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Combined LDA and LDA-1/2 method to obtain defect formation energies in large silicon supercells
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A source of uncertainty in the state of the art calculations of defect levels is the inaccurate prediction of band-gap
energies. Several approaches were developed to surpass this problem. However, another source of uncertainty
remains: the small number of clustered atoms imposed by the computational restrictions. In this work, the
LDA-1/2 method is explored in an attempt to overcome both problems with a small computational cost. We
considered the self-interstitial defects in silicon as a benchmark for calculating defect states and charge-transition
levels of point defects in semiconductors. We found neutral formation energies, including reaction barriers, of
4.65, 4.49, and 4.87 eV, for hexagonal, split 〈110〉 and C3v configurations, respectively, in good agreement with
most experimental results.
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I. INTRODUCTION

The physical properties of most semiconductor materials,
ranging from conductivity to optical activity, are critically
affected by point defects. The concentration of defects and
the position of the transition levels with respect to the band
edges of the host material determine the effects on the
electrical and optical properties of the host. A different com-
bination of experimental techniques is frequently necessary
for identification and characterization of these properties.1

On the other hand, from the theoretical point of view, first-
principles calculations can predict quantitatively some key
properties of defects. However, the usual toolkit in these
approaches, the density functional theory (DFT), in its standard
implementations—the local density approximation (LDA)2 [or
its slight modification, the generalized gradient approximation
(GGA)],3 combined with supercell band structure calculations,
has some limitations. While LDA and GGA have predicted
many ground-state properties with good accuracy, electronic
properties such as band gaps are significantly smaller than
experiment. These discrepancies are caused by the lack of the
discontinuity of the exchange-correlation potential.4,5 Thus
these approximations lead to inaccurate predictions of band
gaps and defect levels and, consequently, to uncertainties in
the computed defect formation energies and charge transition
levels.6–9

Several methods for overcoming these limitations have
been proposed. One of them is the GW approximation,
in which one considers the energies of quasiparticles and
calculates the electron self-energy in terms of perturbation
theory.10 This procedure has been quite successful achieving
good accuracy and is considered now as the “state of art” in
electronic structure calculations. However, it depends on how
the starting calculation was performed (LDA or any type of
hybrid functional, for example) and the type of GW employed,
whether self-consistent (SC) or non-SC, e.g., full SC (GW ),
non-SC (G0W0), or partially SC (GW0).11 Moreover, it is
extremely expensive computationally, and this is a major
obstacle to employ such an approach to simulate defects
because, as demonstrated by Puska et al.,12 one needs at least
a supercell of the order of 128–216 atomic sites.

Another method that has been successful in predicting the
properties of defects and impurities in various materials,13–16

is the screened hybrid functional of Heyd, Scuseria, and
Ernzerhof (HSE).17,18 In this method, a portion of the nonlocal
Hartree-Fock exchange is range limited and mixed with local
(LDA) or semilocal (GGA) exchange potentials. However,
since the Hartree-Fock potential involves four-center integrals
its implementation in plane-wave codes results in a high com-
putational cost, and currently hybrid functional calculations
take at least an order of magnitude more processing time than
standard LDA calculations for systems with the same number
of electrons.19

Recently, Ferreira et al.20,21 have developed a simple,
parameter-free successful procedure to calculate the excitation
energy spectrum. The procedure is inspired by the old Slater
transition state technique for atoms, shown to be equivalent
to the inclusion of the self-energy of the quasiparticle. The
method consists of calculating the self-energy as the quantum
mechanical average of a “self-energy potential”, which is
added to the local part of the pseudopotential or to the
−2Z/r part of the all-electron potential. When transferred
to the infinite crystal, the self-energy potential is trimmed not
to extend to neighboring atoms. The trimming is made by
means of a cutting function with a parameter “CUT”, which is
determined variationally by making the band-gap extreme.20

As the best GW calculations, the Ferreira et al. method,
named LDA-1/2, produces very good band gaps and electron
effective masses for several semiconductor compounds and
also for some complex systems, which also require a large
computational cost, as alloys, interfaces for obtaining band
offsets, electronic structures of magnetic semiconductors,
surfaces and defects.20–36 The technique can be used with both
LDA and GGA. The great advantage in applying LDA-1/2 for
defects is the low computational cost, which is comparable to
standard DFT. Therefore it is feasible to apply LDA-1/2 to a
very large supercell (in principle, containing as many atoms
as for a standard LDA calculation) harnessing its correctness
for excited states calculation.

