,0]A,
Z2[0,π ]α, and Z2[0,π ]γ ). The flat bands at zero energy of the
U (1)[π,π ] and U (1)[π,0] states either remain (Z2[π,π ]B) or
are lifted to a line degeneracy (Z2[π,0]B). Table I summarizes
the structure of the low-energy quasiparticles for the above
U (1) and Z2 spin liquids. The full form of {GS(i)} is given in
Appendix B.

U(1)[0, 0] U(1)[0, π]

U(1)[π, π]

Sp
in

on
di

sp
er

si
on

U(1)[π, 0]

FIG. 4. (Color online) Spinon dispersion for U (1) singlet spin
liquid ansätze. These dispersions go from the center of the Brillouin
zone of the Kagome lattice, �, to the edge M , to the corner K , and
back to the center �. The Fermi level is at zero energy.

224413-7



TYLER DODDS, SUBHRO BHATTACHARJEE, AND YONG BAEK KIM PHYSICAL REVIEW B 88, 224413 (2013)

U(1)[0, 0] U(1)[0, π]

U(1)[π, π]
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U(1)[π, 0]

FIG. 5. (Color online) Spinon dispersion for U (1) spin liquid
ansätze with “singlet + triplet” channels for NN bonds. These
dispersion go from the center of the Brillouin zone of the Kagome
lattice, �, to the edge M , to the corner K , and back to the center �.
The Fermi level always lies at the zero of the energy scale. We note
that since the “singlet + triplet” U (1)[0,π ] spin liquid state is gapped,
it is unstable to confinement due to instanton tunneling events.64

B. “Singlet + triplet” mean-field ansätze

All of the above spin liquids on the Kagome lattice are
also realized, even in the absence of spin-rotational symmetry,
if time reversal and the symmetries of the Kagome lattice are
preserved. The allowed Uij now has both real singlet terms and
imaginary z-component triplet terms for the nearest-neighbor
hopping and pairing and real singlet terms for next-nearest-
neighbor as well.

Again, we first consider the effect of the triplet terms on
the four U (1) spin liquids. In all cases, the spectra show
additional features in their dispersions, coming from the
triplet terms that removes the flat bands previously present
throughout the Brillouin zone. The U (1)[0,0] state has an
altered Fermi surface, which does not split the f↑ and f↓
spinons [Fig. 5(a)]. The Dirac cone in the U (1)[0,π ] state
[Fig. 4(b)], however, is gapped out [Fig. 5(b)]. Further, the
bands are also spin split throughout the Brillouin zone. We
note that such a two-dimensional gapped U (1) spin liquid is
unstable toward a confinement transition.39,64 So we infer that
triplet decoupling may indirectly render the U (1)[0,π ] state
unstable. The U (1)[π,π ] and U (1)[π,0] states both have their
zero-energy flat bands mostly gapped out, leaving a filled band
with a line degeneracy at zero energy. The Dirac cone in the
U (1)[π,π ] state remains intact [5(c)], while newer Dirac nodes
are created for the U (1)[π,0] state on including the triplet terms
[Fig. 5(d)].

Allowing for small triplet terms in the singlet Z2 ansätze
also changes the low-energy structure of the quasiparticles.
The Z2[0,π ]β state has its gap altered. For states with line
degeneracies, we find that only band touching points remain
(Z2[0,0]B, Z2[0,0]D, and Z2[π,0]B). Also, the band touching
points are found to be robust to spin-rotation symmetry-
breaking perturbations (Z2[0,0]A, Z2[0,π ]α), and Z2[0,π ]γ ).
In the state Z2[π,π ]B, the flat bands at zero energy are lifted
to band touching points, while the Dirac node persists. These
changes are summarized in Table I.

With this, we have completed the description of the
candidate QSL states. We shall now calculate the dynamical
spin-structure factor and study their broad features that can
help us identifying the nature of the spin liquid, possibly
realized in herbertsmithite, from inelastic neutron-scattering
and ESR experiments.

V. SPIN CORRELATIONS IN U(1) AND Z2 SPIN LIQUIDS

A. Structure factor and experimental probes

To determine the spin correlations, we will calculate the
dynamical structure factor; the matrix is given by

Sαβ(q,ω) =
∫ ∞

−∞

dt

2π
eiωt

∑
ij

eiq·(ri−rj )
〈
Sα

i (t)Sβ

j (0)
〉
, (24)

where α,β ∈ {1,2,3}. It characterizes spin-1 magnetic exci-
tations of energy ω and wave vector q. Up to a magnetic
form factor, Sαβ(q,ω) can be measured directly by inelastic
neutron scattering.9 We note that Eq. (24) is not periodic in
the reciprocal lattice vectors of the Kagome lattice. Since
ri − rj can be half of the primitive lattice vectors a or b in
Fig. 2, we must extend the Brillouin zone to double its size.
We will plot the dynamical structure factor along the path
� → M ′ → K ′ → � in the extended Brillouin zone, where
� is the center, M ′ is the midpoint of an edge, and K ′ is
the corner of the edge of the extended Brillouin zone (EBZ)
(Fig. 3). We found that the equal-time (ω-integrated) structure
factor shows little qualitative differences among our ansätze,
so we concentrate on the ω-resolved features for different
QSL states. Further, for the singlet ansätze, since the quadratic
HamiltonianHQ commutes with the total spin operator and the
ground state is an eigenstate of the total spin with eigenvalue
0. Thus, the dynamical structure factor of singlet ansätze is
zero at q = 0.

