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Spin-Cherenkov effect and magnonic Mach cones
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We report on the Cherenkov-type excitation of spin waves (SWs) in ferromagnets. Our micromagnetic
simulations show that a localized magnetic field pulse moving sufficiently fast along the surface of a ferromagnet
generates a SW boom, with a Mach-type cone of propagating wave fronts. The SWs are formed when the velocity
of the source exceeds the propagation speed of SWs. Unlike the single cone of the usual Cherenkov effect, we
find that the magnetic Mach cone consists of two wave fronts with different wave numbers. In patterned thin
strips, this magnetic analog of the Cherenkov effect should enable the excitation of SWs with well-defined
and velocity-dependent frequency. It thereby provides a promising route towards tunable SW generation, with
important potential for applications in magnonic devices.
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The Cherenkov effect,1,2 together with the Doppler effect,
belongs to a branch of fundamental physics describing the
radiation of uniformly moving sources. As pointed out by
Ginzburg,3 these phenomena are universal in physics. Awarded
with the Nobel Prize in 1958, the Cherenkov effect now plays
a significant role in many disciplines. It is mainly exploited in
particle physics, where detectors based on Cherenkov radiation
are indispensable to identify high-energy particles. The effect
is considered to be rooted so fundamentally in physics, that
it has been at the center of an argument brought up against
the suspected observation of superluminal neutrinos4 that was
reported recently and broadly discussed in the media.5

The characteristic property of the Cherenkov effect is the
spontaneous emission of radiation, with wave fronts propagat-
ing along a symmetric cone with a moving pointlike source at
the apex. The spontaneous emission of electromagnetic waves
occurs when a charged particle moves through a dielectric
medium at a speed above the phase velocity of light. Hence,
the phenomenon is deeply rooted in high-energy physics and
is inherently of relativistic nature. It can nevertheless occur in
an almost identical fashion also in classical systems, as in the
case when an aircraft, a rocket, or a bullet trespasses the speed
of sound. This is also comparable to the Doppler effect, which
occurs in classical physics as well as in a relativistic version,
with the latter being of utmost importance in astronomy.
In a more general definition, the Cherenkov effect can be
considered as spontaneous radiation which unfolds when a
source travels through a medium faster than the propagation
speed of the fundamental wave excitation of this medium. As a
variant of this effect in condensed matter physics, simulations
have very recently demonstrated the possibility of Cherenkov
radiation of surface polaritons.6

In ferromagnetism, while the spin Doppler effect7 has
recently attracted much attention, an analogy to the Cherenkov
effect has so far not been investigated. The single report in
the literature on this effect is a recent simulation study of
an essentially one-dimensional (1D) system: We predicted
there that a Cherenkov-type emission of magnons could be
generated by a certain type of domain walls forming in
magnetic nanotubes8 of deep submicron diameter. Owing
to their exceptional stability, this exotic type of domain

wall can propagate faster than magnons, thereby giving rise
to this interaction. This particular type of domain wall is
the only micromagnetic structure known to date with such
properties. Therefore this first indication of the Cherenkov
effect in magnetic systems was limited to the motion of a
special type of domain wall, developing only in an even more
special geometry. Here we significantly broaden the subject by
showing that the Cherenkov emission of spin waves (SWs) in a
ferromagnet is a general phenomenon which neither requires a
moving domain wall nor a special tubular geometry to unfold.

The continuum theory of micromagnetics describes the
magnetic order of the system by the vector field of the
magnetization, whose dynamics is driven by an effective field.
Any moving source interacting with the spins will result
in a perturbation of the magnetic order of the system. The
interaction of a moving source on a magnetic sample can
hence effectively be represented by a localized magnetic field
pulse traveling through the medium or along its surface.9 This
model of a localized and moving field pulse provides a suitable
approach to study the general features of the Spin-Cherenkov
effect (SCE), encompassing a variety of possible sources that
could give rise to this effect. The list of stimuli includes electric
currents, electron beams,10,11 domain walls,12–14 scanning
laser beams,15 or magnetic monopoles.16,17 In all these cases,
the excitation of SWs can be considered as the response of
the magnetic system to a moving field pulse. Within this
framework, the Cherenkov radiation of SWs can be recognized
as a resonance effect. For simplicity, we consider a field pulse
that runs with constant velocity v along a thin-film strip,
where the latter serves as a 1D waveguide. For any arbitrary
pulse shape h(x), we assume Galilei invariance with the pulse
moving according to h(x − vt), where t is the time. The
coupling between the field pulse and SW modes, which in
this case are 1D propagating plane waves, can be represented
by the integral∫ +∞

−∞
dx

∫ +∞

−∞
dt h(x − vt)ei(kx−ωt), (1)

where k and ω are the wave vector and the radian frequency
of the plane waves, respectively. This integral is proportional
to δ(v − ω/k), where δ denotes the Dirac delta function. This
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means that a moving field pulse, or equivalently a moving
source with velocity v, can only excite plane waves with a
phase velocity vp ≡ ω/k equal to v. This wave excitation
hence results from the fulfillment of a resonance condition,
provided by a velocity match in the conventional sense.

