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Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials:
Design and applications
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We report the design and the characterization of artificial structures made of periodical distributions of
structured cylindrical scatterers embedded in a two-dimensional (2D) waveguide. For certain values of their
geometrical parameters they show simultaneously negative effective bulk modulus and negative effective mass
density. Here our analysis is focused on the frequencies where they behave like materials with negative density
or density near zero (DNZ). The scattering units consist of a rigid cylindrical core surrounded by an anisotropic
shell divided in angular sectors. The units are embedded in a 2D waveguide whose height is smaller than
the length of the cylinders, which makes the structure quasi-2D. We have obtained the dispersion relation of
the surface acoustic waves excited at frequencies with negative effective density. Also, we report phenomena
associated with their DNZ behavior, such as tunneling through narrow channels, control of the radiation field,
perfect transmission through sharp corners, and power splitting. Preliminary experiments performed on samples
with millimeter-scale dimensions demonstrated their single-negative behavior, with the main drawback being the
strong losses measured at the frequencies where the negative behavior is observed.
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I. INTRODUCTION

Acoustic metamaterials are artificial structures with acous-
tic properties not found in natural materials. These structures
are essentially periodic composites of subwavelength units
which present an unusual macroscopic behavior as a whole.
The resulting properties can be exploited for giving rise to
many interesting acoustic devices, which have been already
reported in review articles and books.1,2 For example, meta-
materials with dynamical mass anisotropy have been applied to
develop hyperlenses,3 gradient index lenses,4,5 subwavelength
resonators,6 radial acoustic crystals,7,8 acoustic cloaks,9,10

and many other devices proposed within the framework of
transformation-based solutions.11–13

Acoustic metamaterials are mainly known because
of their behavior as acoustic structures with negative
bulk modulus,14–17 negative mass density,18–21 or both
simultaneously.22–28 These fascinating behaviors appear at
narrow frequency bands and their physical origin has been
explained in terms of the internal resonances of the building
units:22 the negative bulk modulus being associated with
monopolar resonances while the negative density is associated
to dipole-type resonances.

Negative bulk modulus has been demonstrated by
using quasi-one-dimensional arrays of Helmholtz res-
onator embedded in water14 and in air.15,16 More recently,
quasi-two-dimensional structures exhibiting negative bulk
modulus have been demonstrated by using boreholes drilled
in a two-dimensional (2D) waveguide.17 On the other hand,
the dipolar resonances appear when using structured units
consisting of a heavy mass core surrounded by a soft
polymer, both being embedded in a relatively rigid epoxy.18

Currently, the usual approach is based on one-dimensional
(1D) arrays of elastic membranes,19–21 the main drawback
being the high degree of precision required for the tension
applied to the membranes, which must be the same. This
issue has been overcome in a recent proposal,29 where the
negative density behavior is obtained in a 2D waveguide

with a periodic distribution of cavities filled up with an
isotropic metafluid, its sound speed being smaller than that
of the surrounding background. This condition is easy to
engineer, as has been already demonstrated.30 The proposed
structures are robust and present double negative behavior at
frequency regions which can be tailored by adjusting the cavity
parameters.

In this work we report the characterization of quasi-2D
artificial structures behaving as double negative acoustic
materials in certain frequency regions and that can be used
as density-near-zero (DNZ) materials in selected frequencies.
These structures consist of anisotropic cylindrical scatterers
penetrating in one of the rigid walls defining the 2D acoustic
waveguide. In other words, the length of the scattering units
exceeds the height of the waveguide in such a manner
that they can be referred to as quasi-2D sonic crystals.
These structures are different than others reported since the
DNZ behavior does not involve the use of membranes or
the presence of an additional fluid inside each scatterer.
Therefore, the proposed structures are easily fabricated using
any material with acoustic impedance much higher than that
of the surrounded background, which will be air in the present
work.

The article is organized as follows. After this Introduction,
in Sec. II, the proposed structure is studied in the low-
frequency limit and the effective parameters of the resulting
metamaterial are obtained by solving the scattering problem. In
the following sections we report several numerical experiments
based on the finite elements method (FEM), showing several
applications of these metamaterials. Particularly, Sec. III
shows that the excitation of surface acoustic waves is possible,
which opens the possibility of the amplification of evanescent
waves and acoustic superlensing. Section IV analyzes several
applications of these metamaterials working at the frequencies
where the structure shows a DNZ behavior. The tunneling
through narrow channels, the tailoring of the radiation pattern,
and the transmission through sharp bends and the power
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FIG. 1. (a) Schematic view of the structure under study. It is made
of an array of anisotropic scatterers embedded in a 2D waveguide
with height h. (b) Scheme of an individual scatterer consisting of
a structured cylinder with radius Rb and total length L + h, where
L is length extending into the 2D waveguide. The wall is made
semitransparent to observe that corrugations extend along the whole
length L. (c) Section of the scatterer showing its angular anisotropy.
The grayed regions represent an acoustically rigid material.

distribution among several waveguides are discussed through
simulations based on FEM. The transmission spectra of two
fabricated structures are described in Sec. V. Finally, the
work is summarized in Sec. VI. The Appendix describes the
mathematical procedure to obtain the T matrix of the proposed
structures.

II. ACOUSTIC METAMATERIAL:
EFFECTIVE PARAMETERS

Figure 1(a) shows a schematic view of the proposed
metamaterial. It consists of a periodic array of cylindrical
scatterers embedded in a 2D waveguide, which is defined by
two infinite parallel rigid planes separated by a distance h. The
structure of a single scatterer is shown in Fig. 1(b). Note that
the total length of the cylindrical scatterer is L + h, L being
the part inserted in the bottom plane of the 2D waveguide. Rb

is the external radius of the cylinder and Ra is the radius of the
internal core that is an acoustically rigid cylinder. The space
between the rigid core and the external radius is angularly
partitioned into equal sectors, as it is depicted in Fig. 1(c).
Note that the resulting system is defined with five parameters
(i.e., h, Ra , Rb, L, and α), with which the acoustics properties
can be totally controlled.