The dynamical structure factor can also be probed by ESR,
under an external Zeeman field HZ

∑
i Si · ẑ. Absorption of

a transverse microwave field (along axis α) of frequency ω

probes the long-wavelength q ≈ 0 dynamical structure factor
Sαα(0,ω).49 The absorption intensity is given by

I (ω) = H 2
mω

2
(1 − e−βω)Sαα(0,ω), (25)

where the field is applied in the α direction, with amplitude
Hm and frequency ω.50 The SU(2)-invariant terms affect the
intensity trivially; that is, I (ω) ∝ δ(ω − HZ), where HZ is
the Zeeman field strength. Hence, the ESR line shape is
sensitive to spin anisotropy, and so the triplet terms. Thus,
ESR experiments can reveal important information about the
effect of the spin-rotation symmetry-breaking perturbations.

B. Dynamical structure factor of singlet U(1) spin liquid ansätze

We will begin by considering the singlet U (1) spinon
ansätze. Our choice of color scale is made to accentuate
the low-intensity scattering compared to the zero-intensity
background.

Figure 6 shows the dynamical spin-structure factor for the
U (1)[0,0] state. The low-energy domes of scattering anchored
around the � and M ′ points are contributed by the excitations
near the Fermi surface. Above these domes, we see additional
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Γ M ′ K ′ Γ

ω
/
J

S
(q

,ω
)

FIG. 6. (Color online) Dynamical structure factor of the NN
singlet U (1)[0,0] spin liquid along the high symmetry direction of
the extended Brillouin zone. The characteristic low-energy domelike
structure results from the spinon excitations near the Fermi surface
[Fig. 4(a)].

flat scattering coming from contribution of the the higher
energy, flat bands [refer to Fig. 4(a)].

In Fig. 7 we plot the dynamical spin-structure factor for
the U (1)[0,π ] state. In contrast with the U (1)[0,0] case,
low-energy cones of scattering are seen at the �, M ′, and
intermediate points in the extended Brillouin zone, a con-
sequence of the linearly-dispersing low-energy single-spinon
excitations of the Dirac spin liquid. The flat, intense band of
scattering seen at the highest energies are manifestations of
the flat spinon bands [Fig. 4(b)].

Figure 8 shows the structure factor for the U (1)[π,π ] state.
In this case, we can see intensity all the way down to zero
energy across the extended Brillouin zone. Within this diffuse
scattering, there are two major variations of intensity. The first
is dispersive, rising from the � point, due to the Dirac point in
the spinon dispersion. The second is the flat band of intensity
in the middle of the energy range, again due to zero-energy
flat bands of the dispersion.

Finally, Fig. 9 shows the structure factor for the U (1)[π,0]
state. While the flat bands in the dispersion contributes to
the scattering exactly at zero energy, the gap to subsequent

Γ M ′ K ′ Γ

ω
/
J

S
(q

,ω
)

FIG. 7. (Color online) Dynamical structure factor of the nearest-
neighbor singlet U (1)[0,π ] spin liquid along high symmetry direc-
tions of EBZ. Compared to U (1)[0,0] state, the low-energy continuum
near � and M ′ points are replaced with cones of scattering, which is
a consequence of the Dirac node at the Fermi level for the spinons
[Fig. 4(b)].

Γ M ′ K ′ Γ

ω
/J

S
(q

,ω
)

FIG. 8. (Color online) Dynamical structure factor of the nearest-
neighbor singlet U (1)[π,π ] spin liquid along the high symmetry di-
rection of the EBZ. The extensive continuum of low-energy scattering
is a contribution of the flat bands at the Fermi level [Fig. 4(c)].

excitations is seen in the absence of scattering. The highest
intensity is seen at a particular point of scattering at M ′.

We see that the low-energy spin correlations are an effective
way to distinguish between these U (1) spin liquids. Other
dispersive scattering features characteristic to the states also
show up at comparatively higher energies.

Next, we will look at the effect of the additional pairing
terms of the Z2 spin liquid ansätze on the dynamical structure
factor, particularly as a means to distinguish between Z2

states with the same parent U (1) spin liquid, in spite of their
similarities.

