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Supersolid states in a spin system: Phase diagram and collective excitations
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Phases analogous to supersolids can be realized in spin systems. Here we have obtained, using a bond-operator
representation, a mean-field theory and a generalized spin-wave theory, the phase diagram of a frustrated dimer-
spin- 1

2 system on a square lattice and study the collective excitation spectra, focusing on the supersolid (SS) state.
In the phase diagram on a parameter space of the exchange interaction and magnetic field, we have identified not
only the SS phase, but a phase that has no counterpart in the Bose-Hubbard model and this state becomes dominant
at the region where the enhancement of SS occurs in the Bose-Hubbard model. We then investigate the excitation
spectrum and spin-spin correlation, detectable by neutron-scattering experiments. We obtain an analytic expres-
sion for the spin-wave velocity, which agrees with hydrodynamic relations. The intensity of excitation modes in
the spin-spin correlation function is calculated and their change in the supersolid and superfluid states is discussed.
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I. INTRODUCTION

A supersolid (SS) state is a phase where both off-diagonal
long-range order and diagonal long-range order coexist. After
the nonclassical rotational inertia experiment in He4 suggested
an SS phase, the SS state attracted considerable interest.1

However, the interpretation of the result is still controversial,2

and efforts to find SS continue. Lattice systems are other
candidates to find SS than He4. Cold atoms on optical lattices
are one of them. It is suggested that the extended Bose-
Hubbard model with a nearest-neighbor interaction shows
SS,3,4 and a technique to realize it is proposed.5 Dipole-dipole
interaction is also suggested to help realize SS.6,7

Another, entirely different way to find SS in lattice systems
is to consider quantum magnets. This is because certain spin
systems can be effectively regarded as Bose systems.8–10 After
a theoretical proposal of SS in a dimer-spin system,11 spin
systems are attracting much attention as a promising candidate
to find SS phases.11–18 One example is the spin-1 Heisenberg
model with an anisotropy.12

Another example is the spin- 1
2 dimer model with large

Ising-like exchange anisotropy.11,13,15 While the strong
anisotropy in these models are rather unrealistic, it is argued
that the model can be effectively realized in a lattice with
frustration without anisotropy. With this motivation, Refs. 16
and 17 have investigated a frustrated spin- 1

2 spin-dimer
Heisenberg model with spin-isotropic couplings on a square
lattice (Fig. 1) and have shown that the model actually exhibits
a SS state. However, these papers are restricted to a specific
choice of parameters,16 or to a study of an effective model
from the dimer-spin model.17 Therefore, the phase diagram
in a wider parameter range has not yet been clarified, which
should be important for exploring a SS state in real magnets.
Further, dynamical properties are also important in examining
SS. For instance, in Ref. 19 studying 4He, it has been
pointed out that observation of an upper excitation branch
by neutron-scattering experiments can be used for searching
SS. However, experimentally relevant properties of the SS
phase have not been fully understood, and it is important to
reveal the excitation spectrum and observability of them with
neutron-scattering experiments.

These have motivated us, in the present work, to investigate
the phase diagram and dynamical properties of the frustrated
spin- 1

2 dimer Heisenberg model on square lattice. Here, we
employ the bond-operator formalism, a mean-field theory,
and the generalized spin-wave theory. In the phase diagram
on a parameter space of the exchange interaction and the
external magnetic field, we have found, on top of the SS
phase, a phase that has no counterpart in the Bose-Hubbard
model. As for dynamical properties, we study the excitation
spectrum and how they can be observed in dynamical spin-spin
correlations with inelastic neutron-scattering experiments. We
have revealed the behavior of the dynamical properties in the
SS and SF phases, especially around their phase boundaries,
which can be used as a probe to detect the phase transition
experimentally. We have also obtained an analytic expression
for the spin-wave velocity, which agrees with hydrodynamic
relations. Since the present model has an analogy in cold atoms
on optical lattices, our results also give insights into SS in them.
For example, one of the correlation functions studied here can
be regarded as the dynamical structure factor, which can be
detected with Bragg spectroscopy in cold-atom systems.20,21

This paper is organized as follows. In Sec. II, we introduce
the frustrated spin- 1

2 dimer Heisenberg model and the bond-
operator formalism. We also define the variational wave func-
tion for deciding the phase diagram of this model and explain
the correspondence to the extended Bose-Hubbard model.
Section III is devoted to the phase diagram in the present
model in a wide range of parameters. Section IV describes the
excitation spectrum and the property of dynamical spin-spin
correlations, where we introduce a generalized spin-wave
theory. Section V summarizes the paper.

II. FORMALISM

The Hamiltonian of the frustrated spin- 1
2 dimer Heisenberg

model (Fig. 1) is

H = J0

∑
i

S1i · S2i + J1

∑
〈i,j〉

Si · Sj

+ J2

∑
〈m,i,j〉

Smi · Smj − gμBH
∑

i

Sz
i , (1)
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FIG. 1. (Color online) (a) The frustrated spin- 1
2 dimer Heisenberg

model considered here. (b) Spin configuration in a dimer is schemati-
cally shown when the magnon BEC occurs for h ≡ gμBH exceeding
a critical value(hc).

where i,j label the dimer’s central position, m = 1,2 labels
the sites within each dimer, and Si ≡ S1i + S2i . Antiferro-
magnetic exchange interactions comprise intradimer (J0) and
interdimer (J1,J2) interactions with J0,J1,J2 > 0. Frustration
is caused by the J1 coupling between inequivalent sites
between adjacent dimers. Hereafter, we take J0 = 1 as a unit
of energy. In the Zeeman energy term, g is the g factor, μB the
Bohr magneton, and H the external magnetic field.

For treating the spin system, we can adopt the bond-operator
formalism,22–24 in which the four spin states (one singlet and
three triplet) in a dimer are described by four bosonic operators,
s and t , as

t
†
+|vac〉 = −|1,1〉, s†|vac〉 = |0,0〉,

(2)
t
†
0 |vac〉 = |1,0〉, t

†
−|vac〉 = |1,−1〉.

Here |0,0〉 and |1,α〉 (α = ±,0) stand for singlet and triplet
states, respectively, while |vac〉 denotes the vacuum of s,t .

We then only consider the states that satisfy a constraint,
s†s +∑

α=±,0 t†αtα = 1. We note that the bond-operator for-
malism itself is equivalent to the original expression with spin
operators. We opt for this formalism, since this facilitates
to identify a correspondence to the extended Bose-Hubbard
model, and also enables us to apply a generalized spin-wave
theory.

With the bond operators, the Hamiltonian (1) is expressed
as

H = −3

4
J0

∑
i

s
†
i si +

(
J0

4
− h

)∑
i

t
†
+i t+i

+ J0

4

∑
i

t
†
0i t0i +

(
J0

4
+ h

)∑
i

t
†
−i t−i

+ J2/2
∑
〈i,j〉

Hst (i,j ) + (J1 + J2/2)
∑
〈i,j〉

Htt (i,j ). (3)

Here h ≡ gμBH , and

Hst (i,j ) =
∑

α=±,0

(t†iαtjαs
†
j si + t

†
iαt

†
j ᾱsj si + H.c.), (4)

Htt (i,j ) = [t†j0ti0(t†i+tj+ + t
†
i−tj−) + H.c.]

−[ti0tj0(t†i+t
†
j− + t

†
i−t

†
j+) + H.c.]

+(t†i+ti+ − t
†
i−ti−)(t†j+tj+ − t

†
j−tj−), (5)

where ᾱ = ∓,0 for α = ±,0, respectively. Using this ex-
pression, we can obtain a variational ground-state wave

function,

|GS〉 =
∏
i∈A

(
yAs

†
i +

∑
α

xAαt
†
iα

)

×
∏
i∈B

(
yBs

†
i +

∑
α

xBαt
†
iα

)
|vac〉, (6)

where the coefficients x, y are complex in general and
determined numerically. Here we have divided the square
lattice into checkerboard sublattices (A and B), and since the
difference between sublattices is allowed, this wave function
is capable of describing a SS state. We note that this is nothing
but a one-site (dimer) mean-field approximation, which is
known to reproduce QMC results semiquantitatively in an
anisotropic spin-dimer system.11 We also see that this approach
qualitatively reproduces the results of previous works.16,17

A correspondence to Bose systems can be seen when the
ground state does not involve the |1,0〉 state (x0 = 0).23 We
have numerically confirmed that this situation is, in fact,
realized in most parts of the phase diagram. In this case,
the Hamiltonian excluding |1,0〉 from the beginning gives the
same ground state, and the Hamiltonian reduces to

Heff = J2

2

∑
〈i,j〉

[(t†i+si + s
†
i ti−)(s†j tj+ + t

†
j−sj ) + H.c.]