In what follows we show that an isolated unit is able
to maintain monopolar and dipolar resonances in separated
frequency regions. This property justifies its use as the building
unit of metamaterials with negative parameters (see Sec. II A).

A. Effective acoustic parameters of the scattering unit:
Ba(ω) and ρa(ω)

The frequency-dependent bulk modulus and dynamic mass
density Ba(ω) and ρa(ω), respectively, of the scattering units
are31

Ba(ω)

Bb

= k2
bR

2
b

2
ln kbRb − 1

2
kbRbχ0, (1)

ρa(ω)

ρb

= χ1

kbRb

, (2)

where Bb and ρb are the background parameters and kb =
ω/cb the corresponding wave number. In this work, the
fluid background under consideration is air with density
ρb = 1.25 kg/m3 and sound speed cb = 343 m/s.

The quantities χ0 and χ1 are related with the two first
diagonal elements T0 and T1, respectively, of the T matrix
describing this scattering unit. It has been shown that31

Tq = − χqJ̇q(kbRb) − Jq(kbRb)

χqḢq(kbRb) − Hq(kbRb)
, (3)

where Jq and Hq are the qth-order Bessel and Hankel
functions, respectively, and the dot top indicates the partial
derivative with respect to their argument.

The solutions for χ0 and χ1 inserted in Eqs. (1) and (2)
allow the calculation of the frequency-dependent parameters,
Ba(ω) and ρa(ω). A typical behavior of these parameters for
a given geometry is shown in Fig. 2, where it is shown how
the frequency response is complex due to the oscillations of
the pressure field inside the structured unit. These oscillations
appear, as in the case of the units based on an isotropic fluid,29

because of the smaller sound speed inside the scattering unit in
comparison with that in the background. Note that the proposed
cylindrical scatter enters a length L inside one surface of the
2D waveguide, so that the scatterer presents a dynamical mass
density apparently smaller than that of the background by a

FIG. 2. (Color online) Effective bulk modulus (top panel) and
effective mass density (bottom panel) as a function of the frequency
(in reduced units) corresponding to the scattering unit depicted
in Fig. 1. The parameters are h = Rb, L = 3.5h, Ra=0.5Rb, and
α = π/8. The shadowed areas define the frequencies where the
acoustic parameters have negative values.
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factor ≈h/L. Also, the presence of the rigid sectors in the shell
surrounding the central core forbids the propagation of sound
along the angular direction, having an effect of reduction in
the sound speed, as has been shown in Ref. 6.

The existence of a frequency region where the structure
shows a negative bulk modulus is due to the length L of
the cavity, which acts as a Helmholtz resonator, as has been
widely demonstrated.14–17 Regarding the behavior for the mass
density at very low frequencies, we do not expect an infinite
negative mass extending up to zero frequency. The results for
frequencies close to zero are not displayed since the analytical
model in Eq. (2) contains approximations that give unreliable
values for extremely low frequencies.

B. Effective parameters of the acoustic metamaterial:
Bm(ω) and ρm(ω)

Let us consider now the periodic structure depicted in
Fig. 1(a), which consists of a hexagonal distribution of the
scattering units shown in Fig. 1(b). For wavelengths larger
than the lattice constant, a, this structure behaves as an
effective medium with some frequency-dependent effective
mass density ρm(ω) and bulk modulus Bm(ω), which can be
obtained from Ba(ω) and ρa(ω) using the relationships31

1

Bm(ω)
= 1 − f

Bb

+ f

Ba(ω)
, (4)

ρm(ω) = (1 + f )ρb + (1 − f )ρa(ω)

(1 − f )ρb + (1 + f )ρa(ω)
, (5)

where f is the filling fraction of the underlying lattice. For the
hexagonal lattice, f = (2π/

√
3)(Rb/a)2.

A comprehensive analysis of the values taken by these
parameters as a function of the six parameters defining the
structure (h, Ra , Rb, L, α, and a) is a cumbersome task and
it is beyond the scope of this work. We have here reduced the
analysis to two cases that we consider of interest.

We have simplified our study to structures made of
scattering units with parameters Ra = 0.5Rb, L = 3.5h, and
h = Rb = 0.44a. It should be pointed out that the central
core considered here (with radius Ra �= 0) not only adds
an additional degree of freedom into the design of the
metamaterial, but also has practical benefits; sharp corners
are avoided which, in principle, diminishes dissipation losses.
First, we looked for the frequencies with negative values of the
acoustic parameters as a function of L/h, the ratio between
the length L and the height h of the 2D waveguide.

Figure 3 shows the results of our study represented in
a phase diagram plot; the area enclosed by the continuous
(dashed) lines represent the regions where the effective mass
density (effective bulk modulus) is negative. Frequencies are
only represented below the homogenization limit, which is
0.25 (in reduced units). In terms of wavelengths λ � 4a

(Ref. 30). Note that negative density starts appearing for ratios
L/h � 0.78. Above this point, the reduction of the effective
density in a single scatterer is larger enough to produce a
metamaterial with negative dynamical mass density. Figure 3
also indicates that it is not until L/h larger than 2 where
the cavity length L is large enough to act as a Helmholtz

FIG. 3. (Color online) Colored areas define the values ω − L/h,
where the metamaterial parameters are negative. The small over-
lapping region between them gives the conditions where both
parameters are simultaneously negative. These results are obtained
using the structure depicted in Fig. 1, with parameters h = Rb and
α = π/8.

resonator and, therefore, produce a metamaterial with negative
bulk modulus. It is observed that with increasing values of the
ratio L/h, the corresponding frequencies with negative values
shift to lower frequencies, where the homogenization limit is
even more accurate.