C. Dynamical structure factor of singlet Z2 spin liquid ansätze

We see that the dynamical structure factor of Z2 states are
similar in overall shape to that of their parent U (1) states. To
illustrate this point, we will consider the Z2[0,0]A, B, and D

states in Figs. 10(a)–10(c). The Z2[0,0]D state has a structure
factor that is most similar to the parent U (1)[0,0] case (Fig. 6),
with zero-energy scattering along much of the M ′-K ′ line.
Above that, the scattering is diffuse, with dispersive features
that are only slightly stronger than the diffuse background. For
the Z2[0,0]A state, the low-energy domes of scattering persist

Γ M ′ K ′ Γ

ω
/J

S
(q

,ω
)

FIG. 9. (Color online) Dynamical structure factor of the nearest-
neighbor singlet U (1)[π,0] spin liquid along high symmetry direc-
tions of the EBZ. There is finite scattering intensity exactly at zero
energy because of the flat bands in the spinon dispersion [Fig. 4(d)],
which is followed by a lack of scattering due a to gap in the spinon
spectrum.
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Γ M ′ K′ Γ
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Z2[0, 0]A

Γ M ′ K′ Γ

S
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Z2[0, 0]B

Γ M ′ K′ Γ

ω
/
J

Z2[0, 0]D

Γ M ′ K′ Γ

S
(q

,ω
)

Z2[π, π]B

Γ M ′ K′ Γ

ω
/
J

Z2[0, π]β

Γ M ′ K′ Γ
S

(q
,ω

)
Z2[0, π]α

Γ M ′ K′ Γ

ω
/
J

Z2[0, π]γ

Γ M ′ K′ Γ

S
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,ω
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Z2[π, 0]B

FIG. 10. (Color online) Dynamical structure factor for Z2 singlet spin liquid ansätze. These structure factor are plotted from the center of
the extended Brillouin zone of the Kagome lattice, �, to the edge M ′, to the corner K ′, and back to the center �.
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over small energies, and the flat features have become much
more dispersive. There is a large intensity at the M ′ point at
higher energies. In the Z2[0,0]B case, there is low-energy
intensity only near the � and M ′ points. Many dispersive
features are seen, particularly near the K ′ point.

The Z2[π,π ]B state has a dynamical structure factor
[Fig. 10(d)] which is strikingly similar to its parent U (1)[π,π ]
state (Fig. 8). Only the intensity of the dispersive bands in-
creases, and scattering close to � is found up to all energies, but
there are no obvious qualitative differences between the two.

We also see similar resemblance in case of the the Z2[0,π ]
QSL states with their parent U (1)[0,π ] state [Figs. 10(e)–
10(g)]. The Z2[0,π ] states retain flat intensity at the highest
energy and relatively constant diffuse scattering across their
energy range from their parent state. The Z2[0,π ]β state has
a fairly significant spin gap, where the low-energy cones of
scattering of the parent U (1) state (Fig. 7) have been rounded
off. This spin gap is found to be rather momentum independent.
Also the flat features of the U (1)[0,π ] state are found to be
broadened, and the scattering is fairly diffuse, although some
dispersive intensity can be seen coming from the � point, due
to the remnant of the Dirac cone. At low energies, the intensity
for the Z2[0,π ]α state has many broad domes of scattering,
and zero-energy excitations exist almost throughout. At larger
energies, the intensity is mostly diffuse, where the U (1)[0,π ]
state’s high-energy intensity has been split into two neighbor-
ing broad, diffuse, yet still almost flat, bands. The low-energy
features of the Z2[0,π ]γ state is similar to the U (1) case.
Above this, the intensity is also separated into two broad,
diffuse bands, more prominently than the Z2[0,π ]α state.

The Z2[π,0]B state [Fig. 10(b)] shows many separated
broad and diffuse bands, including the band near zero energy,
which is the remnant of the strictly zero energy scattering
coming from the flat bands of the U (1)[π,0] state (see Fig. 9).
Furthermore, the intensity is relatively constant across the cut,
only diminishing as the zone center (� point) is approached.

With the exception of the [π,π ] states, the low-energy
intensity and dispersive features allow the 12 spin-liquid
ansätze in Table II to be distinguished from each other
qualitatively. In the next subsection, we will see the effect
of adding triplet terms to the QSL ansätze to the dynamical
structure factor.

D. Dynamical structure factor of “singlet + triplet”
U(1) and Z2 spin liquid ansätze

The introduction of the triplet terms Ez
ij and Y z

ij breaks
the spin-rotational symmetry of the spin-polarized dynamical
structure factor Sαβ(q,ω), where Sxx = Syy �= Szz. While the
singlet structure factors showed a vanishing intensity ap-
proaching q = 0, these triplet terms generate a nonzero inten-
sity in Sxx and Syy . Also, the scattering intensity at low energies
changes, due to changes in the spinon dispersion (summarized
in Table. I). Since the spinon bands are, in general, split by
triplet terms, the scattering becomes increasingly diffuse.

We will showcase these changes by calculating the trace
of the dynamical structure factor matrix, i.e., (Sxx + Syy +
Szz)/3, and then plotting the difference from the singlet
structure factor. In Appendix D, we show the actual structure
factor for all these “singlet + triplet” states.