In this work we analyze the accuracy of applying LDA-1/2
in defect calculations, choosing the self-interstitial silicon
defect as a benchmark. The results were compared with GW
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results and experimental data. The paper is organized as
follows. In Sec. II, we detail the methods. In Sec. III, we
show the results and discussions, and finally, in Sec. IV, we
summarize the article with some brief conclusions.

II. METHODS

The concentration of defects and the position of the
transition levels derive, in first-principles calculations, directly
from defect formation energies.37 Defects in semiconductors
can occur in different charge states and geometries. For each
geometric configuration of a given defect, one particular
charge state has the lowest formation energy. For silicon
self-interstitial defect, for instance, the formation energy of
a defect at the charge state q and configuration R

q ′
D , i.e., in the

D geometry obtained for a charge state q ′, is

Ef (q) = E
(
q,R

q ′
D

) − NμSi + q(Ev + εF + �V ), (1)

where E(q,R
q ′
D ) is the total energy derived from a supercell

calculation with one defect with charge q in a R
q ′
D configura-

tion, for a supercell with N silicon atoms (including the defect
atom). μSi is the silicon chemical potential calculated from a
defect free supercell with (N − 1) atoms. The terms in brackets
are refereed as the electron chemical potential, where εF is
the difference between the Fermi level and the valence-band
maximum (VBM) in the defect-containing calculation, and
Ev is the VBM energy of the perfect crystal calculation. The
formation energy of charged impurities takes into account that
electrons are exchanged with the Fermi level, which one is
referenced with respect to the Ev in the bulk. The problem
in calculating Ev is that, in a supercell approach, the defect
or impurity strongly affects the band structure, because the
long-range nature of the Coulomb potential and the periodic
boundary conditions inherent in the supercell approach. The
creation of the defect gives rise to a constant shift in the
potential, and this shift cannot be evaluated from supercell
calculations alone since no absolute reference exists for the
electrostatic potential in periodic structures.37 The average
potential in an infinite crystal which has no surface is a
meaningless quantity38 and, for charged systems, the total
energy is ill-defined due to the divergence of the electrostatic
potential.39 To solve this problem a correction must be add,
the �V term, necessary to align the reference potential in the
defect-containing supercell with that in the defect-free one.
The �V was calculated by plotting the difference between the
total (including exchange-correlation) local potential of the
defect-containing and the defect-free supercells along their
cube diagonal lines and inspecting their value at position far
away from the defect atom,40 in each case, as can be seen
in Fig. 1.

The quasiparticle energies are obtained with good accuracy
with the LDA-1/2 method. Therefore we used the LDA-1/2
method combined with Rinke et al.’s method9 for obtaining the
formation energies directly from quasiparticle energies. The
method consists in rewriting the formation energy equation for
a given defect in terms of two contributions: vertical transition
or electron addition energies (A), calculated by considering
quasiparticle corrections, and the relaxation energy (Erel)
between two different geometric configurations, considering

FIG. 1. (Color online) Difference between the total local potential
of the defect-containing and the defect-free supercell along the
diagonal line of a cubic 216-atom supercell, for a tetrahedral silicon
self-interstitial defect with charge 2+ . Far away from the defect
atom, the local potential difference becomes constant and its value
0.1681 eV gives the correspondent �V correction.

the standard DFT-LDA.9,41 The method is based on taking a
determined defect charge state in such a way that the defect
level in the band gap is empty. For this particular case, the
formation energy calculated by standard DFT method is not
so strongly affected by the band-gap problem. The other
charge states configurations will be then obtained from this
one by successive additions of one electron, and the formation
energy obtained by successive sums of electron addition and
relaxation energies, as shown schematically in Fig. 2.