In comparison with analogous structures based on arrays
of isotropic metafluid shells32 the overlap between negative
regions is now produced in a narrow strip of frequencies.
This result is due to the large frequency separation between
the resonances associated with the effective bulk modulus
and the mass density, respectively, as shown in Fig. 2. Also
remember that single-negative values in Fig. 3 correspond
to imaginary values of the metamaterial sound speeds cm.
Effectively, since cm = √

Bm/ρm, there will be no propagation
through the metamaterial and a band gap exists in the acoustic
band structure of the infinite periodic system.

A typical example of the frequency dependence of the
effective parameters is depicted in Fig. 4, which is a cut
along the line L = 3.5Rb in the phase diagram shown in
Fig. 3. A narrow frequency region can be observed, located
in the interval [0.146-0.151], where both parameters are
simultaneously negative. The double negativity behavior is
a very interesting phenomenon in all types of metamaterials
but it is especially challenging for airborne propagation,
where the possibilities of having resonant structures is limited
due to the scarce interaction of sound waves with solid
structures.

Figure 5 represents the second case of interest. Now, the
phase diagram of the same structure is shown when the cavity
length is kept constant and the negative behavior is analyzed as
a function of the ratio Ra/Rb. As before, the continuous lines
enclose the areas with negative dynamical mass density while
the dotted line encloses the area with negative bulk modulus.
Note that the influence of the central core (Ra) is weak for
values of Ra/Rb �0.4, which means that in the fabrication
process this cylinder will not affect the global behavior of the
metamaterial. Above this value, the narrowing of the negative
regions begins until they completely disappear at Ra ≈ Rb,
where the scattering units become acoustically rigid cylinders.
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FIG. 4. (Color online) Frequency dependence of the effective
bulk modulus and dynamical mass density for the structure depicted
in Fig. 1(a). The results correspond to the case with geometrical
parameters h = Rb = 0.44a, Ra = 0.5Rb, α = π/8, and L = 3.5h.
The shadowed areas correspond to the frequencies with negative
values.

III. NEGATIVE DYNAMICAL MASS:
SURFACE ACOUSTIC WAVES

Acoustic metamaterials with negative dynamical mass
density have been experimentally demonstrated using soft
rubber spheres in water18 or employing lattices of membranes
in air.19,21 The negative value is obtained thanks to the
dipole-type resonances exhibited by the building units forming
the metamaterial. These dipole-type resonances produce that
the response of the fluid—acceleration—be out of
phase with the dynamic pressure gradient.22 However, it has
been pointed out that metamaterials based on membranes
present several drawbacks, like repeatability of the building
units or aging of the materials. Thus, different approaches
should be explored in order to propose robust structures with
the same negative behavior in the dynamical density.

FIG. 5. (Color online) Area enclosed by the continuous (dashed)
lines gives the values ω − Ra/Rb where the dynamical mass density
(bulk modulus) is negative. The overlapping area defines the zones
where double negative parameters are produced.

Amplification of evanescent waves has been experimen-
tally demonstrated using membrane-based 2D metamaterials
slabs.21 In a similar manner, this section demonstrates that the
amplification is also possible using our quasi-2D structures
working at the frequencies with negative effective density.
The amplification of evanescent modes was theoretically
proposed in acoustics by Ambati and co-workers33 following
the analogous result obtained for EM waves provided by slabs
of negative-permittivity materials.

Let us consider the simple case in which we have an
interface between two semi-infinite mediums: Medium I is
the air background with positive mass and modulus, whereas
medium II is the metamaterial under study with mass density
ρm and bulk modulus Bm. The wave vectors in these media
are, respectively,

kb =
√

k2
b,x + k2

b,y, (6)

km =
√

k2
m,x + k2

m,y, (7)

where ki,x and ki,y are the Cartesian components of the
wave vector ki (i = b,m), being kb,y = km,y = ky because
of the continuity of the parallel wave vectors at the air-
metamterial interface. Figure 6 shows the schematic view of
the physical system under study, where the metamaterial slab
with thickness D is embedded in a fluid background (air in
this work).

The matching of the pressure and normal velocity at the
interface gives the relation between the normal components of
the respective wave vectors:33

kb,x

ρb

+ km,x

ρm(ω)
= 0. (8)

Since the necessary condition for having a bound state at
the air-metamaterial interface is that both kb,x and km,x have

FIG. 6. (Color online) Scheme of the computational setup em-
ployed in the finite element simulations. The multilayered system
air-metamaterial-air is enclosed in a domain with nonreflective
boundaries. A punctual source is placed in the left air layer, at the
bottom right corner near the metamaterial slab, in order to excite
surface modes along each interface.
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positive imaginary parts, it is concluded from Eq. (8) that
ρm(ω) must be negative.

A numerical experiment has been performed through a
3D FEM simulation using a slab made of nine rows of cylinders
distributed in a square lattice with lattice period a and a length
of W = 17a. Figure 6 depicts the computational domain which
considers that all the external boundaries are reflectionless
interfaces which absorb the outgoing waves. In order to excite
the surface states, a point source has been placed in the air near
the metamaterial surface. The square lattice is here preferred
due to plotting advantages; the pressure field can be easily
depicted along an axis passing between the two consecutive

rows of scatterers. For this lattice, the filling ratio is f = πR2
b

a2 .
The slab has been enclosed in a waveguide with rigid walls
of height h = 0.47a. The values of parameters describing the
scatterers are (see Fig. 3) L = 1.65a (L = 3.5h). For these
values the negative mass behavior appears within the range
ωa/2πc ∈ [0.105,0.135].

