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Nonequilibrium conductivity at quantum critical points
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Quantum criticality provides an important route to revealing universal nonequilibrium behavior. A canonical
example of a critical point is the Bose-Hubbard model, which we study under the application of an electric field.
A Boltzmann transport formalism and ε expansion are used to obtain the nonequilibrium conductivity and current
noise. This approach allows us to explicitly identify how a universal nonequilibrium steady state is maintained,
by identifying the rate-limiting step in balancing Joule heating and dissipation to a heat bath. It also reveals that
the nonequilibrium distribution function is very far from a thermal distribution.
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Introduction. Even when driven far from equilibrium it is
hoped that quantum systems will be governed by a set of
general principles. While a few such principles have been
identified, they are far less constraining than their equilibrium
counterparts.1,2 Quantum criticality provides a useful route
to identify others. The universal temporal scaling of quantum
critical systems is inherited by their nonequilibrium steady
state, providing an important class of universal results. This
has been shown in a few cases,3–8 however, the approaches
used often assume a steady state and circumvent the subtleties
of the underlying physics that permit a universal steady state
to form. Here we explicitly show how a nonequilibrium steady
state is reached.

We study the Bose-Hubbard model as a canonical example
of a quantum critical point. We show that the nonequilibrium
distribution function is far from thermal, and that an expansion
about a thermal distribution at some effective temperature is
not sufficient to capture the out-of-equilibrium state. Instead
we show that a distribution that is highly elongated along
the field direction is a good variational solution of the Boltz-
mann equation. This is consistent with previous approaches
based on 1/N expansions4 or the anti-de Sitter/conformal
field theory (AdS/CFT) correspondence,6,7 which also find
highly nonequilibrium steady states. Within this picture the
current noise can be calculated using a Boltzmann-Langevin
approach. This procedure gives a Johnson noise form at
some effective noise temperature, consistent with previous
results.5,7

A central task is to show how the steady state is maintained
by balancing heat flows in the system. The Landau-Zener or
Schwinger mechanism produces particle-hole pairs from the
vacuum.4 Acceleration of these charges by the electric field
produces heat through Joule heating. This heat is removed
via a heat sink at the edge of the sample in order to reach a
steady state. In order to establish a universal out-of-equilibrium
distribution, the rate-limiting step for this process must be
universal. This implies that the scattering of energy into the
thermal transport modes must be slower than the transport of
energy to the edge of the sample, since the latter will depend
upon the size and shape of the sample. Achieving this requires
that the Wiedemann-Franz law be broken—this is possible in
a system with several species of charge carrier, because of
the different components of the scattering integral involved
in thermal and electrical scattering.9 Previous analyses were
able to sidestep these considerations.10 A benefit of our current

approach is that we confront this issue head on and make the
conditions for a universal steady state explicit.

The structure of this Rapid Communication is as follows:
We begin by considering the inhomogeneous Boltzmann
equation and demonstrate how spatial gradients driving heat
flow to the sample edge may be replaced by a universal
sink term. We will show that attempts to solve this equation
by expanding around a thermal distribution fail, so that the
nonequilibrium distribution is far from thermal. We then show
that a distribution in which particles and holes are strongly
Lorentz boosted in opposite directions is a good variational
ansatz for the Boltzmann equation. Using this ansatz we
calculate the current noise through a Boltzmann-Langevin
approach, ending with a discussion of our results and their
connection to other work.

Boltzmann equation. We analyze the response of the Bose-
Hubbard model at its particle-hole symmetric point to an
applied electric field. This model describes bosons hopping
on a lattice with an on-site interaction. It is a benchmark
model of quantum criticality, with many tools developed to
analyze its equilibrium behavior. At the particle-hole symmet-
ric point, its effective theory is essentially a Klein-Gordon
theory with a φ4 interaction;11 we give an explicit form for
this in the Supplemental Material.12 This supports bosonic
normal modes of positive and negative charge, which we will
refer to as particles and holes. We calculate the distribution
function describing the occupation of these normal modes
in the nonequilibrium steady state, therefore obtaining the
nonequilibrium conductivity and current noise.