Considering our benchmark case, the self-interstitial silicon
defect (Sii), one needs to consider different configurations of

FIG. 2. (Color online) Scheme of sequential electron addition
from the 2+ to neutral charge states. Erel(q) is the relaxation energy
for two different geometric configurations with same charge q, and
A(q → q − 1) is the electron addition energy from charge state q to
q − 1 in the same geometric configuration.

224102-2



COMBINED LDA AND LDA-1/2 METHOD TO OBTAIN . . . PHYSICAL REVIEW B 88, 224102 (2013)

FIG. 3. (Color online) Ball-and-stick models of the different
geometric configurations of silicon self-interstitial defects (orange
balls) used in this work.

charge and geometry. A consensus among many theoretical
calculations is that the geometries split 〈110〉 (split), hexagonal
(hex), C3v and tetrahedral (tet) defects are more stable42 (see
Fig. 3). The C3v geometry is reached moving the tetrahedral
defect in the 〈111〉 direction by about 0.12a (where a is the
lattice parameter), and was stable only for neutral and 1−
charge states. The hexagonal site is reached by moving on
the defect by at about 0.19a, from the tetrahedral site. The
lower neutral charge state is achieved when the defect reaches
the split 〈110〉.9,43,44 For the 2+ charge state, the tetrahedral
geometry is well known to be lower in energy,9,43,45 and the
defect level in the band gap is empty, so it will be used as
a starting point. For the 1+ and neutral charge states, the Sii
can assume at least three geometric configurations with similar
formation energies, namely, hexagonal, split 〈110〉, and C3v .

Following Rinke et al.,9 the formation energy of 1+ state
for the Sii in a supercell with N atoms, taking εF = Ev + εF +
�V , is

E
f

D(1+,εF ) = A
(
2+ → 1+,R2+

tet

) + Erel
(
1+,R2+

tet → R1+
D

)

+E
f
tet(2+,εF = 0) + εF , (2)

where A(2+ → 1+,R2+
tet ) = E(1+,R2+

tet ) − E(2+,R2+
tet ) is the

electron addition energy of configuration tet 2+ , first step in
Fig. 2, Erel(1+,R2+

tet → R1+
D ) = E(1+,R1+

D ) − E(1+,R2+
tet ) is

the subsequent relaxation energy in the positive charge state
(step 2), and E

f
tet(2+,εF = 0) is the formation energy of charge

state 2+ with εF = 0.
In the same way, the neutral charge state can be written as

E
f

D(0,εF ) = A
(
1+ → 0,R1+

D

) + Erel
(
0,R1+

D → R0
D

)

+E
f

D(1+,εF = 0). (3)

The electron addition energies (A) were obtained by
taking the lowest unoccupied Kohn-Sham eigenstate (LUE).

However, as Eqs. (2) and (3) involve contributions arising from
different calculations, the electron addition energies (from
LUE) must be aligned to the same reference, which was chosen
to be the valence-band maximum (VBM) in the bulk silicon
(free of defects). Due to this choice, we inserted the bulk VBM
energy in the electron addition energy equation (4) and added
a correction term �V , which is responsible by the alignment

A
(
q → q − 1,R

q

D

) = Ebulk
VBM + LUE

(
q,R

q

D

) − Edefect
VBM + �V.

(4)

This alignment procedure is the same one used for the
electron chemical potentials (Fermi energy) in standard for-
mation energy equations. In this way, we defined the electron
addition energies A(q → q − 1,R

q

D), for a charge state q and
defect geometry R

q

D , as the difference between the energy
of the LUE(q,R

q

D) and the defect VBM energy Edefect
VBM , plus

the VBM energy of a defect free calculation Ebulk
VBM, plus

the correspondent �V , as in Eq. (4). This scheme to carry
out electron addition energies will henceforth be referred as
LUE-VBM procedure.