+
(

J1 + J2

2

)∑
〈i,j〉

(t†i+ti+ − t
†
i−ti−)(t†j+tj+ − t

†
j−tj−)

+ J0

∑
i

(t†i+ti+ + t
†
i−ti−) − h

∑
i

(t†i+ti+ − t
†
i−ti−),

(7)

with a constraint s
†
i si +∑

α=± t
†
iαtiα = 1. We note that this

coincides with the anisotropic spin-1 Heisenberg model used
in Ref. 12.

We can effectively identify this model with an extended
Bose-Hubbard model,

H = −t
∑
〈i,j〉

(a†
i aj + H.c.) − μ

∑
i

ni

+V
∑
〈i,j〉

ninj + U
∑

i

nini, (8)

where a† is the boson creation operator, 〈i,j 〉 the nearest
neighbors, μ the boson chemical potential, U the on-site
Hubbard interaction, and V the nearest-neighbor interaction.
To do this, we truncate the states to three states up to the
doubly occupied state in the extended Hubbard model, iden-
tify t

†
−|vac〉 = |0〉, s†|vac〉 = |1〉, t

†
+|vac =〉|2〉, and express

Eq. (8) in terms of t, s as in Ref. 20. This procedure is known
as the Schwinger-Boson approach. Then it turns out that the
spin model Eq. (7) can be regarded as the extended Hubbard
model through

J2/2 ↔ −t, J1 + J2/2 ↔ V,
(9)

J0 ↔ U/2, h ↔ δμ,

where δμ ≡ μ − U
2 − ZV , with Z being the coordination

number. Strictly speaking, there is only slight difference in the
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TABLE I. Correspondence between the dimer-spin system and the Bose system. In the Bose system, |n〉 represents
a state with n bosons, and nA,nB is the boson density on A, B sublattices, respectively. For the spin system the
bond-operator representation is used.

Spin- 1
2 dimer system Bose system

States: t
†
−|vac〉, s†|vac〉, t

†
+|vac〉 States: |0〉 ,|1〉 ,|2〉

In-plane magnetization: Mxy = 〈S+
1 − S+

2 〉/√2 Order parameter: 〈a†〉
In-plane staggered magnetization: Condensate density:
nc = ( 1

N

∑
i〈S+

i,1 − S+
i,2〉ei Q·r i /

√
2)2 nc = | 1

N

∑
i〈a†

i 〉|2
Staggered magnetization: Staggered occupation number:
mst

z = 1
2N

∑
i〈Sz

i,1 + Sz
i,2〉ei Q·r i nst = (nA − nB )/2

Averaged magnetization: mz = 1
2N

∑
i〈Sz

i,1 + Sz
i,2〉 Averaged occupation number: n = (nA + nB )/2

hopping terms. In the truncated Hubbard model it is written as
−t

∑
〈i,j〉[(

√
2t

†
i+si + s

†
i ti−)(

√
2s

†
j tj+ + t

†
j−sj ) + H.c.], where√

2t
†
i+si + s

†
i ti− corresponds to the creation operator a† in the

truncated space. On the other hand, in the case of the spin
model, we regard t

†
i+si + s

†
i ti− as the creation of a boson; see

Eq. (7).23

Thus, the spin- 1
2 model is effectively a semi-hard-core

boson system in regions in the phase diagram where the |1,0〉
state can be ignored.23 In order to compare the phase diagrams
of the two systems, it is useful to draw the phase diagrams with
the parameter corresponding to V fixed, since phase diagrams
of the extended Bose-Hubbard model is often written in this
way.

From the above correspondence, we can naturally define the
order parameters: The in-plane magnetization Mxy,i = 〈S+

i,1 −
S+

i,2〉/
√

2, which denotes the difference of the magnetization in
the spins in each dimer, represents the breakdown of the U(1)
symmetry in the spin model, which corresponds to 〈a†〉 in the

Bose-Hubbard model with a broken U(1) symmetry (the order
parameter in BEC). Thus, the averaged condensate density
is nc = ( 1

N

∑
i〈S+

i,1 − S+
i,2〉ei Q·r i /

√
2)2, where Q = (π,π ) and

N the total number of sites. Note that the factor ei Q·r i takes
care of the fact that J2 > 0 induces antiferroic ordering. In
the terminology of the Bose-Hubbard model, this is because
the hopping term is positive; see Eq. (9). The z-component
staggered magnetization, mst

z = 1
2N

∑
i〈Sz

i,1 + Sz
i,2〉ei Q·r i , rep-

resents the breaking of the Z2 symmetry (the symmetry
between A,B sublattices). Another important quantity is
the uniform magnetization mz = 1

2N

∑
i〈Sz

i,1 + Sz
i,2〉, which

corresponds to the density of bosons in the Hubbard model.
The correspondence is summarized in Table I.

III. PHASE DIAGRAM

Figure 2 shows the phase diagram against h and J2 obtained
by optimizing the variational wave function Eq. (6). The plot
is a counterpart in the spin system of a phase diagram for the

FIG. 2. (Color online) Ground-state phase di-
agram for Z(J1 + J2/2)/2 = 0.59 (a) and 0.9
(b), with Z being the coordination number [i.e.,
ZV = 0.59U (a), ZV = 0.9U (b) for the boson
model]. The parameters h and ZJ2 correspond
to the chemical potential δμ and hopping pa-
rameter −t , respectively, in the boson system.
Phases are denoted by SS (supersolid), SF (su-
perfluid), MI (Mott insulator), and CO (charge-
ordered phase), while “SF” stands for a phase that
has no counterpart in the Bose system. Various
order parameters are plotted against h in (c)
for Z(J1 + J2/2)/2 = 0.59, ZJ2 = 0.68, and in
(d) for Z(J1 + J2/2)/2 = 0.9, ZJ2 = 0.72. The
dashed lines in (a),(b) indicate the cross sections
at which (c),(d) are plotted, respectively. Red dots
in (a) indicate the points at which the excitation
spectra are displayed in Fig. 3 below.
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TABLE II. Correspondence of phases between the dimer-spin
system and the Bose system. n is the averaged occupation number of
boson.

Spin- 1
2 dimer system Bose system

nc = 0,mst
z = 0, Mott-insulating phase (MI)

mz = 0.0 for n = 1
nc = 0,mst

z = 0 Mott-insulating phase (MI)
mz = 0.5 for n = 2
nc 	= 0,mst

z = 0 Superfluid (SF)
nc = 0,mst

z 	= 0 Charge-ordered state (CO)
nc 	= 0,mst

z 	= 0 Supersolid (SS)

Bose-Hubbard model against the chemical potential (δμ) and
hopping parameter (−t). The two panels [(a),(b)] correspond to
different values of ZV , which is the effective nearest-neighbor
interaction V = J1 + J2/2 multiplied by the coordination
number Z. Thus, panels (a) and (b) for Z(J1 + J2/2)/2 =
0.59 and 0.9 correspond to those for the Bose system at
ZV = 0.59U and 0.9U , respectively. To specify the phases,
here we adopt the terminology from the Bose-Hubbard model,
see Table II. In particular, superfluid (SF) is a phase with
nc 	= 0 and mst

z = 0, while a SS state is a phase with nc 	= 0
and mst

z 	= 0 simultaneously.
First, the SS phase in the present spin model appears

adjacent to, and mainly in the lower half of, the CO phase.
We note that this feature is also seen in the phase diagram
of the extended Bose-Hubbard model.4 At the boundary
of MI the excitation gap closes, and the boundary can be
given analytically, where the lower density branch is h =√

1 − ZJ2, while the higher one is 1 + ZJ1 + ZJ2, within our
approximation. Figure 2(c) shows the h dependence [on a cross
section indicated in (a)] of relevant order parameters for ZJ1 =
0.84 and ZJ2 = 0.68. As can be seen, within the mean-field
analysis, the transition between MI/SF, SF/SS, and SS/CO are
of second order, while that between SF/CO is of first order. It
turns out that the results agree qualitatively well with those
obtained with the infinite time-evolving block decimation
(iTEBD) combined with the tensor renormalization group
(TRG) approach16 and the self-consistent cluster mean-field
analysis of an effective model.17 This supports the validity of
our method for this model.

