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Magnetoelectric signature in the magnetic properties of antiferromagnetic multiferroics: Atomistic
simulations and phenomenology
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An effective Hamiltonian approach is used to reveal the effects of the (biquadratic) magnetoelectric (ME)
coupling between local electric dipoles and local magnetic moments on magnetic properties of antiferromagnetic
multiferroics. In addition to showing that the Néel magnetic ordering temperature (TN ) can strongly depend on
such coupling, the simulations also reveal that the perpendicular component of the magnetic susceptibility, χM,⊥,
can present some strong deviations from that of a typical antiferromagnet because of the ME coupling. Examples
of systems for which TN is lower than the first-order paraelectric-to-ferroelectric transition temperature (TC)
are (1) a discontinuity of χM,⊥ at TC ; (2) the inverse of the magnetic susceptibility not following anymore the
traditional Curie law when the temperature ranges between TN and TC ; and (3) χM,⊥ increasing with temperature,
rather than forming a plateau, when the system is heated up to TN . A Landau-type phenomenological model is
further developed to reproduce and understand all these effects.
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I. INTRODUCTION

Antiferromagnetic (AFM) compounds are numerous in
nature, and form an important class of materials1 that can
find application in some technologies. Examples include spin-
valve devices that take advantage of the so-called exchange
bias.2,3 AFM systems can also exhibit interesting “universal”
phenomena such as the perpendicular component of the
magnetic susceptibility, χM,⊥, (1) being inversely proportional
to T + TN for temperature T above the TN Néel ordering
temperature, and (2) adopting a kind of plateau for temperature
smaller than TN .4,5 Note that the wordings “perpendicular
component” refer to a component that is associated with a
direction being perpendicular to the AFM vector.

Interestingly, many multiferroic materials, that can simul-
taneously exhibit electric polarization and magnetic ordering,
are antiferromagnetic. Multiferroics were investigated from
the 1960s to the 1980s6–10 and have attracted renewed attention
since around 10 years ago (see, e.g., Refs. 11–25), because of
the inherent magnetoelectric (ME) coupling between magnetic
and electric dipoles. The effect of these ME couplings on
electrical or structural-related properties have been reported
in some previous works, including the kink in the dielectric
constant at around the magnetic ordering temperature20,26

or phonon anomalies observed around TN .18 On the other
hand, we are not aware that the effects of ME coupling on
magnetic properties have been revealed and understood. For
instance, one may wonder whether the Néel temperature is
sensitive to the strength of the ME coupling, and whether the
aforementioned universal features (1) and (2) of χM,⊥ still hold
in an AFM multiferroics.

The goal of this paper is to address such issues, by per-
forming numerical simulations on a model antiferromagnetic
multiferroic and by allowing the strength of the ME couplings
to vary in this system. As we are going to see, surprises are
in store. Moreover, these surprises can be easily explained
by a rather simple phenomenological model that is further
developed to analyze the numerical data.

This paper is organized as follows. Section II gives details
about the numerical method that is used here. Section III shows
the results arising from the use of this method, as well as
provides the development of a Landau-type phenomenology
that allows us to deeply understand such results. Finally, a
summary is given in Sec. IV.

II. NUMERICAL METHOD

Our “numerical toy model” originates from the effective
Hamiltonian of BiFeO3 (BFO) developed in Refs. 20,21. More
precisely, the total energy, Etot, is written as

Etot = Estruct({ui},{ηi},{ωi}) + EMag({mi},{ui}), (1)

where the first term, Estruct, gathers energies associated with
structural degrees of freedom and their mutual interactions.
These structural degrees of freedom are (i) the ui local soft
mode in unit cell i, which is directly proportional to the
electrical dipole centered on that site; (ii) the ηi strain in
unit cell i, that contains homogeneous and inhomogeneous
parts;27 and (iii) the {ωi} vector that characterizes the oxygen
octahedral tilting in unit cell i. The analytic form of Estruct is
given in Ref. 28. The second term of Eq. (1), EMag, gathers the
interactions between the mi magnetic moments of Fe ions at
different cells i, and the interactions between these magnetic
moments and the local soft modes. The analytical expression
of EMag is the one provided in Ref. 21 with the exception
that the interactions between magnetic moments and both
the strains and oxygen octahedral tiltings are neglected here
(which slightly simplifies our atomistic tool with respect to
the real effective Hamiltonian of BFO, in order to determine
the sole effects of ME couplings on physical properties).
EMag thus reads