We use a Boltzmann transport approach.13 An ε expansion
is used to control scattering, calculating the scattering integral
in 3-ε dimensions. Particle-hole pair production appears as
a source term.4 We show that heat flow to the bath can
be represented by a spatially homogeneous sink term. This
explicitly demonstrates the balancing of the various processes
and the establishment of a universal steady state.

The quantum Boltzmann equation describes scattering
processes between the normal modes and their response to
external fields. The occupation of the modes is represented
by a Wigner distribution function f ±

k (x,t) where + (−) rep-
resent the positively (negatively) charged modes [“particles”
(“holes”)].14 The equation describing the evolution of this
distribution function is13

(∂t + v · ∂r ∓ E · ∂k)f ±
k = Sk[f ±

q ] + gsource
k . (1)
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The left-hand side of this equation describes the evolution
of the distribution function from the bare dynamics of the
particles. The time derivative term is neglected since we are
considering steady-state solutions. We show that when the
thermal conductivity is large, as appropriate for the Bose-
Hubbard model, the gradient term v · ∂r can be replaced with
a homogeneous sink term describing scattering into thermal
transport modes. The third term on the left-hand side describes
the acceleration of particles by the electric field. On the
right-hand side, the first term represents scattering between
particles and holes.13 The form of this term is discussed in
more detail in the Supplemental Material.12 The second term
is the source term representing particle-hole pair production
from the vacuum via the Landau-Zener mechanism and may
be derived by solving the equation of motion for the anomalous
distribution,4

gsource
k = π

4

√
Ee−πk2/E. (2)

The key step in solving this equation is to set up a spatially
homogeneous Boltzmann equation for the nonequilibrium
steady state. This can be done when the thermal conductivity
is extremely large, leading to small thermal gradients.

Spatially homogeneous limit and universal response. The
universal response is set by the rate-limiting step in dissipating
heat. Joule heating and production of particle-hole pairs needs
to be balanced by transport to a heat bath at the sample
edge. If transport to the edge is the rate-limiting step, then
thermal gradients build up across the sample and the response
is nonuniversal, depending on the size and geometry of the
sample. If, however, scattering into the heat-carrying modes is
the rate-limiting step, the gradients are small and the response
is universal. In this case, the thermal gradients can be replaced
by a homogeneous sink term that describes scattering into the
heat-carrying modes.

In the case of the Bose-Hubbard model the thermal
conductivity is infinite as there are no processes that relax
energy and momentum. Scattering into thermal transport
modes is therefore the rate-limiting step and the response is
universal. The electrical conductivity, however, is still finite as
the two species of charge carrier allow for current relaxation.13

In order to show this explicitly, we solve the Boltzmann
equation including a temperature gradient across the sample.
Consider an explicit example with a heat sink at the transverse
boundary. We expand the distribution function in spatial
gradients,15 f ±

k (y) = f ±
k + h

(0)
k + yh

(1)
k + y2h

(2)
k , where y is

the coordinate in a direction transverse to the flow of electrical
current. The Boltzmann equation (1) can then be solved in
terms of the zero modes of the linearized scattering integral
(these are discussed further in the Supplemental Material12

and Refs. 16–18). Such zero modes are due to conservation of
energy, particle number, and momentum, and are therefore
present whatever distribution we expand about. When the
thermal conductivity is large, the gradient terms h

(1)
k and h

(2)
k

become small—little variation in the distribution function
is required to transport heat effectively. To leading order
the spatially homogeneous part of the solution is given by
h

(0)
k = −S−1(σ z

phE · ∂kf
±
k + gsource

k − αvyh±
k ), where vy is the

group velocity in the direction of heat transport, h±
k is a zero

mode of the linearized scattering integral related to thermal

transport, and α is a constant which must be determined. The
solution is reproduced by solving a homogeneous Boltzmann
equation with an additional sink term gsink

k = αvyh±
k . This sink

describes scattering into the heat-carrying modes, removing
energy from the system. The presence of the (near) zero
mode19 reflects the fact that the thermal conductivity is large,
manifesting as the inverse of the scattering integral being
dominated by the zero mode.