Curiously, we find regions where we cannot neglect the
existence of t

†
0 , which we call “SF”, while in other regions

we can. This phase has not been recognized in the previous
works on this model.16,17 In the “SF” regions [red regions in
Figs. 2(a) and 2(b)], the coefficient of s† in Eq. (6) vanishes.
The wave function takes a form,

|GS〉 =
∏
i∈A

(x+t
†
i+ + x0t

†
i0 + x−t

†
i−)

×
∏
i∈B

(−x+t
†
i+ + x0t

†
i0 − x−t

†
i−)|vac〉, (10)

where xα’s are real. Note that this state breaks a U(1) symmetry
(i.e., the symmetry around Z axis). The character of this state
becomes clearer when we project the original Hamiltonian
[Eq. (1)] into the space consisting only of triplets on each

dimer to have

H ′ = (J1 + J2/2)
∑
〈i,j〉

S′
i · S′

j + h
∑

i

S
′z
i , (11)

which is nothing but the simplest isotropic spin-1 Heisenberg
model in an external magnetic field h. Here S′ denotes the
spin-1 spin operator, e.g., S

′z = t
†
+t+ − t

†
−t− in bond operators.

Then we can regard the “SF” state as a canted antiferromagnet
in the Heisenberg model. Comparing Figs. 2(a) and 2(b), we
notice that the SS region becomes wider as the repulsion
V becomes stronger. The “SF” region also expands, where
SS and “SF” phases compete with each other. Figure 2(d)
plots relevant order parameters against h [on a cross section
indicated in (b)] for ZJ1 = 1.44 and ZJ2 = 0.72. For this set
of parameters, phase transitions occur six times as the external
field is increased. Specifically, the transition from SF to “SF”
is seen to be discontinuous.

Let us compare the present result with that for the extended
Bose-Hubbard model. In the latter, the SS region becomes
wider when the nearest-neighbor repulsion V is increased.
Moreover, when ZV > U , there is no MI and all insulating
phases are CO, while the SS region becomes even wider.25

These behaviors are contrasted with the present phase diagram
for the spin model for ZV > U , where, contrary to a naive
expectation, it turns out that SS does not expand, but gives
way to “SF” for a fixed V , and that the SS region is completely
suppressed by “SF” for large-enough V (not shown). Thus, we
do have differences between the spin and the Bose models. To
sum up, our analysis indicates that competition between SS and
“SF” phases should be taken into account in examining SS in
this system, besides the instability for domain wall formation
discussed in Ref. 17.

IV. DYNAMICAL PROPERTIES

We now reveal dynamical properties such as excitation
spectrum and dynamical spin-spin correlations around SS
in the magnetic system Eq. (1), which can be regarded as
an effective semi-hard-core Bose system. To this end, we
employ a generalized spin-wave theory. The similar type of
analysis has been applied to a bilayer Heisenberg model22 and
an anisotropic spin-1 Heisenberg model26,27 for investigating
SF22,26 and MI22,26,27 in our terminology. We also note that this
type of analysis works well in investigating real materials.24

We mainly focus on the behavior around SS, which has not
been clarified.

A. Excitations

Let us move on to the study of excitation spectra. Here we
employ a generalized spin-wave theory which is applicable
except for the “SF” phase.22 We convert the Hamiltonian
Eq. (3) into an effective one by introducing boson operators
{b} with a canonical transformation,

bλ
0i = uλsi + vλ(fλt+i + gλt−i),

bλ
+i = −vλsi + uλ(fλt+i + gλti−), (12)

bλ
00i = t0i , bλ

−i = −gλti+ + fλti−.
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Here λ = A or B and u, v, f , and g (with u2 + v2 = 1 and
f 2 + g2 = 1) are real and defined in such a way that the ground
state is (

∏
i∈A b

A†
0i )(

∏
j∈B b

B†
0j )|vac〉. After this transformation,

the constraint is converted to b
λ†
0i b

λ
0i +∑

θ b
λ†
θ,ib

λ
θ,i = 1, where

θ = ±,00. Then we deal with the constraint in terms of the
Holstein-Primakoff (HP) transformation,

bλ
0i = b

λ†
0i =

(
1 −

∑
θ

n̂λ
θ,i

)1/2

, (13)

where n̂λ
θ,i = b

λ†
θ,ib

λ
θ,i .

If we plug this into the Hamiltonian and neglect the terms
with more than two boson operators (which amounts to the
linear spin-wave approximation), the effective Hamiltonian
takes a form, Heff = Heff± + Heff0, where Heff± is composed
of b

†
± and Heff0 is composed of b

†
00. The form of Heff± is, up

to a constant,

Heff± = 1

2

∑
k∈BZ/2

ψ
†
kĤeff±(k)ψk, (14)

where ψk = (bA
k,+,bA

k,−,bB
k,+,bB

k,−,b
A†
−k,+,b

A†
−k,−,b

B†
−k,+,b

B†
−k,−)T ,

and Ĥeff± is an 8 × 8 matrix, whose components are shown
in an appendix. The folded Brillouin zone BZ/2 denotes the
first Brillouin zone when the symmetry between A and B
sublattices is broken; see Fig. 3(f). We can diagonalize the
effective Hamiltonian as

Heff± =
∑

k∈BZ/2,τ

ετ (k)β†
k,τ βk,τ , (15)

with the band index τ = 1–4. Here we have applied
a Bogoliubov transformation U : ψ ′

k = Uψk, where
U is an 8 × 8 matrix satisfying U
UT = 
,
with 
 = diag(1,1,1,1,−1,−1,−1,−1) and ψ ′

k =
(βk,1,βk,2,βk,3,βk,4,β

†
−k,1,β

†
−k,2,β

†
−k,3,β

†
−k,4)T (Ref. 20).

β
†
k,τ creates a spin wave. The ground state with the spin-wave

correction included is the vacuum of spin waves and denoted
as |φ0〉 in the following. Note that the above is applicable to
SF and MI phases. There, the excitation spectrum appears to
have four bands since we treat them in the folded Brillouin
zone BZ/2. When we unfold the Brillouin zone into the full
BZ, it has two bands. Note that the main difference between
the results in SS and those in SF within this method is that
there are no degenerated modes at the boundary of BZ/2 in
SS. We also note that one can evaluate the expectation value
of physical quantities in this approximation as follows. An
operator representing a quantity is first transformed with b.
Then the HP transformation is applied to bλ

0 ,b
λ†
0 , and the

expansion is made up to the order needed. When bλ
0 ,b

λ†
0

appear in the form of nλ0, this can be dealt with using the
constraint directly. Finally, we take the expectation value for
the transformed operator.

