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Electron spin resonance in a dilute magnon gas as a probe of magnon scattering resonances
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We study the electron spin resonance in a dilute magnon gas that is realized in a ferromagnetic spin system at
low temperature. A quantum cluster expansion is developed to show that the frequency shift of the single-magnon
peak changes its sign and the linewidth reaches its maximum across a scattering resonance between magnons.
Such characteristic behaviors are universal and can be used to experimentally locate the two-magnon resonance
when an external parameter such as pressure is varied. Future achievement of the two-magnon resonance may
have an impact comparable to the Feshbach resonance in ultracold atoms and will open up a rich variety of
strongly correlated physics such as the recently proposed Efimov effect in quantum magnets. We also suggest
how the emergence of an Efimov state of three magnons and its binding energy may be observed with the electron
spin resonance.
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I. INTRODUCTION

Scattering resonances play an important role in physics.
In the field of ultracold atoms, Feshbach resonances induced
with magnetic field are used to control the interaction between
atoms.1 This unparalleled tunability of the interaction has been
essential to the recent remarkable advance of the field and led
to experimental realization of a rich variety of physics, such
as the BCS-BEC crossover in Fermi gases2,3 and the Efimov
effect in Bose gases.4 These strongly correlated phenomena
in the vicinity of the scattering resonance are universal, i.e.,
independent of microscopic details. Also, an atom loss peak
caused by the three-atom or atom-dimer resonance has been
used as a signature of the emergence of an Efimov trimer.4,5

Turning to the field of condensed matter, the scattering
resonance can be induced between collective excitations in
ferromagnetic spin systems (magnons), for example, by tuning
the exchange coupling.6 Because the ferromagnetic coupling is
sensitive to the structure of ions,7 it is experimentally possible
to vary the exchange coupling significantly with pressure8 and
bring the system close to the two-magnon resonance. Future
achievement of the two-magnon resonance may have an impact
comparable to the Feshbach resonance in ultracold atoms and
will open up a rich variety of strongly correlated physics such
as the recently proposed Efimov effect in quantum magnets.6

But, what is an experimental signature of the two-magnon
resonance?

In this paper, we study the electron spin resonance (ESR)
in a dilute magnon gas as a probe of magnon scattering
resonances. ESR is a powerful experimental technique to
investigate the dynamics of interacting spin systems,9,10

while theoretical calculations of its spectrum are in general
challenging and thus often suffer from some limitations.
For example, the previous approaches developed by Kubo-
Tomita11 and Mori-Kawasaki12 are based on perturbations in
terms of small spin anisotropies,13 which are actually of no use
for our purpose because magnon scattering resonances take
place at large spin anisotropies.6 Therefore, a new approach
must be developed where spin anisotropies can be treated
nonperturbatively. One such approach is a quantum cluster
(or virial) expansion which uses a fugacity z ≡ e−β� as a

small parameter to perform a systematic expansion.14 Here �

is a single-particle excitation energy, β ≡ 1/(kBT ) the inverse
temperature, and the system is assumed to be so dilute that
z � 1, but importantly, no assumptions are needed on the
form of the interaction.

We first demonstrate this quantum cluster expansion in
Sec. II by computing a single-particle spectral function in a
dilute Bose gas, which serves as the universal formula for ESR
at low temperature and can be used to extract the scattering
length between magnons. Then in Sec. III, we apply the same
method to ESR in a dilute magnon gas and show that the
frequency shift of the single-magnon peak changes its sign
and the linewidth reaches its maximum across a scattering
resonance between magnons. Such characteristic behaviors
are universal and can be used to experimentally locate the
two-magnon resonance when an external parameter such as
pressure is varied. Finally, Sec. IV is devoted to the conclusion
of this paper and discussion where we also suggest how the
emergence of an Efimov state of three magnons and its binding
energy may be observed with ESR. Below we set h̄ = kB = 1
and the unspecified range of integration is assumed to be from
−∞ to ∞.

