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Majorana states and devices in magnetic structures
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The pursuit for Majorana fermions is one of the top priorities in condensed matter physics at the moment. In
this work, we propose a new method of fabricating Majorana Josephson devices in systems with a weak or no
spin-orbit coupling and without external magnetic fields. Our proposal is based on curved semiconductor wires in
the proximity of superconducting elements and a small number of nanomagnets. With this method it is possible
to fabricate devices that are not feasible by employing straight topological wire segments. The proposed method
is naturally scalable and opens up a possibility for a systematic fabrication of arrays of Majorana states where a
pair of Majorana states is obtained from a single magnet.
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I. INTRODUCTION

The search for Majorana fermions in condensed-matter
systems is advancing on many fronts. Recent efforts have
increasingly focused on topological insulator and supercon-
ductor systems.1,2 First step to this direction was taken by
Kitaev by illustrating the possibility of Majorana states in a
conceptually simple p-wave chain of spinless fermions.3 Fu
and Kane put forward a concrete proposal to realize Majorana
states in topological insulator structures proximity coupled to
superconductors.4 That proposal was followed by the work
of Lutchyn et al.5 and Oreg et al.6 who discovered that
nanowires with a strong spin-orbit coupling in the proximity
of a superconductor could support Majorana states above
critical magnetic fields. These works provided a major boost
to the experimental investigations of Majorana physics in
nanowires.7–10 Experimental signatures of Majorana states in
these systems are broadly consistent with current theoretical
understanding but insufficient in settling the existence of Ma-
jorana states conclusively. Majorana bound states (MBS) obey
non-Abelian braiding statistics,11–14 which is a prerequisite for
topological quantum computation.15–18 Recent theoretical and
experimental breakthroughs have brought these considerations
closer to realization.

Systems combining magnetism and superconductivity have
been considered as a promising route to topological supercon-
ductivity and Majorana states. A lattice of magnetic impurity
sites on top of s-wave superconductors could provide a very
clean and controlled system to study MBS.19,20 Semiconductor
nanowires in the proximity of arrays of nanomagnets also give
rise to topological properties similar to those in spin-orbit
coupled wires.21–23 The physical mechanism of topological
superconductivity in magnetic systems and spin-orbit coupled
systems relies on lifting the spin degeneracy of charge carriers
leading to an effective p-wave pairing in the low-energy corner.

In this work, we put forward a magnetic realization of Majo-
rana devices based on curved semiconductor wires and loops.
Realizing these systems requires fabricating semiconductor
loops that are made superconducting through the proximity
effect and placing permanent magnets in the close vicinity,
as shown in Fig. 1. The loop, having a diameter of the
order of one micrometer, and the magnets made of Fe or
Co based materials can be fabricated by current technology.
Considered systems have important properties compared to
the systems based on straight segments of Rashba wires. The

topological phase and MBS can be achieved in setups without
or weak spin-orbit coupling and it is possible to maintain
the nontrivial phase without applying an external magnetic
field. In addition, it is also possible to fabricate devices that
are not feasible by employing straight Rashba wires such as
SQUID loops with only two MBS or recently introduced
topological π junctions.25 Compared to previous studies of
magnetic Majorana systems, our work takes the first concrete
step towards feasible devices. Importantly, a single pair of
MBS can be achieved with only a small number of magnets
so large arrays are not required. However, with an array of
magnets it is possible to realize a pair of MBS per magnet
which enables a realization of Majorana arrays.

II. STUDIED MODEL

The Hamiltonian of a one-dimensional wire in the presence
of superconductivity and magnetic fields is modelled by H =
1
2

∫
dx�†H�, where

H =
(

−h̄2∂2
s

2m
− μ

)
τz + B · σ + � · τ , (1)

and σi and τi are Pauli matrices in the spin and the
Nambu space, B = (Bx,By,Bz) represents the Zeeman split-
ting due to the magnetic field and the last term arises
from the proximity-induced superconducting pairing with
� = �(cos ϕ(s),sin ϕ(s),0). The basis spinors are given by
� = (ψ↑,ψ↓,ψ