In Figs. 3(a)–3(d), we show the excitation spectrum in
the phases MI, SF, SS, and CO, respectively, for which the
positions on the phase diagram are indicated in Fig. 2(a).
While some of the natures of MI and SF have already been
well investigated,22,26,27 we display the results in order to
compare them with the results for SS or CO, and to show a

FIG. 3. (Color online) Excitation spectra against kx = ky = k for
a Mott insulator at h = 0.2 (a), SF at h = 1.08 (b), SS at h = 1.09 (c),
and charge order at h = 1.32 (d), with ZJ1 = 0.84 and ZJ2 = 0.68.
They correspond to four red dots in Fig. 2(a). Dotted lines in (b) and
(c) represent the velocity of a NG mode. In (b) a dash-dotted line
represents the first excitation band away from the SS/SF boundary,
where an arrow indicates how the dispersion dips into the origin.
(e) The velocity of Nambu-Goldstone mode against h. Blue dots are
derived directly from the excitation spectra, while red dots represent
Eq. (19). (f) The original Brillouin zone (BZ; large square) for the
phases without Z2 breaking symmetry, and the folded Brillouin zone
(BZ/2; blue area) for phases with the broken symmetry are indicated.
The dotted line shows the kx = ky = k direction.

precursor of SS or CO in SF. The spectrum is drawn along the
(1,1) direction (kx = ky). Here we only show the excitations
composed of b±, since only these modes have the counterparts
in the Bose-Hubbard model. In MI and SF, there are two
excitation bands. On the other hand, in SS and CO, there
are four bands because the symmetry between A,B sublattices
is broken. There is a gap in MI (n = 1), and the two (three if
t0 is included) modes are degenerate at h = 0. As h increases,
the degeneracy is lifted due to the Zeeman splitting [Fig. 3(a)].
The dispersion relation is given by

ε(k) =
√

J 2
0 + 2J0J2γ (k) ± h, (16)

where γ (k) = ∑d
a=1 cos(ka) with a labeling the axes.22,26,27

When the gap closes, a quantum phase transition between SF
and MI occurs. In the SF phase, there is one gapless mode
[a Nambu-Goldstone (NG) mode; recently, the problem of NG
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mode has attracted renewed interest28,29], which arises from the
U(1) symmetry breaking. In particular, the velocity of the NG
mode vanishes along the boundary except at h = 0,ZJ2 = J0

(Refs. 22 and 26), where the universality class of the phase
transition changes from the rest (field induced phase transition
to SF). The other band is a massive mode. As h becomes closer
to the SF/SS boundary, a dip (i.e., softening) appears in the
mode around k = (0,0), and we observe that the gap closes
at the boundary [Fig. 3(b)]. This mode can be thought of as a
roton mode, which represents a softening into CO or SS. Note
that the roton is located at the zone center rather than a zone
boundary, since the hopping parameter is positive in our model.
If we turn to the excitation spectrum of SS state in Fig. 3(c),
there is one NG mode with a linear dispersion. The roton mode
in SF near SS and the NG mode with a linear dispersion have
been observed in SS in hard-core boson systems30,31 or in an
extended Bose-Hubbard model (a soft-core system).3 Here we
have revealed that the semi-hard-core Bose system also shares
these behaviors. At the boundary of SS and CO, the velocity of
the NG mode becomes 0. In the CO phase, there is an energy
gap, which is closed at the boundary between CO and SS, and
the highest mode is flat with ε(k) = 2h [Fig. 3(d)]. In this
mode up-spin triplet flips into a down-spin triplet. The rest of
the excitation spectrum can be obtained by solving an equation
cubic in x for each k,

0 = [x + h − J0 − Z(J1 + J2/2)](x + h − J0)

× [x + h + J0 − Z(J1 + J2/2)] + 2J0J
2
2 γ (k)2. (17)

Strictly speaking, the actual excitation corresponds to
the absolute value of the solution. From the structure
of the equation and straightforward manipulation, we notice
that the dispersion does not change against h, and the energy
of one of the bands decreases as h increases. Therefore, there
occurs a band crossing at some h in CO. In addition, one can
show analytically that a band never has linear dispersion at the
point where the gap in CO spectrum is closed. This contrasts
with the case of MI (n = 1), where, at h = 0 and ZJ2 = J0, the
gap is closed but the band has a linear dispersion; see Eq. (16).
It is numerically confirmed that, at the SF/CO boundary, the
gap in the CO phase does not close, nor does the roton mode.
(Near the CO/SF boundary, a roton mode appears again.) The
velocity of the NG mode approaches zero toward the boundary
of SF and MI (n = 2). In the latter phase, the upper band is
flat [ε(k) = 2h − 2Z(J1 + J2/2)]. The analytic expression26

for the other band is

ε(k) = −J0 + h − Z

(
J1 + J2

2

)
+ J2γ (k). (18)

To gain further understanding of the excitations, we show
an analytic expression for the spin-wave velocity (with the
derivation given in an Appendix),

Cs =
(

J2

2κ
|Mxy,AMxy,B |

)1/2

, (19)

where κ = ∂mz/∂h denotes the spin susceptibility, and
Mxy,A,Mxy,B the magnetization of each sublattice. Note that
Mxy and mz here do not include spin-wave corrections,
though it is not negligible in two dimensions. This mi-
croscopic expression is consistent with the relation derived

from phenomenological discussions (hydrostatically or with
an effective Lagrangian) for spin systems32 and for Bose
systems,33,34 which is C2

s = ρs/χ . Here ρs is the spin stiffness
or the SF density and χ is the spin susceptibility or the
compressibility. This relation has been expected to be satisfied
in this method, where the consistency has been pointed out in
Ref. 22. What we have done here is to concretely derive the
analytic expression for Cs in the generalized spin-wave method
including SS. We also note that the Gutzwiller approximation
for the Bose-Hubbard model gives a similar expression for
SF (Ref. 21). We can also show that the above expression
holds in SS when the Gutzwiller approximation is used for the
extended Bose-Hubbard model. The velocity plotted against h

from Eq. (19) is displayed in Fig. 3(e) along with the numerical
result, and we can see that the two sets of results exactly
coincide with each other. Then, a jump in the velocity at
the SF/SS boundary can be attributed to a jump in the spin
susceptibility. The velocity vanishes at MI/SF and SS/CO
boundaries, since Mxy becomes 0.

Next, we discuss the properties of collective excitation
modes. We focus on all four modes for small k along the
(1,1) direction in the folded Brillouin zone BZ/2. (For SF,
a NG mode, a roton mode, a massive mode and the rest
are investigated.) To reveal the character of each excitation
(β†

k,τ ), we construct a coherent state (|χk,τ 〉) to calculate the
spatial variation of mz,i (=〈Sz

i,1 + Sz
i,2〉) and Mxy,i . In the

boson language the former corresponds to spatial density
modulations, while the latter corresponds to modulations of
the order parameter (〈a†〉). The coherent state is expressed
as

|χk,τ 〉 = exp(−|χk,τ |2/2) exp(χk,τ β
†
k,τ )|φ0〉. (20)

Here we choose χk,τ to be small, which amounts to assuming
that there are not too many spin waves. In SF, it turns out
that, except for the third excitation mode [a massive mode
in Fig. 3(b) near k ≈ π ], excitation modes are accompanied
by both a modulation of the order parameter (i.e., condensate
density) and the density. On the other hand, the massive mode
does not exhibit modulation in the density but shows a local
imbalance between condensate and noncodensate amplitudes,
as seen in Fig. 4(a). This agrees with the result for cold atoms.20

In the SS phase, by contrast, such a mode disappears, as seen
in Fig. 4(b). All the four modes in SS are accompanied by
modulations of density and order parameter. Figures 4(c) and
4(d) display the spatial variation of the phase [Arg(Mxy)] of
Mxy,A, −Mxy,B (≡�θ ) for the second excitation mode (the
roton mode) at h = 1.08 (SF) and h = 1.09 (SS), respectively.
Note that the minus sign in −Mxy,B again comes from the
antiferromagneic coupling J2. We can see that the relation of
the phase modulation between A and B sublattice is different
between SF and SS. In SF, the roton mode may be thought of
as a Leggett mode if we regard one cell as composed of two
neighboring sites (one belongs to A sublattice, and the other to
B), since the phase of the order parameter out phase between A
and B sublattices. On the other hand, this interpretation cannot
be applied to SS, where the phase modulation is in phase
between them. We have to note that this property of the second
excitation in the SS phase changes for large enough V and
away form the SS/SF boundary. Then the phase modulation
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FIG. 4. (Color online) Spatial variation of physical quantities for
excitation modes for small k in BZ/2. We have chosen parameters
ZJ1 = 0.84 and ZJ2 = 0.68. Panels (a) and (b) show the modulation
of the density from the equilibrium value (�mz) in A sublattice at h =
1.08 (SF) and h = 1.09 (SS), respectively. The red line represents the
first excited mode (a NG mode), the black line the second excitation
(roton) mode, the blue line the third excitation (massive) mode, and
the green line the fourth mode. Panels (c) and (d) show the spatial
variation of the phase of Mxy,A and −Mxy,B for the second excitation
mode for h = 1.08 (c) or h = 1.09 (d).

becomes out of phase between A and B sublattices (as in SF).
As for the NG mode, the spatial modulation of the phase of
the order parameter (not shown) is in phase between A and B
sublattices in both of the states.