These differences for the “singlet + triplet” U (1) structure
factors are shown in Fig. 11. The “singlet + triplet” U (1)[0,0]
structure factor looks very similar to the singlet case, par-
ticularly in the low-energy scattering. However, the diffuse
scattering at moderate energies is no longer flat. While this is
also true for the “singlet + triplet” U (1)[0,π ] structure factor,
it also has two qualitative differences. The first is that the
cones of scattering at low energy are gapped out; this can
be seen more clearly in the full “singlet + triplet” structure
factor in Appendix D, Fig. 19. The second is that the flat
band at the highest energy is split into two. For the U (1)[0,π ]
state, though we plot the structure factor for completeness,
we note that in this state the spinon spectrum is gapped and,
hence, the state is unstable to confinement transition due to
instanton events.64 The “singlet + triplet” U (1)[π,π ] structure
factor is very similar to the singlet case, where the low-energy
scattering sees a band of intensity between � and M ′, as well
as � and K ′. This is absent in the singlet case, which can
distinguish between these states. Such a band is also seen
in the “singlet + triplet” U (1)[π,0] state, which otherwise is
again similar to the corresponding singlet case.

The Z2 (S + T) spin liquids are shown in Fig. 12. Most of
the structure factors closely resemble their singlet counterparts
with important general differences. Here, we shall limit
ourselves to pointing out these differences only. Generally, due
to the triplet decoupling channels, the spinon bands are spin-
split. Hence, the sharp dispersing structures are somewhat lost
and the scattering intensity becomes more diffuse compared to
the singlet-only ansätze, with increasing strength of the triplet
terms. As with the U (1) states, the intensity of low-energy
scattering does not go to zero at q = 0. Hence, there is a slight
enhancement of scattering at the EBZ center compared to the
singlet states. Also, for most of the states where there is a
spin-gap in the structure factor, the gap magnitude becomes
increasingly independent of the momentum.

Finally, we end this section by noting that the spin-liquid
state Z2[0,π ]β seems to be the best candidate in the context of
present inelastic neutron-scattering experiments and DMRG
calculations. We shall discuss this in some detail, along with
the signatures of the other spin liquids, in the next two
subsections in the context of inelastic neutron-scattering and
ESR experiments.

E. Implications for inelastic neutron-scattering experiments

It is useful to compare the spin-structure factor obtained
above with the results of the recent inelastic neutron-scattering
experiments on single crystals of herbertsmithite.9 These
experiments show almost uniform diffuse scattering over a
large energy window. Furthermore, no spin-gap is observed
down to 1.5 meV. It also shows no obvious signature of broken
lattice symmetries.

With parameters from the mean-field solution (as discussed
later in Appendix C), excitations are found for ω � 0.35J . In
contrast, the inelastic neutron scattering shows strong diffuse
intensity up to the largest measured energy 11 meV ∼ 0.65J .
However, the numerical values from our mean-field calculation
can, at best, serve as a consistency check.

Comparing with our calculated dynamical spin-structure
factor with the above features of the experiment, we may
infer that the U (1)[π,π ], U (1)[π,0], Z2[π,π ]B, and Z2[π,0]B
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FIG. 11. (Color online) Difference between the dynamical structure factor for U (1) “singlet + triplet” spin liquid ansätze. These structure
factor are plotted from the center of the extended Brillouin zone of the Kagome lattice, �, to the edge M ′, to the corner K ′, and back to the
center �. We note that since the “singlet + triplet” U (1)[0,π ] spin liquid state is gapped, it is unstable to instanton tunneling events.64

states clearly appear to be inconsistent with the neutron-
scattering data. Further comparison of their ESR line shapes
and peak distribution (see next section) may confirm/invalidate
this conclusion.

In contrast, several of the [0,0] and [0,π ] [both U (1) and
Z2] QSLs do have mostly-featureless diffuse scattering within
some energy window [ωmin,ωmax]. However, in all but a few
cases this window is narrow, and these states have well-defined
features at lower or higher energies and, hence, are inconsistent
with experiments.

The four states, namely Z2[0,0]D, Z2[0,π ]α, Z2[0,π ]γ ,
and Z2[0,π ]β, have dispersive features with a very weak
intensity, leading to an almost diffuse structure factor. The
dispersive features are broadened and are in relatively poor
contrast with the generally diffuse background. However, we
see some modulation in intensity for the Z2[0,π ]γ state and
slightly better-defined dispersive features in the Z2[0,0]D
state. However, only the Z2[0,π ]β state shows evidence of
a spin gap—Z2[0,π ]α is gapless. As already noted, the in-
clusion of the spin-rotation symmetry-breaking perturbations
makes the spin gap increasingly momentum independent
in Z2[0,π ]β. Further, these perturbations also enhance the
scattering near the Brillouin zone center somewhat in almost
all cases (refer to Fig. 12). Noting that the DMRG calculations

indeed stabilize a gapped QSL state (most likely Z2), in
light of the inelastic neutron-scattering measurements, it is
tempting to suggest the Z2[0,π ]β state as a consistent choice
for a candidate ground state for herbertsmithite. However, we
should note that the issue of existence of spin gap is still not
clear in herbertsmithite experiments, and, except for the lack
of spin gap, Z2[0,π ]α is also a possible candidate.

Next, we describe the ESR absorption spectra for the QSLs
that break spin-rotation symmetry.