†
↓, − ψ

†
↑)T , the pairing amplitude and the su-

perconducting phase are denoted by � and ϕ and μ represents
chemical potential of electrons. The kinetic energy of electrons

is given by the usual expression − h̄2∂2
s

2m
, where m is the effective

mass and ∂s denotes the derivative of the wire coordinate.
In the following, we are interested in geometries depicted

in Figs. 1 and 3, where the wire consists of circular arcs
in the presence of a field of bar magnets. Even under the
assumption of a homogeneous magnetization of magnets,
the field experienced by electrons in the wire is strongly
inhomogeneous, rendering an analytic calculation of the
spectrum intractable. However, a qualitative understanding of
the topological properties can be achieved along the lines of
Ref. 23. When a particle is moving in a uniformly rotating pla-
nar magnetic field of a constant magnitude, the Hamiltonian is
unitary equivalent with a one describing particle experiencing a
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FIG. 1. (Color online) Architecture for topological supercon-
ducting wires supporting Majorana bound states consisting of a
semiconductor loop in contact with a superconductor with a weak
link. The loop is located in the vicinity of three permanent magnets
(arrows indicate the direction of magnetization) driving the system to
the topological phase.

Rashba spin-orbit coupling and a constant field.24 The effective
Rashba constant is given by α = h̄2θ ′

2m
, where θ ′ is the rate of

change of the field angle as a function of the wire coordinate.23

In the geometry of Fig. 1, the field makes two rotations along
the loop, so an average effective Rashba coupling can be
estimated by α = h̄2

mR
, where R is the radius of the loop. When

R is a few hundred nanometers, α could become comparable to
the values of the intrinsic Rashba coupling in strongly coupled
wires. As established in Refs. 5 and 6, Rashba wires enter to the
topologically nontrivial phase when the Zeeman field exceeds
a critical value Bc =

√
�2 + μ2.5,6 These considerations,

while not directly applicable to the case of inhomogeneous
magnetic fields, suggest that the setup in Fig. 1 enter to the
topological phase at sufficiently strong Zeeman fields.

To study topological properties of general wire geometries
we resort to numerical calculation of the wire spectrum. Our
starting point is a tight-binding representation of Eq. (1) with
N lattice sites,

H = −
∑
〈i,j〉

(tij �
†
i τz�j + H.c)

+
∑

i

(−μ̃�
†
i τz�i + �

†
i Bi · σ�i) +

∑
i

�
†
i �i · τ�i,

(2)

where �i is a four-component spinor at lattice site i and a is
the lattice constant. The nearest-neigbor hopping proportional
to tij , chemical potential μ̃ and the Zeeman splitting Bi

implement the first three terms on the right-hand side of Eq. (1)

and the last term corresponds to the superconducting order
parameter �i . The mapping of the continuous model (1) to
the lattice model (2) implies identification h̄2

2m
= |tij |2a and

μ = μ̃ − 2|tij |. The hopping amplitude tij becomes complex
valued in loops enclosing a finite magnetic flux. In the
following, we adopt units where all lengths are given in the
units of l0 = h̄

(2m�)
1
2

, which yields l0 = 130 nm for parameters

m = 0.05 me and �/kB = 1 K. Also, we assume that the
magnets are uniformly magnetized and evaluate the stray field
from the exact expression found in Ref. 26. The shape and
strength of the field depends on the aspect ratios and remanent
magnetization of the magnets and the measures of the wire.
Stray fields from Fe and Co based magnets may take values of
the order of 1 T, which determines the Zeeman energy and sets
the scale for the operation temperature as discussed below.

The spectrum of the loop depicted in Fig. 1 is illustrated
in Fig. 2 as a function of the Zeeman splitting. The Zeeman
energy is characterized by the energy scale B̃ = 1

2gμB
μ0Mr

4π
,

where g is the Lande g factor, μB is the Bohr magneton, μ0

is the vacuum permeability, and Mr is the remanent magneti-
zation of the magnets. We have assumed that the nanowire is
completely cut off at the weak link. In the topological phase
we expect to find two (nearly) zero-energy MBS located at the
ends determined by the weak link. As illustrated in Fig. 2, the
bulk gap closes at a critical field above which there exists a pair
of midgap states pinned to the zero energy. The wave functions
of the midgap states are given by γ1/2 = 1√