The DFT calculations were performed using the LDA
and the projector-augmented wave (PAW)46,47 method, as
implemented in the Vienna ab initio simulation package
(VASP).48–50 We used energy cutoff of 310 eV and a 8 × 8 × 8
grid of k points, in the Monkhorst-Pack scheme,51 for 65-atom
supercells and 4 × 4 × 4 for 217-atom supercells, dislocated
from the gamma point. The electron addition energies were
taken from a band structure calculation, including gamma
point. The experimental lattice parameter of 5.429 Å was used
in all supercells, meaning that we do not perform volume
relaxations for the different defect state configurations. The
occupations of the levels were maintained free during all
calculations. For the LDA-1/2 calculations, we considered
the CUT parameter for silicon as obtained in Ref. 20.

III. RESULTS

We firstly focus our attention on the accuracy of Rinke’s
method in comparison with the total energy one for obtaining
the electron addition energies considering the LDA calcula-
tions. The results are shown in Table I, for supercells with
65 and 217 atoms. In general, the LDA results of electron
addition energies calculated via LUE-VBM procedure and
compared to the ones calculated via total energies, presented
good agreement, mainly for the 217-atom supercell. This
shows that the LUE-VBM can be used straightly in the case
of LDA-1/2 calculations. Now, considering the LDA-1/2
calculations, we can observe a reasonable increasing of all
electron addition energies, showing a great influence of the
self-energy corrections.

From these results, it is possible to calculate the corrected
formation energies for the Sii by using Eqs. (2) and (3). After
that, it is necessary to add supercell size corrections to the
formation energies of charged defects, in order to remove the
contributions arising from the homogeneous compensation
background. For this purpose, some standard DFT-LDA
calculations were performed for supercells with 65, 217, and
513 atoms. The Sii defect was placed at an undistorted Si
lattice and fixed during the calculation. The formation energies
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TABLE I. Results of the electron addition energies, in eV, of Sii for different charge states and geometry, related to the bulk VBM, calculated
via total energy (LDA), LUE-VBM (LDA), and LUE-VBM (LDA-1/2).

Method LDA(Etot) LDA(LUE-VBM) LDA-1/2(LUE-VBM)

Atoms per cell 65 217 65 217 65 217

A(2+ → 1+,R2+
tet ) 0.69 0.55 0.75 0.62 1.32 1.16

A(1+ → 0,R1+
C3v

) 0.83 0.63 0.94 0.70 1.39 1.26

A(1+ → 0,R1+
hex) 0.26 0.04 0.26 0.08 0.45 0.31

A(1+ → 0,R1+
split) 0.10 −0.01 0.13 −0.00 0.27 0.09

A(0 → 1−,R0
C3v

) 0.72 0.60 0.65 0.60 1.26 1.19

A(0 → 1−,R0
hex) 0.79 0.60 0.67 0.62 1.15 1.23

A(0 → 1−,R0
split) 0.63 0.52 0.46 0.42 0.85 0.89

were extrapolated to an infinite sized supercell by fitting a
polynomial function in odd powers of 1/L until 1/L3, where
L is the cubic root of the supercell volume.52 For the 65-atom
supercell, the extrapolated formation energy for the tet 2+
configuration was 3.18 eV, in good agreement with the 3.31 eV
obtained by Wright and Modine53 and 3.19 eV obtained by
Rinke et al.9 The 65-atom supercells corrections were 0.25,
0.23, 0.19, 0.20 eV, and the 217-atom supercell corrections
were 0.13, 0.12, 0.06, and 0.13 eV, for the tet 2+ , C3v 1+ ,
hex 1+ and split 1+ configurations, respectively. Note that
Eqs. (2) and (3) depend on the formation energies of previous
charge states, but the correction must be summed only once.
For example, no correction was added to the neutral charge
state although 1+ and 2+ formation energies were used in
the calculations.