F. ESR absorption intensity for different spin-rotation
symmetry-breaking QSLs

To observe the ESR spectra we couple the system with a
Zeeman field via HZ

∑
i ẑ · Si . The ESR absorption intensity

is given in Eq. (25). We note that I (ω) ∝ ω at low temperatures
and peaks occur around the value of the Zeeman field, (ω =
HZ), so absorption is most easily seen at the large values of ω

and HZ . We align the Zeeman field along the z axis, the axis
along which the spin rotation is broken. For energy scales ω

near HZ , the Zeeman term breaks SU(2) symmetry, with Uij

along with the triplet terms. For this axis of the magnetic field,
I xx(ω) = I yy(ω) due to the remaining U (1) spin-rotational
symmetry around the z axis.
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FIG. 12. (Color online) Difference between the dynamical structure factor for Z2 “singlet + triplet” spin liquid ansätze. These structure
factor are plotted from the center of the extended Brillouin zone of the Kagome lattice, �, to the edge M ′, to the corner K ′, and back to the
center �.
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FIG. 13. (Color online) Electron spin resonance absorption for U (1) “singlet + triplet” spin liquid ansätze, as a function of the Zeeman field
strength HZ and microwave field frequency ω. The viewpoint is along the HZ = ω axis. We note that since the “singlet + triplet” U (1)[0,π ]
spin liquid state is gapped, it is unstable to instanton tunneling events.64

We now discuss the ESR absorption intensity for the
four U (1) and eight Z2 QSL in presence of the triplet
channels. We focus on the small-intensity region to show
contributions from the triplet terms; these occur as satellite
peaks with smaller intensities, while the peak at ω = HZ

has a much larger intensity. These spectra are shown in
Fig. 13.

Both the U (1)[0,0] and U (1)[0,π ] spin liquids have an
additional “satellite” peak on either side of the main peak
at ω = HZ . The peaks of the U (1)[0,π ] state have both
higher intensity and are spaced more closely compared to the
U (1)[0,0] state.

However, the U (1)[π,π ] and U (1)[π,0] states have wildly
different ESR absorption spectra. There is absorption over
a broad range of HZ − ω, with many subsequent satellite
peaks almost forming a continuum. The intensity of the main
peak is significantly diminished compared to the U (1)[0,0]
and U (1)[0,π ] spin liquids. As HZ − ω increases from zero,
in the U (1)[π,π ] state, the primary satellite peaks have a
monotonically decreasing intensity, while the U (1)[π,0] state
features a single pair of prominent satellite peaks at a finite
distance away from zero.

The Z2 spin liquids generally lead to a broadening of
the absorption peaks. These spectra are shown in Fig. 14.

The Z2[0,0]A state shows slight broadening of the all peaks
around the base, with diminished intensity compared to
the the U (1) case. The Z2[0,0]D state shows a similar
response, though the satellite peaks are higher compared
to the broadening of the main peak. The Z2[0,0]B state
has very broad absorption around the now significantly
smaller satellite peaks. The largest satellite peaks of the
Z2[π,π ]B are broadened at low absorption, but the intensity
around the main peak drops dramatically and is almost
zero.

The Z2[0,π ]β state shows significant broadening of the
main peak around the base and nearly complete reduction of
satellite peak intensity. The Z2[0,π ]α and Z2[0,π ]γ states
have smaller amount of broadening around the main peak,
where the satellite peaks are diminished in intensity but still
visible. The intensity of the main peak of the Z2[π,0]B is
almost zero and the satellite peaks are replaced by small, broad
domes of absorption.

The shape and structure of the satellite peaks provide
another qualitative clue to distinguish between the spin liquid
ansätze considered here and immediate evidence of spin-
rotation symmetry breaking in the kagome planes.

Current ESR measurements down to as low as 5 K,
however, find that the absorption intensity is dominated by
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FIG. 14. (Color online) Electron spin resonance absorption for Z2 “singlet + triplet” spin liquid ansätze as a function of the Zeeman field
strength HZ and microwave field frequency ω. The viewpoint is along the HZ = ω axis.

the impurity spins below 20 K.13 These Cu2+ ions contribute
in a nearly paramagnetic fashion, and the intensity displays a
Curie-like response ∝1/T . The line shape remains broad. In
the regime where these impurity spins display a paramagnetic
response, isolating the kagome-layer ESR response may prove
difficult. An increase in sample purity can curtail this effect.

However, at very low temperatures, these impurity spins may
no longer behave in a paramagnetic fashion and interact with
the kagome planes with a strength of ∼10 K.13,65 One needs
to consider the effect of the coupling of these impurities
to the kagome spin liquid and the resultant ESR spectrum.
Such analysis is beyond the scope of the present paper, so

224413-15



TYLER DODDS, SUBHRO BHATTACHARJEE, AND YONG BAEK KIM PHYSICAL REVIEW B 88, 224413 (2013)

we present here the intrinsic absorption of the spin liquid
layers.