2
(γL ± iγR) where

functions γL/R = (uL/R

↑ ,u
L/R

↓ ,v
L/R

↓ , − v
L/R

↑ )T are localized to
the left and right ends of the wire and satisfy the Majorana
condition u

L/R

↑ = (vL/R

↑ )∗, uL/R

↓ = (vL/R

↓ )∗. However, there are
some notable differences compared to the Rashba wire model.
Due to the strong spatial dependence of the magnetic field,
the critical value marking the onset of the topological phase
transition depends on the geometry of the system. Also, as
indicated in Fig. 2 (left), at sufficiently strong Zeeman fields,
the midgap states acquire finite splitting. This splitting is
oscillatory in nature with increasing amplitude as the field.
Topological gaps separating the MBS from the rest of the
states may be a significant fraction of the induced gap � at
vanishing magnetic field. The width of the topological phase as
a function of chemical potential is comparable to �. It should
be noted that the magnets are sufficiently big that the strength

FIG. 2. (Color online) Low-lying spectrum of the wire loop in Fig. 1 with rx : ry : rz = 6 : 3 : 1.5, the separation of the magnets is 2R.
(Left) Two positive and two negative energy states meet at E = 0 at the critical Zeeman field, marking a topological phase transition. For
a finite field interval there exists two (near) zero-energy states, corresponding to the Majorana end states, separated by a gap from the next
positive and negative energy states. The parameters of the system are N = 200, L = 20 l0, μ̃ = 0, and R : rx = 7.5 : 6. (Middle) Same as left
but for R : rx = 8.5 : 6 and μ̃ = −0.3�. (Right) Zeeman field as a function of the wire coordinate for the configuration in the middle figure.
The origin coincides with the junction in Fig. 1 and the coordinate increases in the counterclockwise direction. The solid line corresponds to
|B|, while the dashed line antisymmetric (symmetric) with respect to the midpoint represent Bx (By).
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FIG. 3. (Color online) Possible magnetic Majorana setups, MBS,
are schematically shown as green dots. (a) RF SQUID geometry.
(b) Josephson junction connecting two reservoirs. (c) Topological
π -Josephson junction. (d) Possible geometry for a Majorana array
with an efficient MBS/magnet fraction.

of the magnetization can be tuned along the hysteresis loop by
external fields. Therefore, if desired, it is possible to tune the
system through the quantum critical point corresponding to the
topological phase transition if the saturation magnetization is
sufficiently strong to push the system to the nontrivial regime.

III. MAJORANA DEVICES

Now we turn to the properties of Josephson devices depicted
in Fig. 3. Here, we concentrate on the Andeev spectrum
and neglect charging effects that could become important in
mesoscopic devices.27 The setup in Fig. 3(a) has a similar
structure with the system that was studied above, with the
exception that the loop is enclosing a magnetic flux  and
the weak link interrupts only the superconductor so the
electrons in the nanowire may circle around. This device
then can be operated as an RF SQUID. Mathematically, the
situation can be modelled by allowing a complex hopping
amplitude tij e

i/0 over the weak link, where 0 = h
e
. When

the enclosed flux  is a multiple of 0/4, the junction
hosts a pair of degenerate Majorana states as illustrated
in Fig. 4. In this geometry, the degeneracy is protected
by the fermion parity, a fact that is not even affected by
an appreciable overlap of Majorana wavefunctions through
the interior of the loop.28 When the transparency of the
junction is reduced, the energies of the MBS do not cover
the whole gap but still exhibit the crossing characteristic
for a topological junction. The studied device is notably
different from Josephson junctions and SQUIDs constructed
from straight Rashba wire segments that generically exhibit
an interplay of at least four MBS.29 As a consequence, the
RF SQUID geometry should display more robust 0-periodic
features. The calculated Andeev spectrum is directly related

FIG. 4. (Color online) (Left) Spectrum of a SQUID loop. Solid
lines represent the two MBS at the junction. The arrangement of
magnets is identical to Fig. 2, the other parameters are N = 200,
L = 20l0, and B̃ = �, μ̃ = 0 and R : rx = 7.5 : 6. (Right) Same
as left but for B̃ = 1.5�, μ̃ = −0.4 �, R : rx = 8.5 : 6, and lower
transparency |t0/tij | = 0.9, where t0 is the hopping element at the
junction.