II. SINGLE-PARTICLE SPECTRAL FUNCTION IN A
DILUTE BOSE GAS

Before we work on ESR in a dilute magnon gas, it is
instructive to demonstrate the quantum cluster expansion in
a dilute Bose gas, which is described by a Hamiltonian

H =
∫

d r ψ†
r (ε−i∇ + �)ψr − g

2

∫
d r ψ†

r ψ
†
r ψrψr . (1)

Here ε p = p2/(2m) is the single-particle dispersion relation,
μ = −� < 0 is the chemical potential, and the bare coupling
constant g is related to the s-wave scattering length as by
1/g = m�/(2π2) − m/(4πas) with � being a momentum
cutoff. Our purpose in this section is to compute the single-
particle spectral function

A(ω, p) = −2 Im G(ω + i0+, p), (2)
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where G(iωn, p) with ωn ≡ 2πn/β being the Matsubara
frequency is the Fourier transform of the imaginary-time
propagator

G(iωn, p) = −
∫ β

0
dτ

∫
d r eiωnτ−i p·r〈ψr (τ )ψ†

0 (0)〉. (3)

As we will show in the next section, A(ω,0) serves as the
universal formula for ESR at low temperature and can be used
to extract the scattering length between magnons.

The imaginary-time propagator is defined by

−〈ψr (τ )ψ†
0 (0)〉 = − 1

Z
Tr[e−βH ψr (τ )ψ†

0 (0)], (4)

where Z is the grand canonical partition function: Z =
Tr[e−βH ]. The systematic expansion over the fugacity z =
e−β� � 1 can be developed by writing the grand canonical
trace as a sum over canonical traces with fixed particle
number N : Tr[ · ] = ∑∞

N=0 trN [ · ]. Because trN [e−βH ] ∝ zN ,
we obtain

Z = 1 + V
z

λ3
+ O(z2), (5)

where V is the system volume and λ ≡ √
2πβ/m is the thermal

de Broglie wavelength. Accordingly, the particle number
density is found to be

n = 1

Vβ

∂ ln Z

∂μ
= z

λ3
+ O(z2). (6)

Therefore, the quantum cluster expansion is valid when the
system is so dilute that the mean interparticle distance is much
larger than the thermal de Broglie wavelength: n−1/3 	 λ.

The numerator in Eq. (4) can be expanded over z in the
same way. By denoting the Fourier transform of each term as

GN (iωn, p) ≡ −
∫ β

0
dτ

∫
d r eiωnτ−i p·r

× trN [e−βH ψr (τ )ψ†
0 (0)] ∼ O(zN ), (7)

the leading term is easily evaluated as

G0(iωn, p) = 1 − e−βε pz

iωn − ε p − �
. (8)

On the other hand, after a straightforward calculation, the next-
to-leading term is evaluated as

G1(iωn, p) = V/λ3 + e−βε p

iωn − ε p − �
z +

∫
dq

(2π )3

F (iωn, p; q)

(iωn − ε p − �)2

× e−βεq z + O(z2), (9)

where

F (iωn, p; q) ≡ 8π/m

1/as − √−m(iωn − �+ εq − ε p + q/2)
(10)

is the forward scattering amplitude between a particle with
energy momentum (iωn − �, p) and an on-shell particle with
momentum q. Then, by writing the Fourier transform of the
imaginary-time propagator (3) in the standard form

G(iωn, p) = 1

iωn − ε p − � − �(iωn, p)
(11)

and comparing it with its systematic expansion obtained in
Eqs. (5), (8), and (9), we find that the self-energy �(iωn, p)
must have the following quantum cluster expansion:

�(iωn, p) = z

∫
dq

(2π )3
F (iωn, p; q)e−βεq + O(z2). (12)

Therefore, the self-energy at O(z) is determined only by
the two-particle physics, i.e., binary collisions with thermally
excited particles.