VI. DISCUSSION

We now summarize our results. In this work, we have
attempted to address two important questions to account for
the unusual phenomenology of the nonmagnetic ground state
of herbertsmithite. First, we have calculated the dynamical
spin-structure factor for four U (1) and eight Z2 symmetric
spin liquids derived from the former for the NN and NNN
antiferromagnetic Heisenberg model on an isotropic Kagome
lattice. These spin liquids are allowed by spin-rotation, time-
reversal, and lattice symmetries of a Kagome lattice. We
then consider the effect of small spin-rotation symmetry-
breaking perturbations (DM and Ising anisotropy) on the above
spin liquids and on the corresponding spin-structure factor.
Furthermore, we calculate the ESR absorption spectra, which
show nontrivial structures in the presence of spin-rotation
symmetry breaking. Since recent numerical studies suggest
that the ground state of the strictly NN antiferromagnetic
Heisenberg model is very sensitive to small perturbations
of second-neighbor exchange and Dzyaloshinsky-Moriya in-
teractions, we expect that the the above perturbations may
have important effects in the low energy features of the
experimentally measurable spin-structure factor.

Indeed, we find that the addition of the perturbations make
the structure factor largely diffuse over an extended energy
window throughout the Brillouin zone. Similar scattering
has been observed in the recent inelastic neutron-scattering
experiment on herbertsmithite. We particularly find two Z2

spin liquid states, the so-called Z2[0,π ]β and Z2[0,π ]α
states, whose spin-structure factor features are qualitatively
in conformity with the experiments. Only the Z2[0,π ]β state,
however, exhibits a spin gap in the structure factor. In the
presence of the perturbations, this gap becomes increasingly
momentum independent. Noting that a similar gapped QSL
was obtained as the ground state of the NN antiferromagnetic
Heisenberg Hamiltonian in recent DMRG calculations, it is
tempting to infer that the Z2[0,π ]β state may be adiabatically
connected to the ground state obtained in DMRG and the
ground state of herbertsmithite. This prediction can be checked
further by measuring the ESR absorption spectrum. Our
present calculations suggest that the the Z2[0,π ]β phase shows
a characteristic broadening of lines in ESR absorption spectra.
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APPENDIX A: U(1) SPIN LIQUID ANSÄTZE

The flux patterns for the nearest-neighbor U (1) spin liquids
under consideration are shown in Fig. 15. They consist

U(1)[0, 0] U(1)[0, π]

U(1)[π, π] U(1)[π, 0]

FIG. 15. (Color online) Flux pattern for the real hopping terms
of the U (1) singlet spin liquid ansätze. Hoppings are either positive
(dark blue solid) or negative (light brown dashed) on nearest-neighbor
bonds.

of positive and negative real hopping terms that retain the
translational symmetry of the Kagome lattice (U (1)[0,0] and
U (1)[π,π ]) or break it (U (1)[0,π ] and U (1)[π,0]).

APPENDIX B: PROJECTIVE SYMMETRY GROUP

Determining the allowed PSGs {GSS}, and thereafter the
ansätze HQ, comes from constraints offered by the group
multiplication table of the symmetry group SG. With group
multiplication rules like AB = C that can be rewritten as
ABC−1 = I , we can place constraints on the corresponding
expression (GAA)(GBB)(GCC)−1. First, there is no net
physical transformation, so the expression must reduce to
a gauge transformation. Second, each of the operations
leaves HQ invariant, and so does the final expression. Thus,
(GAA)(GBB)(GCC)−1 ∈ IGG.

As derived by Lu et al., GS are given in the singlet case by
the following:10

GT1 (x,y,s) = η
y

12I, (B1)

GT2 (x,y,s) = I, (B2)

Gσ (x,y,s) = η
xy

12gσ (s), (B3)

GC6 (x,y,s ′) = η
xy+x(x+1)/2
12 gC6 (s ′), s ′ ∈ {u,v}, (B4)

GC6 (x,y,w) = η
xy+x+y+x(x+1)/2
12 gC6 (w) (B5)

GT = iτ 1, (B6)

where we specify the lattice site i by the position of the unit
cell to which belongs R = xa + yb and the sublattice index
s = u,v,w, as indicated in Fig. 2.

The PSG can also be used to generate terms on symmetry-
related bonds of an ansätze. The action of a lattice transforma-
tion S and an SU(2) gauge transformation W on the quadratic
terms of bond, given by Uij , is

SUij → US−1(i),S−1(j )
(B7)

WUij → W (i)UijW
†(j ).

If GSS leaves the Uij invariant, as in the singlet case, then
we can combine the above relations to generate Uij on
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symmetry-related bonds,

US(i),S(j ) = GS(S(i))UijG
†
S(S(j )). (B8)

We will cover the case of the “singlet + triplet” PSG next.

1. Projective symmetry group for “singlet + triplet” ansätze

Now, we discuss how time reversal and (improper) rotations
affect “singlet + triplet” Uij , as in Eq. (15). We will see that
the PSG {GSS} are the same as in the singlet case and that the
ansätze allow imaginary triplet terms as well.

We will begin by determining how the standard fermionic
time-reversal operator Tf changes the ansatz Uij to properly
capture the effect of time reversal on the triplet terms. Tf =
θK, where K is the complex conjugation operator and

θ

(
f↑
f↓

)
=

(−f↓
f↑

)
. (B9)

Consider the action on a generic Uij ,

U =
(

A B

C D

)
Tf−→

(−D C

B −A

)
.