to the ground-state supercurrent encircling the ring through
the standard relationship I () = −∂E(), where E() is
the sum of negative energy states. For short junctions, the
contribution from states below the gap essentially vanishes
so that the current is given by I () = −∂E0(), where
E0() is the populated mid-gap level from arising from
the MBS. The crossing states in Fig. 3(a) correspond to
different fermion parity in the system, so the current depends
sensitively on which parity state is populated.28 In the presence
of parity-breaking processes, the current depends on relative
populations of the midgap states. Similar considerations hold
for Josephson devices discussed below, where current is given
by the phase derivative I (ϕ) = −(e/h)∂ϕE0(ϕ) instead of the
flux derivative.

The device in Fig. 3(b) consists of two circular arcs
encircling magnets. The wire is interrupted by a weak link
in the middle and connected to separate superconducting
reservoirs. The spectrum of the setup is illustrated in Fig. 5
(left) and exhibits a typical Majorana Josephson junction
behavior.3,6 At phase difference ϕ = π , the junction hosts
two nearly degenerate Majorana states, which give rise to
a weakly avoided crossing of two Andreev levels.3,29,30 The
levels become degenerate when the overlap between the
Majorana states at the junction and at the ends of the wire

FIG. 5. (Color online) (Left) Spectrum of the wire in Fig. 3(b).
The magnets have aspect ratio rx : ry : rz = 6 : 3 : 1.5 and are
displaced by 2R, where R is the radius of one circular arc, the other
parameters are N = 200, L = 45l0, B̃ = 1.5 �, μ̃ = −0.8 �, and
R : rx = 4 : 3. The solid lines represent the Majorana states at the
ends (flat lines) and on the junction, the dashed lines represent the
closest excited state. (Right) Spectrum of the topological π junction
in Fig. 3(c). The arrangement of magnets is as in the left and the
other parameters are N = 200, L = 45l0, B̃ = 1.5 �, μ̃ = 0, and
R : rx = 4 : 3.
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vanishes. The weak avoided crossing of two Andreev states
is a characteristic property of topological Josephson junctions
and gives rise to an effective 4π periodic Josephson effect
in suitable nonequilibrium circumstances. An interesting
situation arises in the geometry of Fig. 3(c), where a weak link
is formed between circular wire segments forming an s-shaped
junction. At the center of the wire, the rotation direction of the
Zeeman field is inverted, corresponding to a situation where
the effective Rashba constant would change its sign. This type
of junction was recently introduced in Ref. 25 and identified
as a topological π Josephson junction. As shown in Fig. 5
(right), the spectrum of the MBS at the junction is qualitatively
shifted by π compared to Fig. 3(b) and thus exhibits a weak
avoided crossing at phase difference ϕ = 0. The possibility
of two degenerate MBS at zero phase difference implies
existence of more than two distinct topological phases enabled
by chiral symmetry in one-dimensional systems.25,31–33 Since
supercurrent through the junction is given by the phase
gradient of the populated levels, the maximum supercurrent
through a topological π junction achieved, remarkably, near
the vanishing phase difference ϕ = 0 (mod 2π ).

Effects of disorder and various unideal features on MBS
present in real systems have been widely studied in the Rashba
wire model. Since the studied model is unitary equivalent
to the Rashba wire model in the case of uniformly rotating
Zeeman field,23 it seems plausible that the effects of disorder
do not dramatically differ in the two models. Above, we have
discussed physical properties when the spin-orbit coupling,
depending on the details of the setup, is negligible. However,
most of the presented conclusions remain qualitatively unal-
tered in the presence of weak Rashba coupling lso � 5l0, where
lso = h̄

mα
. In this case, the spin-orbit term introduces a slight

shift of topological degeneracy points. A notable exception is
the topological π effect, which is strongly affected if lso � 10l0
is not satisfied.

Nanowires made out of InSb and InAs are currently leading
candidates to exhibit MBS. Producing Majorana networks by
growing and placing nanowires individually is not efficient,
thus motivating alternative approaches. In Fig. 3(d), we have
shown one possible structure capable of supporting a large
number of pairs of MBS. Topological properties of each loop
is similar to the studied structure in Fig. 1. This type of array is
an example of a potentially useful building block in Majorana
devices and does not require application of external magnetic
field. Two loops could be coupled, for example, through their
magnetic fluxes. It is also straightforward to imagine more
complex unit blocks with more MBS. Since magnetization of
all the magnets is parallel, it is simple to tune or reinforce it
by external field parallel to the array.