In Table II, are shown the formation energies calculated
by LDA, via Eq. (1) and LUE-VBM procedure, combined

LDA + LDA-1/2 and combined LDA + G0W0. The LDA
results calculated via Eq. (1) are in good agreement with the
ones obtained by Rinke et al.9 In our calculations the C3v

geometry was stable only for the neutral and 1− charge states.
For the 2+ and 1+ charge states, the C3v goes to the tetrahedral
geometry after optimisation.

Following the behavior of the electron addition energies,
there is an increasing of the formation energies in all cases
in different amounts. In fact, the increment arose from the
correction on the electron addition energies. The increments,
for the 65-atom supercells, were 0.63 eV for the 1+ charge
state configurations, 1.18 eV for the neutral C3v , 0.82 eV for
the neutral hex and 0.79 eV for neutral split configurations.
Comparing our formation energies with other theoretical ones
from the literature, including G0W0, HSE (band-gap correction
methods) and diffusion Monte Carlo (DMC), we observe that
they are in the same range, and within 10% in most cases.

TABLE II. Formation energies, in eV, of the silicon self-interstitial defect for different charge states and geometry, calculated via LDA
(standard method) and via combined LDA-LDA-1/2 (LUE-VBM procedure, see text), in comparison with combined LDA-G0W0 and LDA
(usual method) results.

This work Other works

Method LDA [Eq. (1)] LDA-1/2(LUE-VBM) LDA Other methods

Atoms per cell 65 217 65 217

Ef (2+,R2+
tet ) 2.74 3.05 . . . . . . 2.65a . . .

Ef (1+,R1+
C3v

) 3.70 3.86 4.33 4.48 3.00a 3.89a

Ef (1+,R1+
hex) 3.48 3.73 4.10 4.34 3.41a 4.31a

Ef (1+,R1+
split) 3.50 3.68 4.12 4.30 3.49a 4.41a

Ef (0,R0
C3v

) 3.34 3.62 4.53 4.87 3.42b,3.36a 4.51a

Ef (0,R0
hex) 3.29 3.63 4.12 4.53 3.31c,3.40a,3.45b,3.62d 4.40a,4.82e,4.82f,5.13d

Ef (0,R0
split) 3.26 3.59 4.06 4.31 3.29a,3.31c,3.40b,3.43d 4.46a,4.64f,4.94d,4.96e

Ef (1−,R1−
C3v

) 3.47 3.71 5.27 5.56 . . . . . .

Ef (1−,R1−
hex) 3.43 3.67 4.74 5.19 . . . . . .

Ef (1−,R1−
split) 3.42 3.69 4.60 4.78 . . . . . .

aRinke et al. (G0W0).9
bAl-Mushadani et al.44

cNeeds et al.54

dBatista et al. (diffusion Monte Carlo).55

eLeung et al. (diffusion Monte Carlo).42

fBatista et al. (HSE).55
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TABLE III. Thermodynamic transitions levels, in eV, for different geometric configurations of silicon self-interstitial defect, in comparison
with G0W0

9 calculations and experimental56 results. The thermodynamic transition level between different charge states [ε(q/q ′)] is the Fermi
energy to which the formation energies of two different charge states are equal. Where q/q ′ can be + /2+ , 0/+ , and −/0.

Geometry C3v hex split

Atoms per cell 65 217 65(G0W0) 65 217 65(G0W0) 65 217 65(G0W0) Exp.

+ /2+ 0.96 1.02 1.24 0.25 0.55 0.58 0.20 0.48 0.50 0.4
0/+ 0.93 0.95 0.62 0.08 0.15 0.09 −0.11 −0.08 0.05 0.1–0.2
−/0 1.44 1.29 . . . 1.29 1.26 . . . 1.00 0.99 . . . . . .