(b)

(a)

FIG. 7. (Color online) (a) Surface waves excited at the air-
metamaterial interface using a punctual source emitting at the fre-
quency 0.122 (in reduced units). The vertical dashed line corresponds
to the zone where the pressure field is processed in order to determine
the dispersion relation of the surface modes. (b) Normalized pressure
amplitude of the evanescent waves along the x direction. It is
calculated at the equatorial plane between two rows of scatterers.

Figure 7(a) shows a snapshot of the pressure amplitude
excited with the source radiating at ωa/2πc = 0.122. It is
observed that surface acoustic waves are generated in both
air-metamaterial interfaces. The amount of this effect is better
displayed in Fig. 7(b), where the dependence of the amplitude
profile is shown along the horizontal x axis for the value y =
8.5a. This figure shows that the amplitude is maximum at the
interface where the source is located and it decreases to the
right, as expected. However, note that inside the metamaterial
the envelope of the amplitude decreases towards the interior
until it reaches the center, where it starts increasing up to the
opposite interface. The maxima observed under the envelope
are due to the excitation of the local resonances in the scattering
elements producing a field accumulation inside them. This
accumulation is smaller for deeper positions inside the slab.

The increasing of pressure amplitude in the opposite
interface is due to the fact that the conditions for the existence
of a propagating surface acoustic wave are accomplished.
Therefore, since the metamaterial thickness is small enough,
the coupling between both surface states is possible and
the excitation at one interface allows the excitation at the
other one. The behavior here described is similar to that
experimentally observed by Park et al.,21 who used a square
distribution of membranes embedded in a 2D waveguide with
h = 5 mm. Therefore, we can conclude that the possibility of
acoustic superlensing should be possible by using our artificial
structures if the losses associated to the dipole-type resonances
are small enough.

The dispersion relation of the surface states has been
obtained from the data obtained from the numerical ex-
periment. The vertical wave vector of these modes ky was
calculated by determining their wavelength along the y axis
at each frequency. This task was performed through a Fourier
transform of the pressure field evaluated along the dashed line
in Fig. 7(a), which is parallel to the air-metamaterial interface
for x = 9a. The response obtained is the same for the two
isotropic lattices in 2D (i.e., for the hexagonal and square
lattices) and it is represented with symbols in Fig. 8. The
continuous line in this figure corresponds to the dispersion
relation resulting from the theoretical model,33

k2
y(ω) = ω2

c2
b

ρ∗(ω)

1 − ρ∗(ω)2

[
ρ∗(ω) − 1

B∗(ω)

]
, (9)

where

ρ∗ = ρm

ρb

, B∗ = Bm

Bb

. (10)

It is observed in Fig. 8 that the dispersion relation of the
surface waves is similar to that of the surface plasmons.
Since they are localized, they appear at frequencies below
the “light” line ω = cbkb, which is represented by the black
dashed line in Fig. 8. This figure also shows a small shift
between the data obtained from the FEM simulations and
those obtained by the analytical model. This deviation is
due to the fact that the theoretical approach assumes an
approximation when considering a coefficient of anisotropy
γ = 0 (see Appendix A). For the highest frequencies, large
values of ky lead to small wavelengths along the y axis and,
consequently, the structure no longer behaves as an uniform
medium. This fact leads to the unphysical (spurious) points
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FIG. 8. (Color online) Dispersion relation of the surface states
obtained at the air-metamaterial interface, where the metamaterial
consists of an isotropic lattice (hexagonal or square) of the cylindrical
units shown in Fig. 1. The parameter’s values of the structured
cylinders are Ra = 0.5Rb, α = π/8, and Ra = h = 0.47a, where
a is the lattice constant. The continuous line represents the result
obtained using the mode-matching method while the symbols are
results obtained from 3D simulations based on FEM. The black
dashed line represents the line describing the propagation in the air
background ω = cbkb.

observed in Fig. 8. Note the overall good agreement between
the theoretical model and the FEM simulations. These results
give support to the theory here developed and confirm that the
structures proposed in this work exhibit negative mass density.

IV. APPLICATIONS OF DNZ METAMATERIALS

The EM counterpart of DNZ acoustic metamaterials are
those with low permittivity or ε-near-zero (ENZ) materials,
which have been proposed for a rich variety of applications,
like cloaking,34,35 “squeezing” and tunneling of EM waves
through very narrow channels,36–38 and radiation patterning.39

Since all these amazing phenomena are basically exploiting
the condition of infinite phase velocity of EM waves occurring
with ENZ materials, similar behaviors are expected for
acoustic waves when working with DNZ metamaterials.

In this section we report FEM simulations showing that
the artificial structures here introduced can be employed to
develop similar applications at the frequencies where DNZ is
obtained. In particular, the tunneling through narrow channels,
the transmission through sharp bends and the filtering of
transverse modes due to radiation patterning are theoretically
demonstrated. Results is this section are obtained using the
same geometrical parameters from the previous sections.