IV. DISCUSSION

The proximity superconductivity in semiconducting wire
loops could be arranged along the lines of Ref. 34, which
demonstrated a fabrication required structure without magnets.
One possibility to realize Josephson devices is to place the
superconducting metal on top of the wire like in Ref. 9.
The studied RF SQUID geometry could be then realized by
covering a semiconductor ring with a superconducting metal
except for a single well-insulated gap interrupting the metal.

In the gap region, the supercurrent flows only through the
semiconductor segment mediated by the MBS localized at the
gap. It has also been demonstrated that magnets of required
dimensions can be fabricated in the proximity of complicated
structures by presently existing methods.35 Wires could be
made of semiconductor materials weak spin-orbit coupling,
though most promising candidates of high g factor and low
effective mass also commonly have interesting spin-orbit
properties. The candidate materials include, for example,
GaxIn1−xAs, GaSb, GaInSb, InSb, and InAs all of which may
have large g factors. Fabrication of InAs 2DEG proximity
coupled to superconductors is well-known technology making
it one of the most promising candidate material. It is not
necessary to work with single-channel wires but the ability
to tune the electron density by a gate voltage is needed to
ensure that the nontrivial phase achieved.

If the magnets are made of Fe or Co- based materials, rema-
nent magnetization could be μ0Mr ≈ 1.8 T or higher, trans-
lating to the characteristic Zeeman energy B̃ = 1

2gμB
μ0Mr

4π
≈

kB0.7 K for InAs parameters g = 15 and m = 0.023 m0. As
shown in experiments,9 in Nb-based proximity structures,
superconductivity may persist in magnetic fields of few Teslas
so permanent magnets do not suppress superconductivity. As
Figs. 2 and 4 show, the induced gap � in the topological regime
should comparable to B̃. In this regime, the topological gap
separating MBS from other states is ∼0.3�/kB ≈ 200 mK so
the operating temperature should be significantly smaller than
this. For InSb, the effective mass is m = 0.016 m0 and the g

factor could reach 50, enabling topological gaps of the order of
1 K. Employing InAs parameters, the geometrical measures of
the setup in Fig. 1 corresponding to parameters in Figs. 2 (left)
and 4 (left) are L = 2πR = 3.3 μm, so the loop diameter is
2R = 1.1 μm and the magnets have measures rx = 850 nm,
ry = 420 nm, and rz = 210 nm.

The observable signatures of topological junctions arise
from the properties of mid-gap MBS. The fractional Josephson
effect, manifesting as an anomalous Shapiro step, has been
seen in experiments.9 The junction in Fig. 3(b) should exhibit
this type of behavior. In the RF SQUID geometry, there
are only two MBS in the system that could be observed
through a telegraph noise of current in the loop associated
with quasiparticle number fluctuations in the junction.36 More
interestingly, the topological phase in the SQUID could
be verified through measuring the current-flux relationship
and observing the 0-periodic component of equilibrium
supercurrent.28 Normally, this periodicity is absent since
supercurrent is carried by Cooper pairs leading to 0/2
periodicity. The results of Ref. 28 indicate that the anomalous
periodicity is enhanced in the vicinity of the topological
phase transition and could provide smoking gun evidence of
underlying Majorana states.

V. SUMMARY

In this work, we proposed a method to realize Majorana
devices by fabricating superconducting loops in the vicinity of
permanent magnets. In these systems, it is possible to achieve
Majorana devices with weak or no spin-orbit coupling and
without external magnetic field. In addition, these systems
enable fabrication of devices that are unfeasible by employing

220502-4



RAPID COMMUNICATIONS

MAJORANA STATES AND DEVICES IN MAGNETIC . . . PHYSICAL REVIEW B 88, 220502(R) (2013)

straight wire segments. The topological RF SQUID has the
simplest device geometry and can be realized by currently
existing technology. Magnetic arrays could also enable con-
trolled fabrication of Majorana arrays potentially useful in
quantum information applications.
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