B. Spin-spin correlation

Analysis of spin-spin correlations is important from the
experimental viewpoint, since inelastic neutron scattering can
detect it. Here we focus on two kinds of spin-spin correlations
that have counterparts in Bose systems. The first one is

Cz(k,ω) ≡
∫ ∞

−∞
dτeiωτ

〈
Sz

k(τ )Sz
−k(0)

〉
=
∑

n

∣∣〈n|Sz
−k|φ0〉

∣∣2δ(ω − εn), (21)

where Sz
i ≡ Sz

1,i + Sz
2,i = t

†
+t+ − t

†
−t−, |φ0〉 denotes the

ground state and |n〉 denotes an excited state with an energy
εn. The correlation function corresponds to the dynamical
structure factor in cold-atom systems, which can be detected
with Bragg spectroscopy and which has been theoretically in-
vestigated in this context.20,21 The second correlation function
is

C+−(k,ω) ≡
∫ ∞

−∞
dτeiωτ 〈M̂xy,−k(τ )M̂†

xy,−k(0)〉

=
∑

n

|〈n|M̂†
xy,−k|φ0〉|2δ(ω − εn). (22)

Here M̂xy,i ≡ (S+
1,i − S+

2,i)/
√

2 = t
†
+i si + s

†
i ti−, which is an

operator form of Mxy,i introduced before. This correlation
function corresponds to the lesser Green’s function G<

−k(ω) ≡

−i
∫∞
−∞ dτeiωτ 〈a†

−k(τ )a−k(0)〉, where a is a bosonic annihi-
lation operator. We note that, with in the linear spin-wave
theorem, these correlations do not have contribution from the
spin wave consisting of t0,t

†
0 . There are n-spin wave states

defined as (β†)n|vac〉 in the spin-wave theory. In the following,
we focus on the intensity of the single spin-wave peak by taking
|k,τ 〉 = β

†
k,τ |vac〉 as |n〉, where β

†
k,τ is defined in Eq. (15).

Within the spin-wave theory, one can evaluate the coefficient
of the δ function [δ(ω − εn) in Eqs. (21) and (22)] as

〈τ,−k0|Sz
−k|φ0〉

=
√

N

2

∑
λ

{
vλuλ

(
f 2

λ − g2
λ

)
eiG·lλ [N(λ,+)τ (k0) + P(λ,+)τ (k0)]

− 2vλgλfλe
iG·lλ [N(λ,−)τ (k0) + P(λ,−)τ (k0)]

}
(23)

and

〈τ, − k0|M̂†
xy,−k|φ0〉

=
√

N

2

∑
λ

eiG·lλ[(u2
λgλ − v2

λfλ

)
N(λ,+),τ (k0)

+ (
u2

λfλ − v2
λgλ

)
P(λ,+),τ (k0) + uλfλN(λ,−),τ (k0)

−uλgλP(λ,−),τ (k0)
]
, (24)

where lλ is an arbitrary site in the sublattice λ, G is (±π,

± π ) or (0,0) chosen so that k0 be in BZ/2, and k = k0 + G.
P (k) and N (k) are the elements of the matrix used for the
Bogoliubov transformation [Eq. (15)],

U (k) =
(

N (k) P (k)

P (k) N (k)

)
, (25)

where the elements of 4 × 4 N,P are denoted as
N(λ,θ),τ ,P(λ,θ),τ . The intensity of a single spin-wave mode
is expressed as |〈τ, − k0|Sz

−k|φ0〉|2 for Cz(k,ω) and |〈τ, −
k0|M̂†

xy,−k|φ0〉|2 for C+−(k,ω).
Figure 5 shows the intensity plot of Cz(k,ω) [panels (a) and

(b)] and the intensity of each peak (i.e., |〈τ, − k0|Sz
−k|φ0〉|2/N ;

see panels (c)–(f)] along (kx,ky) = (k,k). First, we have to
note for CO and MI that there is no contribution from the one
spin-wave excitation modes, i.e., 〈τ, − k0|Sz

−k|φ0〉 = 0. For
SF, two excitation bands contribute to the spin-spin correlation
as seen in Figs. 5(a) and 5(c), since there is no band folding.
Around k = (0,0), the excitations consist of a NG mode
(whose intensity grows linearly with k), and a massive mode
(whose intensity grows as k4), and we also find a roton mode
around (π,π ). Such behaviors match those of the dynamical
structure factor in the boson systems.20,21 As can be seen
in Fig. 5(f), which shows the intensity of peak against h at
the zone boundary Q = (π,π ), the intensity rapidly increases
toward the SF/SS or SF/CO boundaries. This can be regarded
as a hallmark for the phase transition for SS or CO.

If we turn to the SS state in Figs. 5(b), 5(d), and 5(e),
there are four single-particle excitations that contribute to the
spin-spin correlation. Since the Z2 symmetry is broken in SS,
the selection rule for the matrix elements appearing in Eqs. (21)
and (22) is the same for (kx,ky) as for (kx + π,ky + π ), so
that the NG mode in Fig. 5(b) appears around both (0,0)
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FIG. 5. (Color online) (a),(b) Color-coded intensity of Cz(k,ω)
against kx = ky = k for a SF phase with h = 0.7 (a) and for a SS phase
with h = 1.15 (b), with ZJ1 = 0.84 and ZJ2 = 0.68. A Gaussian
of width δ = 0.03J0 is used to smooth the δ functions in Cz(k,ω).
(c)–(f) The intensity of peaks of Cz(k,ω) against kx = ky = k for
single spin-wave states for h = 0.7 (c), h = 1.15 (d), and h = 1.09
(e), with ZJ1 = 0.84 and ZJ2 = 0.68. For the homogeneous states,
the first (second) band is represented by black (blue) lines. For the
state with broken Z2 symmetry, blue, red, green, and black lines
represent the first, second, third, and fourth excitations, respectively.
(f) The intensity against h at (kx,ky) = (π,π ). Note the difference in
the scale of the vertical axis between panels (c)–(f).

and (π,π ). It turns out that the intensity of the fourth band
in the SS phase rapidly decreases toward the boundary to
CO. The intensity of this band is much weaker than those
for the other bands in the SS region. At long wavelengths
(k ∼ 0), the intensity also starts from 0 in most part of the
SS state. Only the NG mode has an intensity increasing
linearly with k, while the other three modes increase like
k4. Just after the transition to the SS state in Fig. 5(e), the
dominant excitations are the lowest two modes. Away from
the phase boundary in Fig. 5(d), the intensities of the lowest
three modes become comparable with each other. The fact
that the massive mode [the third excitation mode around (0,0)
∈ BZ/2)] has a significant intensity for the Cz correlation
function reflects the property of the mode that it becomes
coupled with the density modulation in SS. We also find that
the intensity of the NG mode vanishes at the zone boundary in
SS. This reflects the fact that zero-energy excitation is only
coupled with the phase oscillation of the order parameter.
Another characteristic property is that the intensity is stronger
around (π,π ) than around (0,0) when we compare (kx,ky)
∈ BZ/2 and (kx + π,ky + π ) 	∈BZ/2. Therefore, the bands
can be observed more clearly around (π,π ), as seen in
Fig. 5(b).