EMag({mi},{ui}) =
∑

i,j,α,γ

Dij,αγ mi,αmj,γ

+
∑

i,j,α,γ,ν,δ

Eij,αγ νδmi,αmj,γ ui,νui,δ, (2)
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where α, γ , ν, and δ denote Cartesian components. The sums
over i run over all the Fe sites while the sums over j run over
the first, second, and third nearest neighbors of the Fe site i.
The first term of EMag represents the exchange interactions
between magnetic moments at sites i and j . The second term
represents how the local soft mode affects these magnetic
exchange interactions, which is precisely the (biquadratic) ME
coupling that we are going to study here. This latter coupling
is allowed by symmetry in any multiferroic material, which
implies that our results should be of general nature. Note,
however, that the predictions of this paper are technically valid
for the (numerous) multiferroics for which the paraelectric-to-
ferroelectric transition temperature is higher than the magnetic
Néel temperature. This is because our toy model originates
from the effective Hamiltonian of BFO, which is a material for
which such hierarchy in temperature exists. A brief discussion
is provided at the end of this paper to address other cases.

All the parameters entering the analytical expression of
Etot (including the Dij coefficients) are extracted from first-
principles calculations on BiFeO3,29 with the sole exception
of the Eij parameters that are allowed to vary from their first-
principles values—in order to precisely assert the effect of the
ME coupling on electric and magnetic properties.

Monte Carlo (MC) simulations using Etot for the internal
energy are performed on a 14 × 14 × 14 supercell, with the
local magnetic moments {mi} having a fixed magnitude of 4μB

(as consistent with first-principles computations of BFO13).
Practically, the system is cooled down to very low temperature
(of the order of a Kelvin) under an electric field that is applied

along the pseudocubic [111] direction, in order to reach an R3c

ground state. Then, this field is removed and the temperature is
increased until reaching 1300 K. The numerical results shown
here correspond to this increase-in-temperature path under no
field.

III. RESULTS

A. Atomistic simulations

In the present study, three different physical quantities are
determined: (1) the G-type antiferromagnetic vector, which
is defined as L = 1

N

∑
i mi(−1)nx (i)+ny (i)+nz(i), where the sum

runs over all the Fe sites and where nx(i), ny(i), and nz(i)
are integers locating the cell i (more precisely, the Fe site i is
centered at [nx(i)x + ny(i)y + nz(i)z]a, where a is the 5-atom
lattice constant and where x, y, and z are unit vectors along the
Cartesian axes); (2) the u supercell average of the {ui} local
soft modes, which is directly proportional to the spontaneous
polarization; and (3) the perpendicular component of the
magnetic susceptibility, χM,⊥, which is computed as the
linear slope of the function representing the dependence of
the magnetization (which is simply the supercell average of
the {mi}’s) on an applied magnetic field. This latter field is
oriented along the [111] pseudocubic direction, that is along
the polarization direction while being perpendicular to the
G-type AFM vector of BFO.21 The applied magnetic field is
allowed to have a magnitude ranging between zero and 100 T,
in order to precisely compute χM,⊥. Figures 1, 2, and 3 show
the magnitude of L, the magnitude of u, and χM,⊥, respectively,

µ

FIG. 1. Temperature dependency of the magnitude of the G-type antiferromagnetic vector, for five different selected sets of the ME-related

Eij parameters of Eq. (2). The numerical data are shown by symbols while the lines are guides for the eye. The inset shows
TN −T 0