A. Tunneling of acoustic waves through narrow channels

An exciting application of our DNZ acoustic metamaterial
is the possibility of squeezing the major portion of the 2D
propagating sound energy into an ultranarrow channel filled
with it, like it has been recently demonstrated in its EM
counterpart.37,38 As in the case for EM waves, the phenomenon
can be explained in terms of the effective infinity phase velocity
inside the DNZ metamaterial. In brief, since cm =

√
Bm

ρm
, for

FIG. 9. (Color online) (a) Pressure map showing the sound prop-
agation through a narrow channel. The white strip represents a rigid
wall. (b) Resulting map when the channel is embedded in a DNZ
metamaterial slab made of the scatterers depicted in Fig. 1. The white
arrows indicate the direction of wave propagation.

the selected frequencies where ρm ≈ 0, then cm → ∞ and
consequently the wave vector inside the metamaterial km =
ω/cm → 0, which implies that the phase of the wave does not
advance while the sound propagates inside the metamaterial.
Note that reflections are avoid at the air-metamaterial interface
by selecting frequencies ω0 accomplishing the additional
condition of an almost perfect matching of impedance with that
of air. In other words, Z2

m(ω0) = ρm(ω0)Bm(ω0) ≈ ρbBb =
Z2

b . A inspection of Fig. 4 shows that this condition occurs at
frequencies where both metamaterial parameters are negative
and ρm ≈ 1/Bm.

Both conditions allow the phenomenon of tunneling
through a narrow channel existing in the DNZ metamaterial,
as shown in Fig. 9(b). This figure shows a snapshot of the
transmission of a sound wave with frequency 0.1455 (in
reduced units) through a metamaterial slab with an embedded
narrow channel determined by a perfect rigid wall, which is
represented by the white stripe. The slab is made of nine
layers and the channel is one lattice parameter wide along
the vertical y direction and Rb being its thickness along the x

direction. Note that a is the minimum length of the channel
that can be constructed with the metamaterial under study.
For comparison purposes, Fig. 9(a) shows the result using the
same configuration except that the DNZ metamaterial has been
removed from the channel. As observed, part of the incident
wave is reflected by the rigid wall while the transmitted wave
no longer has a plane wave front.

It is interesting to point out that the behavior characterized
in Fig. 9(b) has been obtained in the frequency region where
the metamaterial is double negative. In order to check the
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FIG. 10. Calculated transmitted energy flux through the metama-
terial slab shown in Fig. 9(b). Values are obtained in a frequency
range where the metamaterial is double negative (see Fig. 4). Unity
transmission is produced at 0.1455 where the tunneling effect occurs.

perfect transmission of the sound energy we have calculated
the transmitted energy flux, 
t , and have compared it with the
impinging energy flux, 
in.

Figure 10 shows the transmitted energy flux normalized to
the incoming flux. The energy flux passing through a surface
S at an arbitrary position x is calculated using the expression,


(x) =
∫

S

Re(Pv∗
x · dSx), (11)

where Sx is the area perpendicular to the x axis, v∗
x the complex

conjugate of the velocity x component, and P the pressure
field. It is noticeable that perfect transmission is obtained at
0.1455, the frequency at which one snapshot of the tunneling
effect is represented in Fig. 9. Note that the tunneling appears
at a frequency corresponding to a wavelength much larger
than the channel thickness a, i.e., at λ ≈ 6.9a. Also note that
tunneling at larger wavelengths in comparison with the channel
aperture can be obtained by simply using metamaterials based
on a larger cavity length L since the DNZ behavior is obtained
at lower frequencies.

The numerical simulation in Fig. 9(b) along with the
calculated unity transmission obtained at the same frequency
confirm that “squeezed acoustic waves” will tunnel with
a negligible phase shift through extremely narrow DNZ
channels based on the structures introduced here. Recently,
Fleury and Alù have theoretically proposed that extraordinary
sound transmission through DNZ ultranarrow channels is also
possible by loading a capillarity tube with membranes.40

B. Controlling the radiation field

A recent work by Wei and co-workers41 theoretically
investigated the propagation in 2D index-near-zero (INZ) and
DNZ acoustic metamaterials embedded with defects. They did
not propose any artificial structure for observing the properties
they claimed, but their simulations indicate that total trans-
mission, total reflection, and tunable transmission are indeed
possible by introducing appropriate defects. Particularly, they
show that acoustic cloaking was indeed possible. Similar
results can also be obtained using our proposed artificial
structures by selecting the frequencies at which INZ and

FIG. 11. (Color online) (a) Calculated map of the pressure field
(real part) for the scattering of a sound wave with an acoustically
rigid cylinder (white circle). (b) Map for the case in which a DNZ
metamaterial slab is placed behind the cylinder. The white arrows
represent the direction of sound propagation. It is shown that the
higher order modes resulting from the scattering with the cylinder are
completely suppressed by the DNZM slab.

DNZ take place. However, in this section, we report another
interesting application of DNZ metamaterials: the control of
the radiation pattern by a DNZ metamaterial slab.

Let us consider the scattering of a plane wave impinging
on a defect embedded in an empty 2D waveguide. For
simplification purposes we consider that the defect is a rigid
scatterer with circular section and radius Rd . The scattered
field has a complex pattern which is shown in Fig. 11(a). Note
that the radiation field contains plane waves with orders higher
than zero. However, if we place a slab of our DNZ material
at a certain distance behind the rigid scatterer the plane wave
front is perfectly recovered. This phenomenon is observed
in Fig. 11(b), which shows a snapshot of the total pressure
for the systems described. A similar effect was described
by Alù and co-workers39 studying the propagation of EM
waves in ENZ materials. The reason for this similarity is the
formal equivalence between the wave equation representing
the propagation for EM waves with phase velocity being
infinitely large (i.e., ∇2E = 0) with that for acoustic waves
also accomplishing the condition of infinitely large phase
velocity, ∇2P = 0.

Note that the DNZ material is made of just three layers of
our artificial structures. The plot demonstrated how the com-
plex radiation pattern impinging the DNZ slab is transformed
at the exit side, the radiation field being conformal with the exit
metamaterial surface due to the small phase variation inside the
material. Since all the points at the exit surface start emitting
at the same time, the resulting wave front will keep the shape
of the surface, which in our example is a plane. In this way,
we have filtered all off-normal components of the impinging
wave.