FIG. 6. (Color online) The intensity of peaks against kx = ky = k

for single spin-wave states in the C+−(k,ω) correlation with ZJ1 =
0.84 and ZJ2 = 0.68. Panel (a) is for 0 < h < 0.566 (MI, n = 1),
(b) h = 1.08 (SF), (c) h = 1.11 (SS), and (d) 1.232 < h < 2.063
(CO). For the homogeneous states, the first and the second bands
are represented by black and blue lines, respectively. For the state
with Z2 symmetry broken, the blue, red, green, and black lines mean
the first, second, third, and fourth excitations, respectively. Panel (e)
shows the intensity against h at (kx,ky) = (0,0), and (f) shows that at
(kx,ky) = (π,π ).

Finally we discuss the behavior of the correlation C+−.
Figure 6 shows the intensity (|〈τ, − k0|M̂†

xy,−k|φ0〉|2/N ) for
C+− along (kx,ky) = (k,k). As seen in Eq. (24), single spin-
wave states contribute to the matrix element in the insulating
phases (MI, CO). It turns out that in MI (n = 1) in Fig. 6(a),
only the second excitation band has a significant intensity,
which does not depend on h within the present approximation.
In the CO state in Fig. 6(d), we can see two bands in the
spectrum, i.e., the first band (the second at higher h) and
the third band [Fig. 6(d)]. Namely, as h increases in CO, the
two bands change their orders; hence, the nature of the first
and second bands changes. This can be seen in Figs. 6(e)
and 6(f), where the intensity of the first band is finite at
lower h in CO, while the intensity of the second band is
finite at higher h. In MI (n = 2), only the first band is
observed, whose intensity is |〈τ, − k0|M̂†

xy,−k|φ0〉|2/N = 1
throughout (not shown). In the SF phase, both bands have
contributions to C+−. An interesting observation is that the
intensity to the NG mode diverges like 1/|(kx − π,ky − π )|
toward (π,π ). Therefore, the NG mode is expected to be
observed clearly. As for the roton mode, its intensity increases
near the boundary of SF/SS or SF/CO; see Figs. 6(b) and
6(e). This increase is a precursor to the breakdown of Z2

symmetry. In the SS phase in Fig. 6(c), the NG mode becomes
intense toward k = (0,0),(π,π ). More concretely, the intensity
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of the first band diverges like 1/|(kx,ky)| at k = (0,0) and like
1/|(kx − π,ky − π )| at k = (π,π ). On the other hand, it turns
out that the intensities of the second to fourth bands in the SS
phase strongly depend on (J1,J2,h). Given the correspondence
between the Bose-Hubbard model and the spin system, these
characteristic behaviors in SS revealed here can be expected
in cold atoms in optical lattice as well.

V. CONCLUSION

In this paper we have studied the frustrated spin-dimer
model with the bond operator and the generalized spin-wave
theory. First we have obtained the mean-field phase diagram,
which can be directly compared with that of the extended
Bose-Hubbard model. We have revealed how the SS state
emerges in this model, and found that there is a phase (“SF”)
which involves |1,0〉 state and hence has no counterpart in
the Bose-Hubbard model. In addition, we point out that the
enlarged SS region for large V (�ZU ) in the Bose-Hubbard
model does not occur in the spin model, because the “SF”
phase takes over instead.

Second, we have obtained the excitation modes, especially
the excitation spectra around the SS regions. We have found
that the dip corresponding to a roton mode completely
softens at the boundary of SS, and that a NG mode has
a linear dispersion even in the SS state. We have also
microscopically derived within the generalized linear spin-
wave theory an analytical relation between the velocity of
the NG mode, order parameter and spin susceptibility, which
agrees with the relation derived from hydrostatic treatments.
As for the properties of the excitation modes, it turns out
that, in the SF state, the massive mode does not couple
with density modulations, while in the SS state there is a
coupling.

Third, we have calculated the spin-spin correlations Cz and
C+−. Cz corresponds in the Bose system to the dynamical
structure factor, while C+− corresponds to the lesser Green’s
function. In the SF state, the behavior of Cz is similar to its
counterpart for cold atoms. The resonance of the intensity of
the roton mode is thought to be a precursor to the breaking of
Z2 symmetry (phase transition to CO or SS). In the SS state,
the intensity of the NG (sound) mode peak vanishes at the
boundary of the first Brillouin zone, while the third excitation
band becomes significant, which reflects the property of the
difference in the excitation between SS and SF mentioned
above. As for C+−, the spin-wave theory predicts that some of
the bands have significant intensities in the insulating phases
(MI,CO). On the other hand, the NG mode is expected to
be clearly observed in the spin-spin correlation, while the
intensity of the roton mode can be regard as an evidence
for the phase transition to CO or SS. The properties of SS
revealed here for the spin model should be applicable to
the SS phase in Bose systems. Hence, the results should
be important probes in searching SS in a wide range of
systems.
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APPENDIX A

Let us here display an 8 × 8 matrix Ĥeff(k) explicitly, whose
form is

Ĥeff(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
+ EA

± C+ C ′
± 0 0 D+ D±

EA
± EA

− C± C− 0 0 D′
± D−

C+ C± EB
+ EB

± D+ D′
± 0 0

C ′
± C− EB

± EB
− D± D− 0 0

0 0 D+ D± EA
+ EA

± C+ C ′
±

0 0 D′
± D− EA

± EA
− C± C−

D+ D′
± 0 0 C+ C± EB

+ EB
±

D± D− 0 0 C ′
± C− EB

± EB
−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A1)

Expressions for the elements are

Eλ
+ = (J0 − h)

(
u2

λf
2
λ − v2

λf
2
λ

)+ (J0 + h)
(
u2

λg
2
λ − v2

λg
2
λ

)
− J2Zvλvλ̄uλuB(fλ + gλ)(fλ̄ + gλ̄)

+
(

J1 + J2

2

)
Zv2

λ̄
u2

λ(f 2
λ − g2

λ)(f 2
λ̄

− g2
λ̄
) + ECON,

(A2)

Eλ
− = (J0 − h)

(
g2

λ − v2
λf

2
λ

)+ (J0 + h)
(
f 2

λ − v2
λg

2
λ

)
−
(

J1 + J2

2

)
Zv2

λ̄

(
f 2

λ − g2
λ

)(
f 2

λ̄
− g2

λ̄

)+ ECON,

(A3)

Eλ
± = 2hgλuλfλ − 2

(
J1 + J2

2

)
Zv2

λ̄
uλfλgλ

(
f 2

λ̄
− g2

λ̄

)
+ J2

2
Zvλ̄vλuλ̄(fλ̄gλ − gλ̄fλ − fλfλ̄ + gλgλ̄), (A4)

C+ = 2γ (k)

[
J2

2

(
v2

Av2
B + u2

Au2
B

)
(fAfB + gAgB)

− J2

2

(
v2

Au2
B + v2

Bu2
A

)
(fAgB + fBgA)

+
(

J1 + J2

2

)
vAvBuAuB

(
f 2

A − g2
A

)(
f 2

B − g2
B

)]
, (A5)

C− = γ (k)J2uAuB(gAgB + fAfB)

+ 8γ (k)

(
J1 + J2

2

)
gAgBfAfBvAvB, (A6)

C± = γ (k)J2
[
uAu2

B(fAgB − fBgA) + v2
BuA(gAgB − fAfB)

]
− 4γ (k)

(
J1 + J2

2

)
vAvBuBgAfA

(
f 2

B − g2
B

)
, (A7)

C ′
± = γ (k)J2

[
uBu2

A(fBgA − fAgB) + v2
AuB(gAgB − fAfB)

]
− 4γ (k)

(
J1 + J2

2

)
vBvAuAgBfB

(
f 2

A − g2
A

)
, (A8)

D+ = 2γ (k)

[
−J2

2

(
v2

Au2
B + v2

Bu2
A

)
(fAfB + gAgB)

+ J2

2

(
v2

Av2
B + u2

Au2
B

)
(gBfA + gAfB)

+
(

J1 + J2

2

)
vAvBuAuB

(
f 2

A − g2
A

)(
f 2

B − g2
B

)]
,

(A9)
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D− = −γ (k)J2uAuB(gAfB + gBfA)

+ 8γ (k)

(
J1 + J2

2

)
vAvBgAgBfAfB, (A10)

D± = γ (k)J2
[
v2

AuB(fAgB − gAfB) + uBu2
A(fAfB − gAgB)

]
− 4γ (k)

(
J1 + J2

2

)
vBvAuAgBfB

(
f 2

A − g2
A

)
, (A11)

and

D′
± = γ (k)J2

[
v2

BuA(fBgA − gBfA) + uAu2
B(fAfB − gAgB)]

− 4γ (k)

(
J1 + J2

2

)
vAvBuBgAfA

(
f 2

B − g2
B

)
. (A12)

Here Z is the coordination number, γ (k) = ∑d
a=1 cos(ka),

λ = A,B, and λ̄ denotes the sublattices other than λ. ECON in
Eqs. (A2) and (A3) is

ECON = −ZJ2uAuBvAvB(fA + gA)(fB + gB)

−Z

(
J1 + J2

2

)
vAvAvBvB

(
f 2

A − g2
A

)(
f 2

B − g2
B

)
.