N

P 2(T =TN )
as a

function of γme, where P 2(T = TN ) is the square of the polarization at the Néel temperature and where T 0
N is the “bare” Néel temperature (i.e.,

in the case of no ME coupling, that is corresponding to γme = 0). This inset confirms the validity of the phenomenological equation (9).
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FIG. 2. Same as Fig. 1, but for the magnitude of the supercell average of the local modes. The arrow shows the location of the Néel
temperature when Eij = Eij,ref (or, equivalently, γme = 1).

as a function of temperature for five different sets of Eij

coefficients. If we denote the first-principles values of the Eij

coefficients in BFO as Eij,ref , then these five sets correspond
to Eij being equal to γmeEij,ref , with γme = 1, 0.5, 0.25, 0.125,
and 0.0, respectively (as characteristic of progressively weaker
magnetoelectric couplings until they fully vanish).

Figure 1 reveals that the Néel temperature, TN (which
is taken as the temperature at which the magnitude of L
possesses an inflection point) strongly increases when the
magnetoelectric coefficients grow in strength: for γme = 0,
it is about 275 K (this temperature will be denoted as T 0

N in
the following) while it significantly increases up to 635 K
when γme = 1. Another effect that is visible in Fig. 1 is the
enhancement of the AFM vector resulting from the increase
of γme for any temperature below T 0

N = 275 K (with the sole
exception of 0 K for which the antiferromagnetic vectors are
all equal to 4μB in magnitude, as consistent with quantum
mechanics).

Furthermore, Fig. 2 shows that the Curie temperature, TC ,
which is the temperature at which the polarization suddenly
jumps from a vanishing to nonzero value (via a first-order
transition), is less sensitive to the ME couplings: TC varies
from 1050 K to 1090 K when the γme coefficient changes from
0 to 1. However, Fig. 2 also demonstrates that the polarization-
versus-temperature dependence changes its curvature around
TN . This effect is more pronounced for stronger γme, therefore
indicating a significant effect of ME couplings on some electric
properties.

In addition to Fig. 1, another consequence of ME couplings
on magnetic properties can be clearly seen from Fig. 3. As a
matter of fact, in the case of γme = 0, the magnetic susceptibil-
ity adopts the “normal” behavior inherent to antiferromagnetic

systems,4 that is a kind of a plateau for temperatures lower than
T 0

N and then a monotonic decrease (that we numerically found
to be inversely proportional to T + T 0

N , as consistent with
Refs. 4,5) when heating the systems above T 0

N . In contrast,
switching on the ME couplings has three dramatic effects:
(1) the value of the magnetic susceptibility decreases as
the ME couplings increase in strength for any temperature
T � T 0

N , with the plateau occurring when γme = 0, being even
replaced by a slightly increasing function when increasing the
temperature up to T 0

N for the largest studied γme parameters;
(2) the magnetic susceptibility is not anymore inversely
proportional to T + TN when heating the system from TN

to TC . In fact, χM,⊥ is found to be nearly independent of
temperature for the strongest γme coefficients; and (3) a sudden
jump of χM,⊥ is clearly seen at the Curie temperature.

B. Phenomenology

To reveal the origins of all these effects and better
understand them, let us develop a phenomenology for which
the free energy, F , is given by

F =F0+A2

2
P 2+A4

4
P 4 + A6

6
P 6 + B2

2
M2 + C2

2
L2 + C4

4
L4

+ βPM

2
P 2M2 + βPL

2
P 2L2 + βLM

2
L2M2 − MH, (3)

where M and L are the magnetization and G-type antifer-
romagnetic moment, respectively, while P and H are the
electrical polarization and applied magnetic field, respectively.
Note that, in the case of the simulations described above, the
polarization, induced magnetization, and magnetic field are all
along the pseudocubic [111] direction while the AFM vector is
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FIG. 3. Same as Figs. 1 and 2, but for the perpendicular component of the magnetic susceptibility. The dashed line shows the fit of the
magnetic susceptibility by b2