In spite of the simplifications employed for the scatterer
shape defining the defect and its acoustic properties, the main
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FIG. 12. (Color online) Snapshot of the pressure field (real part)
showing the transmission through a 90◦ bend. The plot shows
unity transmission through the bend which has a DNZ metamaterial
embedded at the corner.

conclusion is completely general and can be extended to any
other shapes and material composition of the scatterer. In fact,
this result can be considered as an application of the DNZ
materials as media for tailoring the phase of radiation pattern
of arbitrary sources, an application that has been reported for
ENZ materials.39

C. Perfect transmission through sharp bends and corners

The idea of tunneling of EM waves through narrow channels
embedded in a ENZ material can be extended to the case in
which the ENZ material form sharp bends and corners.36 As
in the case of perfect transmission through narrow channels,
the extremely large value of the wavelength inside the ENZ
material implies that the wave must be able to propagate with
negligible reflection losses at abrupt bends or junctions.42

In the acoustic counterpart, the DNZ materials can be
employed as the media allowing perfect sound transmission
inside 2D waveguides with sharp bends and corners. As an
example, we studied the case of two perpendicular waveguides
with equal thicknesses.

Figure 12 represents the pressure transmission through a
90◦ bend in which thickness of the horizontal and vertical
arms is 3a, with a being the lattice period. Note that the sound
wave passes through the corner without reflection, keeping its
plane wave front. The EM counterpart of this phenomenon
has been experimentally demonstrated using ENZ materials
by Edwards and co-workers.43

D. Acoustic waveguide splitter

Aside from applications based on a single waveguide, DNZ
metamaterials also allow the design of networks containing
more than two ports. A representative example consists of
a waveguide splitter, where the energy of an input signal is
divided into multiple outputs. This kind of device has been
recently proposed for EM waves, showing that it can provide
a perfect distribution of power regardless of its shape and

FIG. 13. (Color online) Pressure map of a power divider based
on a DNZ metamaterial. The energy of the input port is transferred
to the output waveguides. The white arrows indicate the direction of
sound propagation.

cross section, as well as the number of outputs and their
orientations.44 Note that these features are achieved provided
that the sum of the cross sections of all outputs equals that of
the input port.

Figure 13 shows an example of waveguide divider where
the energy of the input port (left port) is transferred to two
outputs (right ports). The thickness of the input port is 6a,
each output being 3a thick. The operating frequency and the
geometrical parameters of the arrangement is the same as the
previous section. Since there is perfect transmission of energy,
no reflections are observed at the input while the amplitude
of the outgoing waves matches to that of the incident wave.
Note that this device can also be used in a reverse way, in
such a manner that it works as a combiner. If both right ports
are simultaneously excited their energy will be transmitted
towards the left access.

V. EXPERIMENTS AND DISCUSSION

A first attempt for the experimental verification of the
proposed structures is reported here. We have fabricated
two samples made out of plastic using a 3D printer, which
appears acoustically rigid with respect to air. Figure 14 shows
photographs of both samples, both of which are fabricated in
a single piece including the cylindrical scatterers, the bottom
surface of the 2D waveguide, and the two side walls.

Sample A consists of seven rows of structured scatterers
with parameters (see Fig. 1): Rb = 9.2 mm, Ra = Rb/2,
h = 9 mm, L = 3.5h, and α = π/8. They were distributed
on a hexagonal lattice with lattice constant a = 21 mm, the
corresponding filling fraction being 70%. Sample B, which is
shown in Fig. 14(b), is fabricated with smaller scatterers (Rb =
7 mm), the resulting filling fractions being 40%. The length of
the cavities drilled in the waveguide bottom [see Fig. 1(b)]
are L = 3.5h and L = 2.5h for sample A and sample B,
respectively. The sample thickness is determined by the
number of rows while their width corresponds to one lattice
parameter a, in such a manner that the lateral walls act as
mirrors. Therefore, the samples can be considered as infinitely
extended clusters along the lateral sides.

The waveguide where impinging and transmitted waves
propagate consists of an aluminum tube with height h and
width a. A sample holder has been milled in the middle part,
leaving 1.5 m of waveguide at each side. In one side of the
tube a speaker is placed to provide an excitation signal and
a microphone B&K 4958 is located at the other side of the
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FIG. 14. (Color online) Photographs of the samples fabricated
with a 3D printer. The scattering units are distributed in a hexagonal
lattice with equal lattice constant (a = 21 mm), but with different
external radius: (a) Rb = 9.2 mm for sample A, and (b) Rb = 7 mm
for sample B. The filling fraction of the underlying lattices are 70%
and 40%, respectively.

sample at a distance of 20 cm with respect to the center of
the sample. It is worth noting that the waveguide has a finite
length and, therefore, unwanted reflections take place at both
ends. To avoid this issue we have employed a pulsed measure
technique. In brief, this technique uses as an exciting signal
a short chirp containing all the frequencies of interest, and
meanwhile the data are acquired by the microphone until the
time when the first echo arrives. This process is performed
several times and the average value of the pressure is processed
in order to improve the signal-to-noise ratio.