The resulting single-particle spectral function (2) at O(z0) is
simply a delta function located at ω = ε p + � corresponding
to the single-particle energy. By including the self-energy
correction �(iωn, p) ∼ O(z) � 1, it becomes a sharp peak
whose line shape within the accuracy up to O(z) is described
by the Lorentzian

Apeak(ω, p) ≈ −2 Im σ ( p)

[ω − ε p − � − Re σ ( p)]2 + [Im σ ( p)]2
,

(13)

where we introduced the on-shell self-energy

σ ( p) ≡ �(ε p + � + i0+, p)

= z

∫
dq

(2π )3

8π/m

1/as + i| p − q|/2
e−βεq . (14)

Therefore, the energy shift and the decay width of a particle
with momentum p in a dilute Bose gas are given by the real
and imaginary parts of σ ∗( p), respectively. The corresponding
normalized quantity σ ∗( p)/(zT ) ∼ O(1) at p = 0 is plotted
in Fig. 1 as a function of λ/as . We find that the energy shift
changes its sign and the decay width reaches its maximum
across the scattering resonance at as → ∞. Such characteristic
behaviors are universal and shared by ESR at low temperature.

Besides the single-particle peak at ω = ε p + � + Re σ ( p),
there exists an additional structure in A(ω, p) at ω < ε p + � +
E2 when two particles form a bound state with binding energy
E2 = −1/(ma2

s ) < 0. This structure is due to the pole of the
two-particle scattering amplitude (10) and shows a square-
root threshold singularity at ω = ε p + � + E2 in the single-
particle spectral function as A(ω, p) ∼ z

√
ε p + � + E2 − ω.

This feature at p = 0 is demonstrated in Fig. 2 by choosing
z = 0.1 and λ/as = 4 as an example. We also note that the
single-particle spectrum function of bosons is universal up

6 4 2 2 4 6 as

1

1

2

3
σ 0 zT

λ

FIG. 1. (Color online) Real and imaginary parts of σ ∗(0)/(zT ) in
Eq. (14) as functions of λ/as , represented by solid and dashed curves,
respectively.
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FIG. 2. (Color online) Single-particle spectral function A(ω,0)
for z = 0.1 and λ/as = 4 as a function of δω ≡ ω − �. The single-
particle peak goes up to T A(ω,0) � 51 and there is a threshold sin-
gularity at the two-particle binding energy E2/T = −(λ/as)2/(2π ).

to O(z2), i.e., independent of an ultraviolet cutoff. The O(z2)
term involves the three-particle physics and thus depends on an
additional parameter, so-called Efimov parameter κ∗.15 See the
discussion in Sec. IV on how the emergence of an Efimov state
and its binding energy may appear in the expected behavior of
A(ω,0) at O(z2).

III. ELECTRON SPIN RESONANCE IN A DILUTE
MAGNON GAS

A. Quantum cluster expansion

We now apply the same method to ESR in a dilute
magnon gas. For definiteness, we consider a spin-S Heisenberg
model with exchange (Jz �= J > 0) and single-ion (D �= 0)
anisotropies, which is described by

H = −1

2

∑
r

∑
ê

(
JS+

r S−
r+ê + JzS

z
rS

z
r+ê

)

−D
∑

r

(
Sz

r

)2 − B
∑

r

Sz
r . (15)

Here
∑

ê = ∑
ê=±x̂,± ŷ,± ẑ is a sum over six unit vectors of a

simple cubic lattice and spin operators S±
r ≡ Sx

r ± iS
y
r and Sz

r
obey the usual commutation relations: [S+

r ,S−
r ′ ] = 2Sz

rδr,r ′ and
[Sz

r ,S
±
r ′ ] = ±S±

r δr,r ′ . ESR experiments measure an absorption
intensity of electromagnetic radiation polarized perpendicular
to the magnetic field axis. Within the linear response theory for
a circular polarization, the absorption intensity normalized by
the system volume and the intensity of the incident radiation
is given by13,16

I (ω) = ω

2
Im χ (ω + i0+,0), (16)

where χ (iωn, p) is the Fourier transform of the imaginary-time
susceptibility

χ (iωn, p) =
∫ β

0
dτ

∑
r

eiωnτ−i p·r〈S−
r (τ )S+

0 (0)〉. (17)

While the ESR experiments can measure the spectrum only
at zero momentum, we develop the formulation for general p
and set p = 0 at the end.