(A13)

APPENDIX B: DERIVATION OF EQ. (19)

We show how we can derive an analytic expression,
Eq. (19). The idea is that, if we are only interested in the
velocity, we can make use of the equations governing the
coefficients for bosons (t†,s†) in the ground state. A similar
idea is used in the context of Gutzwiller approximation for
boson models.21 The proof consists of three steps. In the first
step, we introduce another way to derive the excitation. In the
second step, we show that the resultant excitation spectrum is
the same as that in the main text. In the third step, we prove
Eq. (19) within the approach introduced in the first step. We
start from Eq. (7), which neglects the existence of |1,0〉, and
uses the language of Bose systems [Eq. (9)] to characterize
parameters in the Hamiltonian. Note that, in the following, we
also change s† → t

†
0 and y → x0 to simplify the notation.

1. First step

The original assumption is that the form of the ground
state is

∏
i∈A(xA,1t

†
i+ + xA,0t

†
i0 + xA,−1t

†
i−)

∏
i∈B(xB,1t

†
i+ +

xB,0t
†
i0 + xB,−1t

†
i−)|vac〉, whose norm is 1. We extend this to

assume that the dynamics is confined to this type of states and
that when we consider the dynamics of site g the effect of the
surrounding state can be regarded as a mean field (which is an
idea similar to the Gutzwiller approach for the Bose-Hubbard
model21). In other words, to consider the dynamics of the state
on site g at time τ , we use the local Hamiltonian,

Hg(τ ) = −t
∑
ig

[
(t†g+tg0 + t

†
g0tg−)φig (τ ) + H.c.

]

+V
∑
ig

(t†g+tg+ − t
†
g−tg−)δnig (τ )

+ U

2
(t†g+tg+ + t

†
g−tg−) − h(t†g+tg+ − t

†
g−tg−),

(B1)

where ig stands for the nearest neighbors of g,
φi(τ ) = 〈t†i0ti+ + t

†
i−ti0〉 = x∗

i,0(τ )xi,1(τ ) + x∗
i,−1(τ )xi,0(τ ) and

δni(τ ) = 〈t†i+ti+ − t
†
i−ti−〉 = x∗

i,1(τ )xi,1(τ ) − x∗
i,−1(τ )xi,−1(τ ).

Then the equation of motion for the coefficient is

i
dxg,θ (τ )

dτ
= −t

∑
σ,θ ′

[φg+σ δθ,θ ′+1 + φ∗
g+σ δθ,θ ′−1]xg,θ ′ (τ )

+
[

U

2
θ2 − θh + θV

(∑
σ

δng+σ

)]
xg,θ (τ ),

(B2)

where θ = ±1,0. In the ground state, the local Hamiltonian
can be different between A, B sublattices, which we express
as HA,HB . We can express the variational ground state
as

∏
i(
∑

θ d0λ
i,θ t

†
i,θ )|vac〉(i ∈ λ), where d0λ

i,θ is the optimized

parameter. Then the state on sublattice λ (
∑

θ d0λ
θ t

†
θ )|vac〉) is

an eigenstate of Hλ with an eigenvalue ωλ. We derive the
excitation spectrum by considering the stationary solutions
around the ground state. In order to do this, we consider
xλ

g,θ (τ ) = [d0λ
g,θ + d ′λ

g,θ (τ )] exp(−iωλτ ), where we have de-
fined d ′λ

g,θ (τ ), which is assumed to be small. The equation of
motion is linearized with respect to d ′λ

g,θ (τ ), where we consider
the stationary solutions with a form

d
′λ
l,θ (τ ) = uλ

kθ exp[i(k · l − ωkτ )] + νλ∗
kθ exp[−i(k · l − ωkτ )].

(B3)

The resultant equation is

ωk

⎡
⎢⎢⎢⎣

uA

uB

νA

νB

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

WA,A WA,B 0 VA,B

WB,A WB,B VB,A 0

0 −VA,B −WA,A −WA,B

−VB,A 0 −WB,A −WB,B

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣

uA

uB

νA

νB

⎤
⎥⎥⎥⎦.

(B4)

Here Wλ,λ′ ,Vλ,λ′ are 3 × 3 matrices with uλ =
(uλ

k,1,u
λ
k,0,u

λ
k,−1)T and νλ = (νλ

k,1,ν
λ
k,0,ν

λ
k,−1)T . In the

following let us denote the 12 × 12 matrix as ϒ(k). The
elements of this matrix are

Wλ,λ,θ,θ ′ =
(

U

2
θ2 − hθ − ωλ + θV Zδn0

λ̄

)
δθ,θ ′

−Ztφ0
λ̄
(δθ,θ ′+1 + δθ,θ ′−1),

Wλ,λ̄,θ,θ ′ (k) = −tγ (k)
(
d0λ

θ−1d
0λ̄
θ ′−1 + d0λ

θ+1d
0λ̄
θ ′+1

)
(B5)

+V θθ ′γ (k)d0λ
θ d0λ̄

θ ′ ,

Vλ,λ̄,θ,θ ′ (k) = −tγ (k)
(
d0λ

θ−1d
0λ̄
θ ′+1 + d0λ

θ+1d
0λ̄
θ ′−1

)
+V θθ ′γ (k)d0λ

θ d0λ̄
θ ′ ,

where δn0
λ and φ0

λ denote, respectively, δn and φ on sublattice
λ in the ground state. Note that, to derive Eqs. (B2) and (B4),∑

θ |xθ |2 = 1 is assumed. Therefore, the solutions of Eq. (B4)
which satisfy

∑
θ |xθ |2 = 1 are physical. This is why the 12 ×

12 matrix in Eq. (B4) and the 8 × 8 matrix, Ĥeff(k), give the
same results.
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2. Second step

The idea for deriving above equation of motion does not
depend on the choice of the basis employed. Let us define
another local Hamiltonian for site g

H ′
g = −t

∑
ig

[
(t†g+tg0 + t

†
g0tg−)

(
t
†
ig0tig+ + t

†
ig−tig0

)+ H.c.
]

+V
∑
ig

(t†g+tg+ − t
†
g−tg−)

(
t
†
ig+tig+ − t

†
ig−tig−

)

+U

2
(t†g+tg+ + t

†
g−tg−) − h(t†g+tg+ − t

†
g−tg−), (B6)

where we have picked up the part of the Hamiltonian Eq. (7)
that involves site g. Then let {b′†

i,θ } be a set of bosonic creation

operators transformed from {t†i,θ }, i.e., b′†
i,θ = ∑

θ ′ U
(i)
θ,θ ′ t

†
i,θ ′ with

U (i) an arbitrary site-dependent unitary matrix, and express
a state as |ψ(τ )〉 = ∏

i(
∑

θ χi,θ (τ )b′†
i,θ )|vac〉, where χi,θ is

a complex coefficient. As far as |ψ(τ )〉 is normalized the
equation of motion introduced in the first step is expressed
as

i
d

dtτ
χg,θ (τ ) = 〈vac|b′

g,θ

∏
i 	=g

[∑
θ ′

χ∗
i,θ ′ (t)b′

i,θ ′

]
H ′

g

×
∏

i

[∑
θ

χi,θ ′ (t)b′†
i,θ ′

]
|vac〉, (B7)

with b′† = t†. However, the evolution of the state with Eq. (B7)
does not depend on the choice of {b′†

i,θ }. As is explained in the
following, it turns out that, if we take b′† = b†, the equation
for the stationary solution around the ground state leads to the
same form as the equation for the excitation spectrum within
the spin-wave theory; see Eq (14). Therefore, the excitation
spectrum derived from the method in the first step is same as
that from the spin-wave theory in the main part of this article.
Let us take b′† equal to b† defined in Eq. (12). In this case∏

i b
†
0,i |vac〉 is the variational ground state, |GS〉. Let

χi,θ (t) = Ci,θ (t) exp(−iωλt),
(B8)