T +T 0
N

, in the case of no ME coupling. The solid and dashed arrows depict the values of TN and TC , respectively, when

Eij = Eij,ref (or, equivalently, γme = 1). The inset displays ( 1
χM,⊥ − 1

χ0
M,⊥

)/P 2(T = 10 K) as a function of γme (see text), where P 2(T = 10 K)

is the square of the polarization at 10 K. This inset demonstrates that the phenomenological equation (15) is obeyed.

along a direction being perpendicular to [111]. As a result, we
are only concerned about the magnitude, rather than direction,
of the physical quantities appearing in Eq. (3). Note that
previous phenomenologies have already been developed for
multiferroics; see, e.g., Refs. 30–33. As in Ref. 33 but unlike
in Refs. 30–32, Eq. (3) incorporates the couplings between the
polarization with both the magnetization and antiferromag-
netic vector. This is because we are, e.g., interested in revealing
the effect of ME couplings on the magnetic susceptibility of
antiferromagnetic multiferroics.

As consistent with phenomenologies of antiferromagnets
undergoing a second-order magnetic transition and of ferro-
electrics undergoing a first-order structural transition, the C4

and A6 coefficients are both positive and constant, while the A4

parameter is also constant but is negative.5 On the other hand,
the C2, B2, and A2 coefficients are temperature dependent:5

C2 = c2
(
T − T 0

N

)
,

B2 = b2
(
T + T 0

N

)
, (4)

A2 = a2
(
T − T 0

C

)
,

where c2, b2, and a2 are positive constants, and with T 0
C being

related to the “bare” Curie temperature, i.e., corresponding to
the case of no ME coupling.34 Notice the difference in sign in
front of T 0

N between the first and second line of Eq. (4).
Moreover, the βPL coefficient of Eq. (3) is considered here

to be a negative constant, since Figs. 1 and 2 show that
increasing γme results in an enhancement of both L and P

(at a fixed temperature below T 0
N ). This enhancement also

implies that the electric-dipole-mediated exchange parameters
appearing in the second energy term of Eq. (2) disfavor
ferromagnetism even more when γme increases in magnitude.
As a result, the βPM coefficient is positive, and enhancing the
strength of the Eij coefficients of Eq. (2) (or equivalently, γme)
increases the magnitude of both the βPL and βPM parameters
of Eq. (3). Finally, the βLM parameter is a positive constant,
as characteristic of a competition between the magnetization
and AFM vector.

If we take into account that, for temperatures below TC ,
A6(βPLL2 + A2) is negative and that the magnetization always
vanishes in the studied AFM system under no field, the
minimization of Eq. (3) with respect to P gives

P 2 =
−A4 +

√
A2

4 − 4A6(βPLL2 + A2)

2A6
for T � TC. (5)

Inserting Eq. (4) into Eq. (5), and distinguishing the temper-
ature ranges below and above the Néel temperature (at which
the AFM vector vanishes), thus gives

P 2 =
−A4+

√
A2

4 + 4A6a2
(
T 0

C − T
)

2A6
for TN � T � TC,

P 2 =
−A4 +

√
A2

4 + 4A6a2
(
T 0

C − T
) − 4A6βPLL2

2A6
(6)

for T � TN � TC.
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The fact that the first and second lines of Eq. (6) differ by
the presence of −4A6βPLL2 under the square root (which
is a quantity that is always positive) successfully explains the
upward change of slope in the polarization-versus-temperature
curves of Fig. 2 below TN , when the ME effect is turned on (that
is when the βPL coefficient does not vanish), since L is also
temperature dependent—as shown in Fig. 1. Our Landau-type
phenomenological model can therefore reproduce and explain
some striking features revealed by the atomistic simulations.