The characterization of the samples has been carried out
in terms of their transmission properties. First, the frequency
dependence of the transmitted pressure Pt is measured by
acquiring the pressure field for each sample. Then a reference
pressure P0 is obtained through a similar measurement where
the sample holder is covered by a piece which gives the form of
an empty waveguide. Thus, the insertion losses are calculated
as IL = P0/Pt . Figure 15 shows the measured data compared
with the inverse of the transmission coefficient obtained from
finite element simulations. As shown, both structures present
a band gap characterized by a high attenuation profile. It is
important pointing out that high losses were experimentally
observed in the whole spectrum, even for the case of an empty
waveguide. These losses are due to the small dimensions of
the waveguide, in such a manner that energy is dissipated
by viscous friction in the walls of the waveguide and the
sample. Because of this the transmission peak due to double
negative propagation could not be experimentally detected.
Nevertheless, the positions of band gaps corresponding to
frequencies where our artificial structures dynamically answer
like single-negative materials are positively characterized. This

FIG. 15. (Color online) (a) Frequency dependence of the mea-
sured (symbols) and calculated (continuous lines) transmittance for
sample A with L = 31.5 mm. (b) Results for sample B with L =
22.5 mm. The calculations have been performed using an algorithm
based on the FEM. The shadowed regions define the frequencies
where acoustic parameters take negative values according to the
homogenization theory. The unity transmission peaks correspond to
frequencies where the samples behave as a double negative material.

agreement is encouraging, since negative dynamical mass in
air were only obtained by man-made structures based on
membranes.21 Structures with larger dimensions, operating
at lower frequencies, are expected to decrease the viscous
losses and phenomena associated to double negativity and
DNZ behaviors hopefully will be observed.

VI. SUMMARY AND CONCLUSIONS

In summary, we have introduced quasi-2D artificial struc-
tures based on building units that are angularly anisotropic. The
effective parameters obtained from a homogenization theory
based on multiple scattering indicates that they can be tailored
by adjusting the parameter of the building units. For the units
analyzed here we demonstrated that the metameterials show
single-negative behavior, double negative behavior, and DNZ
behavior depending on the frequency region. In particular,
we have theoretically demonstrated that at the frequencies
with negative mass density, our structures can be used for
amplification of acoustic evanescent modes and therefore for
the possible realization of devices for acoustic superlensing.
Moreover, in the frequencies with DNZ behavior we have also
shown that they can be used for devices for squeezing the
acoustic waves through extremely narrow channels, like filters
of transverse modes and for the perfect transmission trough
sharp bends and corners.

However, a word of caution should be mentioned about
losses in the acoustic metamaterials. While our experiments
with the fabricated samples have shown their negative mass
behavior at kHz frequencies, the double negative behavior
expected in both samples was completely hidden by the
strong sound absorption in that range of frequencies. Since
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the constituent materials have nonintrinsic losses, the strong
attenuation observed is attributed to viscous losses in air that
are probably enhanced by the fact that sound propagating
within the double negative band has a very low group
velocity. It is concluded that the practical realization of the
metamaterials here proposed should be done with larger
dimensions where the viscous losses are expected to be smaller.
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APPENDIX: T MATRIX OF AN ANISOTROPIC CYLINDER
LOCATED INSIDE IN A 2D WAVEGUIDE

This appendix describes how the mode-matching method
is applied to obtain the T matrix of the metamaterial building
units shown in Figs. 1(a)–1(b).

The derivation of the T matrix of an isolated scatterer
embedded in a 2D waveguide starts by dividing the space inside
the 2D waveguide in two regions: Region I corresponds to the
space outside the scatterer (r > Rb) and region II defines the
space inside the scatterer (Ra < r < Rb). The pressure field
in region I can be written as a sum of linear combinations of
solutions of the empty cavity,

P I (r,θ,z; ω) =
∞∑

n=0

∞∑
q=−∞

[
AqnJq

(
kI
nr

) + BqnHq

(
kI
nr

)]
× eiqθ
I

n(z), (A1)

where the coefficients Aqn and Bqn represent the incident and
scattered pressure fields, respectively. 
I

n(z) are normalized
functions accomplishing the condition that the normal velocity

is zero at the bottom and top surface walls, i.e., ∂
I
n(z)

∂z
= 0 at

z = 0 and z = h, respectively. In other words,


I
n(z) =

√
εn

h
cos

(nπ

h
z
)

, εn =
{

1 if n = 0,

2 if n �= 0.
(A2)

Finally, kI
n in Eq. (A1) is the transverse wave number,

kI
n =

√(
ω

cb

)2

−
(

nπ

h

)2

, (A3)

where n is an integer with values n = 0,1, . . . ,∞.
In region II (Rb < r < Ra) the pressure can be expressed

as

P II (r,θ ; ω) =
∞∑

m=0

∞∑
q=−∞

Cqm

[
J0

(
kII
m r

)

− J̇0
(
kII
m Ra

)
Ẏ0

(
kII
m Ra

)Y0
(
kII
m r

)]
eiqθ
II

m (z), (A4)

where the dot on top of the Bessel functions indicates the
derivative with respect to the argument; i.e., J̇0(x) = ∂J0(x)

∂x
.

Similarly, 
II
m (z) being the normalized functions


II
m (z) =

√
εm

h + L
cos

(
mπ

h + L
z

)
, (A5)

and the transverse wave number is now

kII
m =

√(
ω

cs

)2

−
(

mπ

h + L

)2

, m = 0,1, . . . ,∞. (A6)

Note that the function P II satisfies the boundary condition
∂P II /∂r = 0 (at z = 0, h + L), and also verifies the boundary
condition at the surface of the rigid cylinder r = Ra . In fact,
the expression P II corresponds to the case of an anisotropic
metafluid having a coefficient of anisotropy γ = 0 (no
anisotropy) as discussed by Spiousas et al.,6 who concluded
that γ = 0 is valid for wavelengths much larger than the width
of the angular sectors6; i.e., for λ � d = αRb. In other words,
the Bessel function Jγq should appear instead for structures
where γ �= 0.