The ground state for a sufficiently large magnetic field
B < 0 is a fully polarized state with all spins pointing
downwards: Sz

r |0〉 = −S|0〉 and S−
r |0〉 = 0. Accordingly, we

redefine the Hamiltonian to absorb the ground state energy
E0 = −∑

r (3JzS
2 + DS2 − BS) so that H |0〉 = 0. Because

of the U(1) symmetry under rotation S±
r → e±iθ S±

r , the
magnetization relative to the ground state δM ≡ 〈Sz

r 〉 + S is
a conserved quantity which corresponds to a particle number
density of magnons. Then at low temperature, magnons are
thermally excited and thus the system becomes a dilute
magnon gas. A single magnon has the dispersion relation
ε p = SJ

∑
ê[1 − cos( p · ê)] with the excitation energy � =

−6SJ + 6SJz + 2SD − D − B. As long as the fugacity is
small, z = e−β� � 1, the quantum cluster expansion can be
developed for the dilute magnon gas similarly to the previous
dilute Bose gas. The imaginary-time susceptibility is defined
by

〈S−
r (τ )S+

0 (0)〉 = 1

Z
Tr[e−βH S−

r (τ )S+
0 (0)], (18)

where Z is the grand canonical partition function: Z =
Tr[e−βH ]. By writing the grand canonical trace as a sum over
canonical traces with fixed magnon number N , we obtain

Z =
∞∑

N=0

trN [e−βH ] = 1 + V
z

ρ3
+ O(z2), (19)

where we used trN [e−βH ] ∝ zN and introduced the analog of
the thermal de Broglie wavelength by ρ ≡ ae2βSJ /I0(2βSJ )
with a being the lattice constant. Accordingly, the relative
magnetization is found to be

δM = 1

Vβ

∂ ln Z

∂B
= z

ρ3
+ O(z2). (20)

The numerator in Eq. (18) can be expanded over z in the
same way. By denoting the Fourier transform of each term as

χN (iωn, p) ≡
∫ β

0
dτ

∑
r

eiωnτ−i p·r

× trN [e−βH S−
r (τ )S+

0 (0)] ∼ O(zN ), (21)

the leading term is easily evaluated as

χ0(iωn, p) = −2S
1 − e−βε pz

iωn − ε p − �
. (22)

On the other hand, after a straightforward calculation, the next-
to-leading term is evaluated as

χ1(iωn, p) = −2S
V/ρ3 + e−βε p

iωn − ε p − �
z − 2S

∫ π/a

−π/a

dq
(2π/a)3

× �(iωn, p; q)

(iωn − ε p − �)2
e−βεq z + O(z2), (23)

where

�(iωn, p; q)≡
∑

ê

[
J cos

(
p + q

2
· ê

)

− Jz cos

(
p − q

2
· ê

)]
γ (ê) − 2Dγ (0) (24)
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is the forward scattering amplitude between a magnon with
energy momentum (iωn − �, p) and an on-shell magnon with
momentum q. Here the unknown function γ (r) = γ (−r)
implicitly depends on (iωn, p; q) and satisfies the Lippmann-
Schwinger equation

γ (r)=2 cos

(
p − q

2
· r

)
+

∫ π/a

−π/a

dk
(2π/a)3

cos(k · r)

×
∑

ê

[
J cos

( p+q
2 · ê

)− Jz cos(k · ê)
]
γ (ê) − 2Dγ (0)

iωn − � + εq − ε( p+q)/2+k − ε( p+q)/2−k
.

(25)

By setting r = x̂, ŷ,ẑ and r = 0, we obtain four coupled
equations to determine γ (ê) and γ (0) appearing in Eq. (24).

Then, by writing the Fourier transform of the imaginary-
time susceptibility (17) in the standard form

χ (iωn, p) = −2S

iωn − ε p − � − �(iωn, p)
(26)

and comparing it with its systematic expansion obtained in
Eqs. (19), (22), and (23), we find that the self-energy �(iωn, p)
must have the following quantum cluster expansion:

�(iωn, p) = z

∫ π/a

−π/a

dq
(2π/a)3

�(iωn, p; q) e−βεq + O(z2).