Furthermore, minimizing Eq. (3) with respect to L in our
AFM multiferroic (for which M is zero for any temperature,
when no field is applied) gives

L2 = −(C2 + βPLP 2)

C4
for T � TN � TC. (7)

Inserting Eq. (4) into this latter equality then yields

L2 = c2
(
T 0

N − T
)

C4
− (βPLP 2)

C4
for T � TN � TC. (8)

Since βPL is negative while C4 is positive, the second term
on the right-hand side of Eq. (8) explains another significant
result of the atomistic simulations, namely why increasing γme

enhances the magnitude of the AFM vector L for any finite
temperature below TN (see Fig. 1). Moreover, setting Eq. (8)
to zero provides the “renormalized” Néel temperature, that is
the Néel temperature that takes into account ME effects:

TN = T 0
N − (βPLP 2)

c2
. (9)

This equation indicates that the difference between TN and
T 0

N should be proportional to both γme and the square of the
polarization (computed at the Néel temperature). As shown
in the inset of Fig. 1, such proportionality is well satisfied by
the results of the atomistic simulations. Equation (9), which is
derived from a Landau-type-model, thus provides a successful
explanation of some key features of Fig. 1 (that arise from
atomistic calculations), namely (1) why the Néel temperature

is larger than the “bare” Néel temperature, T 0
N , when ME

effects are switched on; and (2) why TN increases when
increasing γme. It would therefore be a mistake to determine
the bare magnetic exchange parameters from the experimental
Néel temperature of multiferroics, especially if these latter
exhibit strong ME parameters.

Let us now try to explain and deeply understand some
striking results shown in Fig. 3. For that, one first has to
minimize Eq. (3) with respect to M:

M = H

B2 + βLML2 + βPMP 2
. (10)

Taking the derivative of this latter equality with respect to H

then gives

χM,⊥ = 1

B2 + βLML2 + βPMP 2
. (11)

This latter equation can be separated into three different
equalities, depending on the range of temperatures for which
the AFM vector and/or polarization vanish or not:

χM,⊥ = 1

B2
for TN � TC � T ,

χM,⊥ = 1

B2 + βPMP 2
for TN � T � TC, (12)

χM,⊥ = 1

B2 + βLML2 + βPMP 2
for T � TN � TC.

The first and second lines of Eq. (12) indicate that the
inverse of the magnetic susceptibility should exhibit a sudden
change of βPMP 2 at the ferroelectric phase transition, when the
polarization appears via a first-order transition. Such feature
therefore explains the significant increase of χM numerically
found when increasing the temperature through the Curie
temperature, for the largest studied ME coefficients (see
Fig. 3).37

Moreover, inserting the second line of Eq. (4) and the first
line of Eq. (6) into the second line of Eq. (12) gives

χM,⊥ = 1

b2
(
T + T 0

N

) + βPM

{−A4+
√

A2
4+4A6a2(T 0

C−T )
2A6

} for TN � T � TC. (13)

This latter equation indicates that the magnetic susceptibility follows the “usual” 1
b2(T +T 0

N )
behavior when there is no ME coupling.

On the other hand, switching the βPM coefficient (by making γme non-null) leads to a violation of such traditional law, and can
result in unusual behavior. For instance, let us assume, for simplicity, that 4A6a2(T 0

C − T ) is much smaller than A2
4. Then using

a Taylor expansion of the square root results in the rewriting of Eq. (13) as

χM,⊥ = 1
(
b2 + βPMa2

A4

)
T + (

b2T
0
N − βPMA4

A6
− βPMa2T

0
C

A4

) for TN � T � TC. (14)

In that case, an exact cancellation of b2 and βPMa2

A4
(recall that b2 is positive while βPMa2

A4
is negative) would render the magnetic

susceptibility independent of the temperature when this latter ranges between TN and TC , which is nearly the case for the largest
investigated γme as shown by the numerical data of Fig. 3.