In this way we obtain a universal steady-state spatially
homogeneous Boltzmann equation:

∓ E · ∂kf
±
k = Sk[f ±

q ] + gsource
k − gsink

k . (3)

Spatial gradients are replaced by a universal sink term rep-
resenting scattering of particles into the heat-carrying modes.
The physics of this response is encoded in the zero modes of
the scattering integral, the existence of which depends only
upon the conservation laws of the system. The general form of
the sink term is therefore universal. We have explicitly chosen
to calculate the sink term for scattering into a mode that carries
heat transversely across the sample. However, since the form
of the steady-state distribution is determined by integrals of
the sink term, this choice does not affect the results. Having
set up this homogeneous Boltzmann equation, we now need to
solve it for the distribution function.

Failure of expansion about a thermal distribution. One
might anticipate that the steady-state distribution is close
to a thermal distribution at some self-consistent effective
temperature. However, we show that an expansion about a
thermal distribution fails and introduce an alternative ansatz
based upon this insight.

We motivate this argument physically by considering the
scaling properties of the Boltzmann equation, sketched in
Fig. 1. The energy of a distribution is set by the effective
temperature, which we know from the scaling of the source
term is proportional to the square root of the electric field,
Teff = √

ET̃eff,4 where T̃eff is a universal dimensionless num-
ber. The effect of electric field is to introduce a momentum
shift to the distribution. The size of this shift is given by
E/Teff = √

E/T̃eff. If the energy is greater than the momentum
shift, then the distribution is close to thermal and an expansion

~T

~E/T

E

k┴

k ||

FIG. 1. (Color online) Sketch of the generic argument for the
distribution being far from thermal when the prefactor of the effective
temperature is small. The momentum shift in the field direction
is proportional to E/Teff while the energy of the distribution is
proportional to Teff. The parameter which controls the relative size of
these is the effective temperature prefactor Teff = T̃eff

√
E, which is

found to be small in the ε expansion.
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is appropriate. If the energy is less than the momentum shift,
the distribution is far from thermal and an expansion about a
thermal distribution will fail. Which regime we are in is set by
the numerical prefactor T̃eff.

There are no tunable parameters in this argument. At the
quantum critical point the validity of the expansion is set
purely by T̃eff. This parameter is ultimately determined by
the detailed form of the scattering integral and must be found
numerically. It turns out that the value obtained within an
ε expansion is extremely small and therefore the expansion
fails. Physically, this is because the effect of the electric field
dominates and scattering processes are not strong enough to
relax the distribution back to nearly thermal.

We make this argument precise by performing the ex-
pansion about a thermal distribution and finding that it
does not converge. The full procedure is detailed in the
Supplemental Material.12 The main steps are as follows: We
expand the distribution function in particle-hole symmetric
and antisymmetric deviations from a thermal distribution, at an
effective temperature set by number and energy conservation.
Solving for these deviations order by order in the control
parameter ε, the first-order term is the linear-response solution
obtained by Damle and Sachdev,13 albeit at a self-consistently
determined effective temperature. However, in the present
case each term in the series grows and the expansion does
not converge. The nonequilibrium distribution is, therefore,
far from thermal and cannot be accessed by an expansion
about this state. We will take the opposite limit in which the
distribution is highly distorted by the electric field.