Note that in all configurations the formation energies
increase from 65 to 217 atoms per supercell. This increment
occurs because of a decrease in the interaction between
the defects when the size of supercell increase, which also
increases the total energy per atom. In fact, a converged
value of formation energies with respect to the size of
supercell needs thousand of atoms,57 but the energy difference
for supercells with more than 216 atoms is no larger than
0.1 eV.53,58 In this way we expect that the converged formation
energy reaches a higher value. We found in the literature
a set of experimental results, 3.12,59 3.6,60 4.68,61 4.75,62

4.95,63 and 4.1–5.1 eV.64 We can note that the majority is
in the range of 4.1–5.1 eV, only the first two are lower, but
unfortunately no explanation was given by the authors for such
discrepancy.

If one adds the theoretical reaction barriers to our formation
energies for 217-atom supercells, for the paths tet-hex-tet
(0.12 eV) and tet-split-tet (0.18 eV), obtained from Ref. 43,
we would have 4.65 eV for the hexagonal and 4.49 eV for
the split. Together with the C3v , 4.87 eV, these values are
in excellent agreement with the experimental results cited
above.

To analyze the thermodynamic transitions between differ-
ent configurations of silicon defects when the Fermi energy is
varied throughout the band gap, the formation energy diagrams
were constructed. The results are depicted in Fig. 4. The
thermodynamic transitions levels between different charge
states ε(q/q ′) correspond to the points where two lines,
in Fig. 4, cross. Bracht et al.56 obtained thermodynamic
transition levels of Sii in high-temperature experiments.

They found levels at ∼0.1–0.2 eV and at ∼0.4 eV above
valence-band maximum, labeled by them as ε(0/+) and
ε(+/2+), respectively. From other experimental work, by
Lukjanitsa et al.,65 three levels were found, at 0.26, 0.46, and
0.74 eV above valence-band maximum but the authors did not
say to which transitions they belong. Our results (see Table III)
for 217-atom supercell in the hexagonal geometry, 0.55 eV for
the +/2+ transition and 0.15 eV for the 0/+ are in good
agreement with the experimental ones of 0.4 and 0.1–0.2 eV
by Bracht et al., respectively, and with the 0.26 eV and 0.46 eV
obtained by Lukjanitsa et al. For the split configuration, only
the +/2+ transition result, 0.48 eV, agreed with experimental
and G0W0 (0.50 eV)9. Lastly, the C3v configuration has a
different value according to Bracht et al. results and G0W0

9

ones, but can be compared with the 0.74 eV level obtained by
Lukjanitsa et al.

IV. CONCLUSIONS

To summarize and conclude, we performed ab initio calcu-
lations for the defective supercells of 65 and 217 atoms, in four
different Sii defect configurations. We dealt separately with the
two main problems for supercell defect calculations, namely,
the periodic image interaction problem (size effects) (first),
and the DFT (LDA and GGA) band-gap problem (second).
The methodology used for the calculation of the defects
formation energies involved charged systems, so that reference
potential energies of the crystals had to be aligned. The above
procedure did not represent a source of error as we go from
the pure LDA to LDA-1/2 corrections. Although the LDA-1/2

FIG. 4. Formation energies as a function of Fermi level for Sii defect, 217-atom supercell, LDA-1/2 (solid lines) and LDA (dashed lines)
results. The Fermi level is varied throughout the LDA-1/2 band gap, and vertical dashed lines indicate the LDA band-gap limits. The slopes of
the segments indicate the charge states.
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method was not made to calculate total energies, it improved
considerably the calculations of formation energies from LDA
using the electron addition energies, calculated using excited
states. Regarding the two main problems listed above, we
conclude that the LDA-1/2 method has shown advantages
in both: it has already proven successful to overcome the
band-gap problem for a number of semiconductors, and
enables the use of large supercells, a fundamental condition
within semiconductor defects subject. In this work, we dealt
with large supercells—such an effort not achieved in literature
by other methods to improve band gaps—but we state there
is a real possibility of increasing even more the supercell

sizes, thus tackling the second problem of defective supercells
calculation.
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