One can instead define a modified time-reversal operator, with
an additional iτ 2 gauge transformation acting on Uij , T =
iτ 2Tf , giving

U
iτ 2Tf−−→

(−A −B

−C −D

)
= −U.

Since the C3 rotations are performed around the z axis in
both real space and spin space, neither the singlet nor the Ez,Y z

triplet terms in our ansätze are affected by them.
As all ansatz will projectively obey time-reversal symmetry,

we can use the form of GT to simplify the ansatz before
considering the effect of reflection. The action of T upon Uij

is −Uij in both singlet and triplet cases, thus they affect the
ansätze in the same manner. Thus, T2 = +1 acting on the
mean-field states, as before, and we have the same condition
±GT(i)2 ∈ IGG.

The action in spin space of the reflection, σ , is to flip the
sign of our triplet components, which are the z components
of a pseudovector. Since a gauge transformation, on physical
grounds, can only mix singlet and triplet terms among
themselves, this action commutes with the SU(2) gauge trans-
formations. Only the lattice part of σ enters in the commutation
relation between σ and the gauge transformations GS . Solving
for the time-reversal gauge transformation GT as in the singlet
case, the nonzero mean-field anätze will all have the same
GT = iτ 1.10 For an ansatz to be time-reversal invariant we
must have

τ 1Uij τ
1 = −Uij .

With this restriction, Uij can be parametrized by Uij = γ2τ
2 +

γ3τ
3, where γ2,3 ∈ C. We note that the real components

of γ2,3 are coefficients of the singlet pairing and hopping,
respectively, while the imaginary components are coefficients
of triplet pairing and hopping. Reversal of the sign of the triplet
coefficients can be performed by taking Uij → U

†
ij = Uji .

With this, we have the same projective symmetry group that
was derived for singlet spin liquids with the symmetry of the

TABLE III. Parameters η12, gC6 , and gσ characterizing the PSG
{GSS} of spin liquid (SL) states, as given in Eq. (B6).

SL label η12 gC6 gσ

Z2[0,0]A +1 u,v,w : I u,v,w : I

Z2[0,π ]β −1 u,v,w : I u,v,w : I

Z2[0,0]B +1 u,v,w : iτ 3 u,v,w : I

Z2[0,π ]α −1 u,v,w : iτ 3 u,v,w : I

Z2[0,0]D +1 u,v,w : iτ 3 u,v,w : iτ 3

Z2[0,π ]γ −1 u,v,w : iτ 3 u,v,w : iτ 3

Z2[π,π ]B +1 u,v : Iw : iτ 1 u,v,w : iτ 3

Z2[π,0]B −1 u,v : Iw : iτ 1 u,v,w : iτ 3

Kagome lattice.10 However, the ansatz that can be generated
will differ, due to the effect of σ on the triplet terms.

We may generate all nearest and next-nearest-neighbor
bonds from just one by using the symmetry operations of
the Kagome lattice. For each, we may impose a constraint on
the allowed ansatz for these bonds by devising a nontrivial
lattice symmetry operation that takes Uij back to itself. With
the effect of lattice transformations (B8) along with the
transformation under σ , we can derive the following constraint
on the nearest-neighbor Uij ,

gσ (u)gC6 (u)gC6 (w)UNNg
†
C6

(v)g†
C6

(w)g†
σ (v) = UNN, (B10)

and a similar constraint on the next-nearest-neighbor Uij ,

gσ (u)gC6 (u)UNNNg
†
C6

(v)g†
σ (w) = UNNN. (B11)

The particular bonds for UNN and UNNN are shown in Fig. 1.
For a given Z2 ansatz in Table III, these may restrict the
structure of Uij to disallow hopping (τ 3) or pairing (τ 2) terms
but do not place any conditions on whether these terms are
real or imaginary. This differs from the singlet case, where
the effect of σ on the triplet terms was not considered, and
the ansätze become restricted to only singlet terms. Thus,
spin-rotational symmetry-breaking triplet terms are allowed
within the same PSG for the Kagome lattice. Since Uij is now
no longer Hermitian, Uji �= Uij , and the direction of the bonds
matter. They are shown in Fig. 1.

APPENDIX C: MEAN-FIELD RESULTS

As mentioned in Sec. II, we consider the mean-field solution
for each of the Z2 spin liquid ansätze, with nearest-neighbor
perturbations D, � and the next-nearest-neighbor J2. While
we do not expect the self-consistent mean-field theory to
give a quantitatively correct phase diagram, we can still gain
some insight from the results. In particular, we would like to
understand the representative mean-field parameter values Uij

when the states in Table II are stabilized.
We focus on the parameter regime D/J,�/J ∈ [0,0.5).

Furthermore, we will fix ω− as the overall nearest-neighbor
energy scale, taking the regime J2/ω− ∈ [0,2). In this way, we
separate the effects of D and � from J2 as much as possible.
We begin by considering general trends across all ansätze.
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1. General results

DM interactions. Here we consider the contributions from
the χ̂+ and η̂+ channels in Eq. (18) in comparison to
contributions from χ̂− and η̂− channels. The self-consistent
theory suggests that for U (1) and Z2 states labeled as [0,0]
and [0,π ] states, the χ− and η− channels have the dominant
contributions, and the ratio of triplet to singlet terms is a
nearly linear function of D/J within our parameter window
0 < D,� < J/2. The [π,π ] and [π,0] states, however, have
stable mean-field states where χ+ and η+ are significant and
dramatically small triplet values, particularly for D/J � 0.2.