The highly boosted distribution. The lesson is that an
electric field leads to a distribution that is very elongated along
the field axis. Recognizing this, we use a thermal distribution
Lorentz boosted antisymmetrically for particles and holes as a
variational ansatz:

f ±
k = f T

(
k ± v · k

Teff

√
1 − v2

)
, (4)

where f T (εk/T ) denotes a thermal distribution and v is the
boost velocity in the direction of electric field. The magnitude
of v will be determined as a variational parameter. Since we
expect the distribution to be highly elongated, v will be close
to one. We use this limit to simplify the scattering integral and
show that the calculated value of v is self-consistent.

The sink term for the boosted distribution is given by
the zero modes of the scattering integral linearized about an
antisymmetric, boosted distribution. It is precisely this mode
that would carry a heat current to the boundary of the sample.
For a heat current in the transverse y direction, hk = ky∂kf

±
k

and gsink
k = αk2

y∂kf
±
k .

In order to complete the solution we must find the
undetermined parameters: α, the sink term prefactor, T̃eff,
the effective temperature prefactor, and v, the boost velocity.
These are found by taking three moments of the Boltzmann
equation. Two of these moments represent number and energy
conservation, and show the balance between source, sink, and
Joule heating. Summing over particle species, then integrating
over all k, gives an equation representing number conservation:

0 =
∫

dk gsource
k −

∫
dk gsink

k , (5)

where we clearly see the role of the sink in removing particles
from the system. We note that in the ε expansion all integrals
are carried out in three spatial dimensions, with the value of ε

then setting the dimensionality of the final result. Multiplying
by the dispersion εk before integrating gives the equation for
energy conservation:

σE|E|2 = 2
∫

dk εkg
source
k − 2

∫
dk εkg

sink
k , (6)

where σE is the electrical conductivity and the left-hand side
of the equation represents Joule heating. In both of these
equations the scattering integral integrates to zero since it
conserves number and energy. We need a final moment to
fix all three parameters, which we obtain by multiplying by ε2

k
before summing over k:

∑
σ=±1

∫
dk ε2

kσE · ∂kf
±
k

= 2
∫

dk ε2
kSk[f ±

q ] + 2
∫

dk ε2
kg

source
k − 2

∫
dk ε2

kg
sink
k .

(7)

The dependence of the solution upon scattering enters through
this equation. In the limit of a distribution of the form (4)
with v ∼ 1 its evaluation simplifies dramatically. The phase
space for inscattering is very restricted compared to that
of outscattering and we find Sk[f ±

k ] = �kf
±
k with �k =

−2π3ε2/75 T 2
eff/k.

This approximation of dominant outscattering is very
similar to that used in the 1/N expansion. In that case it came
from an ingenious use of the expansion, in which the electric
field coupled to only one of N modes. Outscattering into N − 1
modes dominates over inscattering into one particular mode.
Here the approximation is justified self-consistently by the
emergent dynamics.

Equations (5)–(7) allow us to solve for α, T̃eff, and v.
They may be solved numerically, but as our approximation
to the scattering integral is valid in the high-boost limit, an
approximation with v close to one is sufficient. In this limit, the
coefficients may be determined analytically with the result that
α � 8.14, T̃eff � 0.2, and v � 0.96, which is self-consistent
with our approximations.

The conductivity in two dimensions is given by

σE = j · E
E2

=
∑

σ

σ

∫
dk

E · k
E2k

f σ
k = π

6
√

2δv
T̃ 2

eff, (8)

where δv = 1 − v. This evaluates to σE = 0.074 q2/�, where
we have introduced the factor q2/�, previously set to one,
with q the charge of the particles. We compare this to the
equilibrium result obtained by Damle and Sachdev of σE =
0.165 q2/�. Comparing with the 1/N results4,20 we see that
there the conductivity is also reduced in the nonequilibrium
case, although by a smaller amount.