Finally, the insertions of Eq. (8) and of the second line of Eq. (4) into the third line of Eq. (12) result in

χM,⊥ = 1(
b2 − βLMc2

C4

)
T + (

b2 + βLMc2

C4

)
T 0

N + (
βPM − βLM

βPL

C4

)
P 2

for T � TN � TC. (15)
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If we assume that b2 = βLMc2

C4
then the magnetic susceptibility

becomes independent of temperature for T � TN when there
is no ME coupling (i.e., when βPL = βPM = 0), as nearly
consistent with Fig. 3. Moreover, the last term of the
denominator of Eq. (15) is positive (since βPL is negative
while βPM , βLM , and C4 are all positive) and involves
the square of the polarization. Since this latter decreases
when increasing the temperature up to the Néel temperature
(see Fig. 2), the phenomenological equation (15) naturally
explains another numerical result, namely why χM,⊥ does
not exhibit anymore a plateau and, in fact, increases when
heating the system to TN for the largest considered γme

coefficient.
Note that Eq. (15) also tells us that 1

χM,⊥
− 1

χ0
M,⊥

, with

χ0
M,⊥ being the magnetic susceptibility in case of no ME

coupling, is equal to (βPM − βLM
βPL

C4
)P 2 and thus should

be directly proportional to both the γme parameter and the
square of the polarization. The inset of Fig. 3 reveals that
such proportionality indeed holds for the results of the
atomistic simulations, which further asserts the validity of the
phenomenological model developed here.

IV. CONCLUSIONS

In summary, we have demonstrated, via the use of an
atomistic scheme, that magnetic properties can be strongly

affected by the ME coupling in an antiferromagnet multi-
ferroic. This includes several strong deviations of the per-
pendicular component of the magnetic susceptibility from the
universal behavior seen in “pure” antiferromagnets. Let us also
emphasize that our phenomenological model (that allowed
us to reproduce and understand key features of magnetic
properties of our model AFM multiferroic) can be easily
extended to AFM multiferroics for which the Néel temperature
is larger than the ferroelectric Curie temperature, as well as to
system exhibiting a second-order paraelectric-to-ferroelectric
phase transition or even to ferromagnet ferroelectrics (unlike
the case we studied here). In all these situations, χM,⊥ will
likely exhibit anomalous features that should be reproduced
and understood by these phenomenologies. We thus hope that
the present work is of broad interest and deepens our current
knowledge of multiferroics and antiferromagnets.
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34T 0
C is not exactly the bare Curie temperature because the

paraelectric-to-ferroelectric transition is of first order. In that case,

the bare Curie temperature is equal to T 0
C + 3A2

4
16a2A6

(Ref. 35).
Note also that the paraelectric-to-ferroelectric transition predicted
by the presently used effective Hamiltonian of BFO is rather
special; namely it is a trigger-type transition that is driven by the
collaborative coupling between the polarization and the tilting of
oxygen octahedra (Ref. 36). As a result, the free energy is likely
more complicated than the one provided in Eq. (3). However,
we decided to use this latter for the sake of simplicity and
because it can easily reproduce and explain several ferroelec-
tric and magnetic anomalies for temperatures below the Curie
temperature.

35See, e.g., http://yclept.ucdavis.edu/course/240C/Notes/Landau
/LandauPhaseTrans.pdf.

36I. A. Kornev and L. Bellaiche, Phys. Rev. B 79, 100105(R) (2009).
37Note that plugging the second line of Eq. (4) into the first line

of Eq. (12) results in a magnetic susceptibility that is given by
1

b2(T +T 0
N

)
for temperature above TC . This implies that such magnetic

susceptibility should be independent of the ME coupling. Figure 3
indicates that this independency is not really obeyed, therefore
pointing to an inadequacy of the phenomenology introduced here for
temperature at or above the Curie point. This inadequacy is further
emphasized when realizing that the phenomenology also predicts
that the Curie point should be insensitive to the γme parameter
according to the first line of Eq. (6), which is not exactly the case
(see Fig. 2). We numerically found that these deviations from the
numerical data are in fact caused by local effects; namely, the local
electric dipoles still interact with the local magnetic moments even
at or above the bare Curie temperature.
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