Ising interaction �. This term has a negligible effect on the
Z2[0,0] and Z2[0,π ] states, since χ̂+ and η̂+ are not relevant.
For Z2[π,π ] and Z2[π,0] spin liquids, however, small values of
�/J make χ̂+ and η̂+ channels less relevant. Since ω+ = (J −
�)/8 + O(D), increasing � from zero will actually decrease
ω+, so these channels make little contribution to HQ in the
mean-field theory. Within the mean-field theory, these small
values of � yield no qualitatively new behavior.

Z2 Spin liquids and next-nearest-neighbor terms. For the
six (all except Z2[0,0]B and Z2[0,π ]α) Z2 spin liquids in
Table II that are stabilized only in the presence of next-nearest-
neighbor terms, within the mean-field theory, we must have
0.5 � J2/ω− � 1.2. The Z2[0,0] and Z2[0,π ] states have a
next-nearest-neighbor χ2 hopping parameter that does not
stabilize the Z2 spin liquids from their U (1) parents. Generally,
|χ2| increases with J2 in a monotonic and nearly linear fashion.
However, at a large value of J2 ∼ 1.2ω−, the Z2[0,π ]γ state
is stabilized with small |χ1|, small |η2|, and large |χ2|. We
expect that such a state is unlikely to be realized in models
where J2/J is small. The Z2[π,π ]B state is stabilized with
a similar jump at J2 ∼ 0.9ω− with a large |χ2| value and a
small |η1|.

Of the other four, in three Z2 spin liquids (Z2[0,0]A,
Z2[0,0]D and Z2[0,π ]β), η and χ2 increases monotonically
with J2 beyond a critical value of J2/J , which itself depends
on the type of spin liquid in consideration. While the Z2[π,0]B
sees this behavior for smaller values of J2, it also undergoes a
jump around J2 ∼ 0.9ω−, similarly to the Z2[π,π ]B state.

J2/ω−

D

J

FIG. 16. Heuristic mean-field phase boundaries in the J2-D plane
of Z2[0,0] states, where J2 is next-nearest-neighbor Heisenberg
coupling, D the nearest-neighbor DM interaction in the ẑ direction,
and ω− is defined in Eq. (18).

J2/ω−

D

J

FIG. 17. Heuristic mean-field phase boundaries in the J2-D plane
of Z2[0,π ] states, where J2 is next-nearest-neighbor Heisenberg
coupling, D the nearest-neighbor DM interaction in the ẑ direction,
and ω− is defined in Eq. (18).

2. Mean-field phase boundaries

Here we present the phase boundaries in the J2-D plane
where these Z2 spin liquid phases can be stabilized within
mean-field theory. The Z2[0,0]B phase is stabilized through-
out the phase diagram, while the Z2[0,π ]α state is never
stabilized within mean-field theory of the current Hamiltonian.
The other Z2 spin liquids are stabilized for sufficiently
large J2.

Figure 16 shows the U (1)-Z2 phase boundary in the J2-D
plane for the Z2[0,0] spin liquids, Fig. 17 for the Z2[0,π ] spin
liquids, and Fig. 18 for the Z2[π,π ]B and Z2[π,0]B spin
liquids. The next-nearest-neighbor interaction J2 stabilizes
all other six Z2 spin liquids. We see that the Z2[0,0]A,
Z2[0,π ]β, and Z2[π,0]B phases are stabilized for smaller J2

than the others, while being destabilized by the Dzyaloshinsky-
Moriya interaction D. However, the Z2[0,0]D, Z2[0,π ]γ ,
and Z2[π,π ]B phases are stabilized by D, despite requiring
larger J2.

J2/ω−

D

J

FIG. 18. Heuristic mean-field phase boundaries in the J2-D plane
of Z2[π,π ]B and Z2[π,0]B states, where J2 is next-nearest-neighbor
Heisenberg coupling, D the nearest-neighbor DM interaction in the
ẑ direction, and ω− is defined in Eq. (18).
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FIG. 19. (Color online) Dynamical structure factor for U (1) and Z2 “singlet + triplet” spin liquid ansätze. These structure factor are plotted
from the center of the extended Brillouin zone of the Kagome lattice, �, to the edge M ′, to the corner K ′, and back to the center �. We note
that since the “singlet + triplet” U (1)[0,π ] spin liquid state is gapped, it is unstable to instanton tunneling events.64

APPENDIX D: DYNAMICAL STRUCTURE FACTOR
OF SINGLET + TRIPLET ANSÄTZE

In the main text, we showed the changes in the dynamical
structure factor from the singlet ansätze to when small triplet

terms are added. Here we present the trace of the dynamical
structure factor matrix, i.e., (Sxx + Syy + Szz)/3, for these
triplet ansätze. We show the dynamical structure factor for
the U (1) and Z2 spin liquids in Fig. 19.
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