Current noise. Having found the universal nonequilibrium
distribution function, we calculate the current fluctuations. Our
starting point is the Boltzmann-Langevin equation describing
fluctuations of the distribution function 
fk,21,22

(∂t + v · ∂r + E · ∂k) 
fk = Sk,q
fk + ηk, (9)
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where η is a noise term. This approach assumes that scattering
processes are independent and so Poisson distributed. The
variance of the noise is equal to the mean scattering rate.
The correlations of ηk are given by5

〈ηk(r,t)ηk′(r′,t ′)〉 = (2π )2δr,r′δt,t ′δ(q − q′)�qfq. (10)

In the limit of long times and large distances the gradient
terms of the Boltzmann-Langevin equation can be ignored. To
first order we ignore the momentum derivative also and obtain
the fluctuation in occupation number as 
fk = ηk/�k . The
current fluctuations are therefore

〈jα(r,t)jβ(r′,t ′)〉 = 2e2δr,r′δt,t ′δα,β

∫
dk

fk

�q

� δr,r′δt,t ′δα,β

50e2
√

ET̃

πε2

1

2δv
. (11)

If we choose to identify this result with Johnson noise at an
effective temperature T ′

eff, we find that the appropriate temper-
ature is not the same as that associated with the steady-state
distribution. Writing the current noise in the form 4σT ′

eff

√
E

gives an effective noise temperature T ′
eff � 2.3

√
E. This is of

the same order as—though larger than—the temperature of a
thermal distribution that has the same energy per mode as the
out-of-equilibrium distribution.23 Interestingly, an effective
noise temperature higher than the energy scale characterizing
the steady state was previously found for a thin metallic system
equilibrated by phonons.22

Discussion. We have shown both that the nonequilibrium
steady state can be explicitly set up by balancing heat flows,
and that the resulting distribution is very far from thermal,
being extended along the direction of the applied field.

That a steady state is established had been assumed in
previous work, and implemented by exploiting the 1/N

approach, and in holography where the probe-brane limit plays
a similar role. In the ε expansion we must explicitly include
the processes by which heat is transported out of the sample.
We have shown that this is a universal process as follows:
The thermal conductivity of the model is extremely large,
and vanishingly small thermal gradients are sufficient to drive
a compensating heat flow. Scattering into thermal transport
modes is rate limiting, and this scattering is universal. The
effect of heat flow to the boundary may therefore be encoded
in a sink term added to the Boltzmann equation.

The distribution function is highly elongated along the
field direction and far from a thermal distribution. It cannot
therefore be accessed by an expansion about a thermal
distribution at some effective temperature. Strongly Lorentz
boosting the charge carriers in opposite directions provides
a good variational ansatz. We have shown self-consistently
that the boost velocity in such a distribution is close to one.

k||

k||

k┴

k┴

FIG. 2. (Color online) Top: An illustration of the highly antisym-
metrically boosted distribution Eq. (4). Bottom: An illustration of the
distribution found in the 1/N method.

Such a distribution is consistent with the highly asymmetric
distribution found in the 1/N case, as illustrated in Fig. 2.
Further evidence of the profound nonequilibrium nature of
the steady state is provided by the different temperature
scales characterizing the current noise and the steady-state
distribution. Curiously, other calculations have found that both
the response function and fluctuations depend upon the same
effective temperature and are related by an apparent fluctuation
dissipation relation7,8 at all frequencies, even though the steady
state itself is characterized by a different effective temperature.

We end with some words about the feasibility of realizing
these results experimentally. This may be possible either in
cold atomic gases—in which the Bose Hubbard model has
been realized24 along with effective fields through potential
gradients or otherwise25—or else in solid state systems with
particle-hole symmetry such as graphene. In both cases,
the main limitation is the difficulty of appropriate coupling
to a bath. This may be accompanied by thermal boundary
resistivity.22 In addition, any deviation from particle-hole
symmetry may lead to significant constraints upon the size
of system over which universal results may be observed.26

One fascinating way around this is suggested in an elegant
recent work, Ref. 27, where the system in effect acts as its own
thermal bath with the universal nonequilibrium steady state in
a limited region of the sample.
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