Ci,θ (t) =
{

1 + c′
i,0, θ = 0,

c′
i,θ θ 	= 0,

where i ∈ λ. Linearizing the equation, we obtain

i
d

dτ
c′
g,θ (τ ) =

∑
θ ′ 	=0

αλ
θ,θ ′c

′
g,θ ′ (τ )

+
∑

i 	=g,θ ′ 	=0

[
βλ

θ,θ ′c
′
i,θ ′ (τ ) + γ λ

θ,θ ′c
′∗
i,θ ′ (τ )

]
, (B9)

where

αλ
θ,θ ′ = 〈GS|b†g,0bg,θ (H ′

g − ωλ)b†g,θ ′bg,0|GS〉,
βλ

θ,θ ′ = 〈GS|b†g,0bg,θ (H ′
g − ωλ)b†i,θ ′bi,0|GS〉, (B10)

γ λ
θ,θ ′ = 〈GS|b†g,0bg,θb

†
i,0bi,θ ′ (H ′

g − ωλ)|GS〉,
with g ∈ λ. Strictly speaking, the form of this equation is
a bit different from the equation of motion obtained by
linearizing Eq. (B2), but it turns out that Eq. (B9) and the

equation linearized from Eq. (B2) give the same solutions as
far as both of the solutions satisfy the normalization condition∑

θ |xθ |2 = ∑
θ |χθ |2 = 1; i.e., d0 · d ′ is purely imaginary,

where d0,d ′ are defined below Eq. (B2).
When we look at Eq. (B9), we notice that the evolution

of the coefficients does not depend on the θ = 0 component.
Therefore, when we consider the stationary solution around
the ground state, we only have to deal with an eigenvalue
problem for the θ = ± components, and then we can decide
the evolution of the θ = 0 component. As in the first step, we
try to find the solution with the form

c
′λ
i,θ = u′λ

θ exp(ik · ri − iωkt) + ν ′λ∗
θ exp(−ik · ri + iωkt).

(B11)

Then the eigenvalue problem for the θ = ± components reads

ωk

⎡
⎢⎢⎢⎢⎣

u′A

u′B

ν′A

ν′B

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

W ′
A,A W ′

A,B 0 V ′
A,B

W ′
B,A W ′

B,B V ′
B,A 0

0 −V ′
A,B −W ′

A,A −W ′
A,B

−V ′
B,A 0 −W ′

B,A −W ′
B,B

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

u′A

u′B

ν′A

ν′B

⎤
⎥⎥⎥⎥⎦, (B12)

where W ′ and V ′ are 2 × 2, u′λ = (u′λ
k,1,u

′λ
k,−1)T ,

ν′λ = (ν ′λ
k,1,ν

′λ
k,−1)T , and

Wλ,λ,θ,θ ′ = αλ
θ,θ ′ , Wλ,λ̄,θ,θ ′ (k) = γ (k)βλ

θ,θ ′ ,
(B13)

Vλ,λ̄,θ,θ ′ (k) = γ (k)γ λ
θ,θ ′ .

By directly evaluating α, β, and γ , one can see that the matrix
in Eq. (B12) is nothing but

∑
Ĥeff(k). Therefore, the method

introduced in the first step gives the same excitation spectrum
as in the spin-wave theory introduced in the main part of this
paper.

3. Third step

We can then move on to show the relationship between the
velocity of the NG mode, the order parameters, and the spin
susceptibility in the way introduced in the first step. First, one
can derive an important identity,(

U

2
θ2 − hθ − ωλ + θV Zδn0λ̄

)
d0λ

θ

−Ztφ0λ̄
∑
θ ′

(δθ,θ ′+1 + δθ,θ ′−1)d0λ
θ ′ = 0, (B14)

from the fact that xλ
θ (t) = d0λ

θ exp(−iωλ) is a stationary
solution of Eq. (B2). Then the first derivative of this equation
with respect to h is(

θ + ∂ωλ

∂h

)
d0λ

θ =
∑
θ ′

Wλ,λ,θ,θ ′
∂d0λ

θ ′

∂h

+
∑
θ ′

[Wλ,λ̄,θ,θ ′ (0) + Vλ,λ̄,θ,θ ′ (0)]
∂d0λ̄

θ ′

∂h
.

(B15)
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This is the key equation. We can readily find three solutions
of Eq. (B4) at k = 0 as

uλ
0,θ ≡ θd0λ

θ , νλ
0 = −uλ

0, ω0 = 0,

uA
0,θ ≡ d0A

θ , uB
0,θ = 0, νλ

0 = −uλ
0, ω0 = 0, (B16)

uB
0,θ ≡ d0B

θ , uA
0,θ = 0, νλ

0 = −uλ
0, ω0 = 0.

The first one is independent of the other two as far as the U(1)
symmetry is broken. What we do next is to expand the equation
around k ≈ 0 to find the lowest-energy solution. In order to do
this, we expand as

uλ
k,θ = u

(0)λ
θ + u

(1)λ
k,θ + u

(2)λ
k,θ + · · · ,

νλ
k,θ = ν

(0)λ
θ + ν

(1)λ
k,θ + ν

(2)λ
k,θ · · · , (B17)

ωk = ω(0) + ω
(1)
k + ω

(2)
k · · · ,

and

ϒ(k) = ϒ0 + ϒ (2)(k) + · · · . (B18)

In the expansion for ϒ(k), there is no first-order component
of k [ϒ (1)(k)], because the k dependence arises through γ (k).
We start with

uλ
0,θ ≡

(
θ + ∂ωλ

∂h

)
d0λ

θ , νλ
0 = −uλ

0, ω0 = 0. (B19)

The first-order equation is

ω
(1)
k

[
u(0)

ν(0)

]
= ϒ0

[
u(1)

ν(1)

]
, (B20)

where u(0) = [(u(0)A)T ,(u(0)B)T ]T and ν(0) =
[(ν(0)A)T ,(ν(0)B)T ]T . With the identity Eq. (B15), the
first-order solution is

u
(1)λ
k,θ ≡ ω

(1)
k

∂d0λ
θ

∂h
, νλ

0 = uλ
0 . (B21)

We note here that (∂d0A
1 /∂h,∂d0A

0 /∂h,∂d0A
−1/∂h,∂d0B

1 /∂h,

∂d0B
0 /∂h,∂d0B

−1/∂h) is perpendicular to (d0A
1 ,d0A

0 ,d0A
−1,0,0,0)

and (0,0,0,d0B
1 ,d0B

0 ,d0B
−1 ). These relations [Eqs. (B19)–

(B21) and the orthogonality] justify starting from
Eq. (B19).

The second-order equation is

ω
(1)
k

[
u(1)

ν(1)

]
+ ω

(2)
k

[
u(0)

ν(0)

]
= ϒ0

[
u(2)

ν(2)

]
+ ϒ (2)(k)

[
u(0)

ν(0)

]
.

(B22)

If we multiply [(u(0))T , − (ν(0))T ] and make use of some
property of W,V , then we obtain

(
ω

(1)
k

)2
[
∂δnA

∂h
+ ∂δnB

∂h

]
= 4k2tφAφB

=⇒ ω
(1)
k =

(
2t

κ
φAφB

)1/2

k. (B23)

Here κ = ( ∂δnA

∂h
+ ∂δnB

∂h
)/2 is the spin susceptibility,

which corresponds to the compressibility in Bose
language.
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