(27)

Therefore, the self-energy at O(z) is determined only by the
two-magnon physics, i.e., binary collisions with thermally
excited magnons. The resulting ESR spectrum (16) at O(z0) is
simply a delta function located at ω = � corresponding to the
single-magnon energy at p = 0. By including the self-energy
correction �(iωn,0) ∼ O(z) � 1, it becomes a sharp peak
whose line shape within the accuracy up to O(z) is described
by the Lorentzian

Ipeak(ω) ≈ ω

2

−2S Im ξ (0)

[ω − � − Re ξ (0)]2 + [Im ξ (0)]2
, (28)

where we introduced the on-shell self-energy: ξ ( p) ≡ �(ε p +
� + i0+, p). Therefore, the frequency shift and the linewidth
of the single-magnon peak are given by the real and imaginary
parts of ξ ∗(0), respectively.17 Also, when two magnons form
a bound state with binding energy E2 < 0, the ESR spectrum
shows an additional structure at ω < � + E2 similarly to
Fig. 2, while we will not investigate it further.

B. Solution and results

Our remaining task is to solve the Lippmann-Schwinger
equation (25) with iωn = � + i0+ and p = 0:

γ (r) = 2 cos

(
q
2

· r
)

+
∫ π/a

−π/a

dk
(2π/a)3

cos(k · r)

×
∑

ê

[
J cos

( q
2 · ê

) − Jz cos(k · ê)
]
γ (ê) − 2Dγ (0)

εq − εq/2+k − εq/2−k + i0+

(29)

to determine γ (ê) and γ (0) in the two-magnon scattering
amplitude (24). In the low-temperature limit T → 0, the
integration over q in the self-energy (27) is dominated by

the region q � 0 because of the Boltzmann factor. In this case,
by expanding the right-hand side of Eq. (29) up to O(q),
we find γ (x̂) = γ ( ŷ) = γ ( ẑ) and the integration over k can
be performed analytically. Then, by substituting the obtained
analytical solutions for γ (ê) and γ (0) into Eq. (24), we find
that the two-magnon scattering amplitude takes the same form
as that of bosons in Eq. (10):

lim
q→0

�(� + i0+,0; q) = 1

a3

8π/m

1/as + i|q|/2

= 1

a3
F (� + i0+,0; q), (30)

where 1/m = 2SJa2 is the inverse effective mass of magnons
and

as

a
=

3
2π

[
1 − D

3J
− Jz

J

(
1 − D

6SJ

)]
2S − 1 + Jz

J

(
1 − D

6SJ

) + 3W
[
1 − D

3J
− Jz

J

(
1 − D

6SJ

)]
(31)

is the scattering length between magnons with

W ≡
∫ π/a

−π/a

dk
(2π/a)3

2∑
ê[1 − cos(k · ê)]

=
√

6

96π3
�

(
1

24

)
�

(
5

24

)
�

(
7

24

)
�

(
11

24

)
(32)

being the Watson’s triple integral for a simple cubic lattice.18

We note that the same scattering length was obtained in Ref. 6
with a different approach.

Accordingly, the low-temperature limit of the on-shell
self-energy at p = 0 appearing in Eq. (28) reduces to that
in Eq. (14),

lim
T →0

ξ (0) = σ (0), (33a)

and thus the line shape of the single-magnon peak is described
by the universal formula

lim
T →0

Ipeak(ω) = ω

2
SApeak(ω,0), (33b)

where Apeak(ω, p) is the single-particle spectral function of
bosons obtained in the previous section as Eq. (13). This
result is actually expected because the magnon gas at low
temperature is so dilute that the system becomes independent
of microscopic details and thus described by only a few
low-energy parameters such as m and as [additionally κ∗ at
O(z2)]. Therefore, it is possible to extract the scattering length
between magnons by fitting the universal formula (33) to the
experimentally measured temperature dependence of the line
shape of the single-magnon peak.