The coefficients Cm and Bqn are obtained by imposing
the boundary conditions at the scatterer surface, r = Rb. The
first condition is the continuity of the pressure fields P I and
P II . The fields at the boundary surfaces are projected on the
waveguide modes through an integration from z = 0 to h:∫ h

0
P I (r,θ,z)|r=Rb


I
k(z)dz

=
∫ h

0
P II (r,θ,z)|r=Rb


I
k(z)dz. (A7)

On the other hand, the continuity of the normal component
of the sound speed is obtained by projecting it at the boundary
surface on the waveguide modes of the cavity. Therefore,

1

ρb

∫ h+L

0

∂P I (r,θ,z)

∂r
|r=Rb


II
k (z)dz

= 1

ρs

∫ h+L

0

∂P II (r,θ,z)

∂r
|r=Rb


II
k (z)dz, (A8)

with ρb and ρs being the densities of the background and
that of the anisotropic cylinder, respectively. The density ρs is

FIG. 16. Section of a general scatterer in which the solid sectors
(gray regions defined by angles α1) have different area than the air
sectors (white regions defined by angles α2).
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calculated using the expression6

ρs = α1 + α2

α2
ρb, (A9)

where α1 and α2 are the angles describing the generalized scatterer shown in Fig. 16.
After integrating and taking into account the orthogonality properties of the normalized functions 
I

n(z) and 
II
m , Eqs. (A7)

and (A8) become, respectively,

AqkJq

(
kI
kRb

) + BqkHq

(
kI
kRb

) =
∞∑

m=0

Cqm

[
J0

(
kII
m Rb

) − J̇0
(
kII
m Ra

)
Ẏ0

(
kII
m Ra

)Y0
(
kII
m Rb

)]
Gkm, (A10)

and

1

ρb

∞∑
n=0

[
AqnJ̇q

(
kI
nRb

) + BqnḢq

(
kI
nRb

)]
kI
nGnk = kII

k

ρs

Cqk

[
J̇0

(
kII
k Rb

) − J̇0
(
kII
k Ra

)
Ẏ0

(
kII
k Ra

) Ẏ0
(
kII
k Rb

)]
. (A11)

The coefficients Cqk obtained from Eq. (A11) are

Cqk = ρs

ρb

∞∑
n=0

kI
n

kII
k

⎡
⎢⎣ J̇q

(
kI
nRb

)
Gnk

J̇0
(
kII
k Rb

) − J̇0(kII
k Ra)

Ẏ0(kII
k Ra) Ẏ0

(
kII
k Rb

)Aqn + Ḣq

(
kI
nRb

)
Gnk

J̇0
(
kII
k Rb

) − J̇0(kII
k Ra)

Ẏ0(kII
k Ra) Ẏ0

(
kII
k Rb

)Bqn

⎤
⎥⎦ . (A12)

These coefficients are inserted in Eq. (A10) to obtain, after some algebra, the following relation:

AqkJq

(
kI
kRb

) − ρs

ρb

∞∑
m=0

∞∑
n=0

J̇q

(
kI
nRb

)
GkmGnm

J0
(
kII
m Rb

) − J̇0

(
kII
m Ra

)
Ẏ0

(
kII
m Ra

)Y0(kII
m Rb)

J̇0
(
kII
m Rb

) − J̇0

(
kII
m Ra

)
Ẏ0

(
kII
m Ra

) Ẏ0
(
kII
m Rb

) kI
n

kII
m

Aqn

= −

⎡
⎢⎢⎢⎣BqkHq

(
kI
kRb

) − ρs

ρb

∞∑
m=0

∞∑
n=0

Ḣq

(
kI
nRb

)
GkmGnm

J0
(
kII
m Rb

) − J̇0

(
kII
m Ra

)
Ẏ0

(
kII
m Ra

)Y0
(
kII
m Rb

)
J̇0

(
kII
m Rb

) − J̇0

(
kII
m Ra

)
Ẏ0

(
kII
m Ra

) Ẏ0
(
kII
m Rb

) kI
n

kII
m

Bqn

⎤
⎥⎥⎥⎦ . (A13)

This equation can be rewritten in matrix form as∑
m

(Hq)kmBqm =
∑

n

(Jq)knAqn, (A14)

with

(Jq)kn ≡ Jq

(
kI
nRb

)
δkn − ρs

ρb

∑
m

J̇q

(
kI
nRb

)
GkmGnm

J0
(
kII
m Rb

) − J̇0

(
kII
m Ra

)
Ẏ0

(
kII
m Ra

)Y0
(
kII
m Rb

)
J̇0

(
kII
m Rb

) − J̇0

(
kII
m Ra

)
Ẏ0

(
kII
m Ra

) Ẏ0
(
kII
m Rb

) kI
n

kII
m

, (A15)

(Hq)kn ≡ −

⎡
⎢⎢⎢⎣Hq

(
kI
nRb

)
δkn − ρs

ρb

∑
m

Ḣq

(
kI
nRb

)
GkmGnm

J0
(
kII
m Rb

) − J̇0

(
kII
m Ra

)
Ẏ0

(
kII
m Ra

)Y0
(
kII
m Rb

)
J̇0

(
kII
m Rb

) − J̇0

(
kII
m Ra

)
Ẏ0

(
kII
m Ra

) Ẏ0
(
kII
m Rb

) kI
n

kII
m

⎤
⎥⎥⎥⎦ , (A16)

where

Gnm = 1

2

√
h

h + L
εnεm

[
sinc

((
kI
zn + kII

zm

)
h
) + sinc

((
kI
zn − kII

zm

)
h
)]

.

(A17)

Since the T matrix is defined as the relation between the scattering coefficients Bqn and that of the incident field Aqn,

Bqm =
∑

n

(Tq)mnAqn, (A18)

its matrix elements are quickly derived from Eqs. (A13) and (A14):

(Tq)mn =
∑

k

(Hq)−1
mk(Jq)kn. (A19)

224305-11
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