Away from the low-temperature limit, the line shape (28)
is model dependent and has to be evaluated numerically by
solving Eq. (29) for general q. The frequency shift and the
linewidth of the single-magnon peak are given by the real and
imaginary parts of ξ ∗(0), respectively, and the corresponding
normalized quantity ξ ∗(0)/(zT ) ∼ O(1) is plotted in Fig. 3.
For demonstration, we choose three distinct cases where
S = 1/2, S = 1 with D = 0 as functions of Jz/J , and
S = 1 with Jz = J as a function of D/J at four different
temperatures, T/J = 0.01,0.1,1,10. Figure 3 also displays the
corresponding scattering length (31) which indicates that the
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FIG. 3. (Color online) Top panels show scattering lengths in Eq. (31) for S = 1/2 (left), S = 1 with D = 0 (middle) as functions of Jz/J ,
and S = 1 with Jz = J (right) as a function of D/J . The vertical lines indicate the locations of two-magnon resonances where as → ∞.
Middle and bottom panels show real and imaginary parts of ξ ∗(0)/(zT ) in Eq. (28) at T/J = 0.01, 0.1, 1, and 10, represented by solid, dashed,
dash-dotted, and dotted curves, respectively.

two-magnon resonances as → ∞ are located at Jz/J = 2.94,
Jz/J = 4.87, and D/J = 4.77, respectively, where magnons
interact strongly. We find that the line shape of the single-
magnon peak is well described by the universal formula
(33) at low temperature T < J and thus the frequency shift
changes its sign and the linewidth reaches its maximum across
the two-magnon resonance. Such characteristic behaviors
become sharper with decreasing temperature and can be seen
moderately even at intermediate temperature T � J , while
they disappear at higher temperature T > J .

IV. CONCLUSION AND DISCUSSION

In this paper, we studied ESR in a dilute magnon gas that is
realized in a ferromagnetic spin system at low temperature. We
developed the quantum cluster expansion up to O(z) which is
determined by the two-magnon physics and showed that the
frequency shift of the single-magnon peak changes its sign
and the linewidth reaches its maximum across a scattering
resonance between magnons. Such characteristic behaviors
are universal and can be used to experimentally locate the
two-magnon resonance when an external parameter such as
pressure is varied. Future achievement of the two-magnon
resonance may have an impact comparable to the Feshbach
resonance in ultracold atoms and will open up a rich variety

of strongly correlated physics such as the recently proposed
Efimov effect in quantum magnets.6

It is straightforward in principle to continue this systematic
expansion to include higher-order corrections. In particular,
the O(z2) term involves the three-magnon physics and thus
it is possible to probe the Efimov effect with ESR. When the
system comes across the critical coupling where an Efimov
state of three magnons emerges from the scattering threshold,
the linewidth of the single-magnon peak as a function of the
external parameter is expected to show an additional peak
structure caused by the three-magnon resonance on either side
of the two-magnon resonance. This feature is in analogy with
ultracold atom experiments where an atom loss peak caused
by the three-atom or atom-dimer resonance has been used as a
signature of the emergence of an Efimov trimer.4,5 Similarly, a
pair of universal four-magnon states associated with every
Efimov state19,20 may be observed with ESR through an
additional peak structure in the linewidth at O(z3) caused by
the four-magnon resonance.21,22 Besides such characteristic
behaviors in the single-magnon peak, we expect an additional
structure in the ESR spectrum at ω < � + EN when N

magnons form a bound state with binding energy EN < 0.
This structure shows a threshold singularity at ω = � + EN

as I (ω) ∼ zN−1(� + EN − ω)(3N−5)/2, which may be used to
measure binding energies of magnon Efimov states. Therefore,
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ESR is a powerful experimental technique to investigate the
interaction among magnons and their spectrum.

So far we considered ferromagnetic spin systems where
the single-magnon dispersion relation has a minimum at zero
momentum. On the other hand, it is also possible to induce
the two-magnon resonance and thus the magnon Efimov
effect in spin systems with antiferromagnetic or frustrated
exchange couplings where the single-magnon dispersion
relation has a minimum at nonzero momentum.6,23,24 In these
cases, however, the sharp signature of magnon scattering
resonances discussed in this paper will not appear in ESR
because it measures the spectrum only at zero momentum.
Therefore, different experimental techniques such as inelastic

neutron scattering that can scan momentum space should be
used to probe magnon scattering resonances. The quantum
cluster expansion developed in this paper will be useful to
compute any other physical observables in a dilute magnon
gas.
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