To demonstrate the resonance effect discussed above, we
performed full three-dimensional (3D) micromagnetic simu-
lations to examine the response of a longitudinally magnetized
thin-film strip to a moving field pulse. This corresponds
to a pointlike magnetic source moving along the surface,
generating a localized field perpendicular to the strip.18,19

For simplicity, we assume no variation of the field along the
film thickness. The magnetization dynamics of the strip is
calculated by solving numerically the Landau-Lifshitz-Gilbert
equation with our TetraMag finite-element package:20

d �M
dt

= −γ �M × �Heff + α

Ms

[
�M × d �M

dt

]
, (2)

where �M is the local magnetization, Ms the saturation
magnetization, γ the gyromagnetic ratio, �Heff the effective
field, and α the Gilbert damping factor. Typical material
parameters of permalloy, μ0Ms = 1 T, exchange constant A =
1.3 × 10−11 J/m, and zero anisotropy are used. The volume
is discretized into irregular tetrahedrons of about 3 nm size.
The Gilbert damping coefficient α is set to 0.02. As illustrated
in Fig. 1, a strong dependence of magnetization dynamics on
the pulse velocity vh is observed. In the low velocity case
[vh = 500 m/s in Fig. 1(a)], the pulse only causes a distortion
of the magnetization, traveling together with the pulse. No
SW is excited. In stark contrast, significant SW excitations are
obtained in the high velocity cases vh = 1030 m/s and vh =
1180 m/s, as shown in Figs. 1(b) and 1(c). The excited SWs
clearly contain two branches. One branch is in front of the pulse
and the other behind, forming a wave packet with an unusual
profile. Note that these two SW branches have well-defined, yet
different wavelength, as becomes apparent in Fig. 1(c). Shortly
after the field pulse is applied, the system reaches a dynamic
equilibrium. The wave packet then propagates together with
the field pulse smoothly and stably, showing no dispersive
effect thereafter. The process of formation and propagation
of the wave packet can be observed in an animation in the
Supplemental Material.21 By comparing Figs. 1(b) and 1(c),
one also notices that the wavelength of the excited SWs is
directly related to vh. We point out that this result confirms the
recently reported SW excitation generated by rapidly moving
domain walls in magnetic nanotubes,8 even though now the
geometry is different and the underlying magnetic structure
of the strip is homogeneous. Because the moving field pulse
used in this study may represent the effect of virtually any
type of moving source interacting with the magnetic medium,
we deduce that this Cherenkov-type radiation of SWs is a
general phenomenon, irrespective of the type of source. In
Ref. 8, the bichromatic excitation of SWs was attributed to
the SW dispersion in nanotubes. Here we clarify that this
characteristic spectrum originates from general features of the
SW dispersion relation in magnetic media, with little or no
restriction to particular geometries.

In extended and homogeneously magnetized thin films,
the SW dispersion relation depends on the angle between the

FIG. 1. (Color) Response of the magnetization in a permalloy
thin-film strip to a field pulse traveling with constant speed of
(a) 500 m/s, (b) 1030 m/s, and (c) 1180 m/s, respectively. The
4-μm-long, 100-nm-wide, and 10-nm-thick strip is magnetized
longitudinally, and the field pulse is of rectangular shape, with a
magnitude of 10 mT in z direction and 10 nm width in x direction.
The color scale represents the z component of the magnetization mz

and the red curves display mz averaged over the cross section of the
strip. The gray line shows the position of the field pulse for each
snapshot. The field pulse propagates as indicated by the gray arrows.

propagating direction of the SWs (the wave vector �k) and the
magnetization vector �M . The SW modes with �k perpendicular
to �M are known as Damon-Eshbach modes,22,23 while those
with �k parallel to �M are backward-volume modes.22,24 Despite
various differences, the SW modes share some common
features. One of them is the nonzero cutoff frequency of
the ferromagnetic resonance (FMR) mode, which corresponds
to the SW mode at �k = 0. The inset of Fig. 2 displays
the numerically calculated SW dispersion relation of the
permalloy strip with �k and �M parallel to the long axis. The
nonvanishing FMR frequency, which is due to the anisotropy
of the magnetic system, corresponds to an infinite phase
velocity vp of SWs at �k = 0. The SW dispersion is mainly
determined by the interplay of the long-range magnetostatic
interaction and the short-range exchange interaction. At large
�k, the exchange interaction dominates, yielding a dispersion
relation proportional to k2.25 This means that in the large �k
region, vp also tends towards infinity. Therefore vp(k) must
assume a minimum v0 at a specific nonzero wave vector k0.
This can be seen readily in Fig. 2, where vp(k) is plotted for
a long permalloy nanostrip. The values are extracted from the
numerically determined dispersion relation ω(k). No SW can
propagate in the system at velocities below v0. Therefore, a
moving source has to overcome this critical velocity v0 in order
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FIG. 2. (Color) Numerically determined phase velocity vp(k)
and group velocity vg(k) of SWs in a permalloy thin-film strip, which
is 4 μm long, 100 nm wide, and 10 nm thick. The values of vp(k)
and vg(k) are extracted from the SW dispersion relation ω(k) shown
in the inset. The lines are guides to the eye. At k0, where vp has
a minimum v0, the vg(k) curve crosses the vp(k) line. The colored
symbols show the wave vectors of the SW tails excited by the moving
field pulse applied to the strip at the corresponding speed. The colored
horizontal lines, indicating the speed of the field pulse, connect the
two SW branches (star in front and diamond behind).

to attain the Cherenkov excitation of SWs. Note that, there is
a twofold degeneracy of spin waves with vp above v0, which
yields the characteristic bichromatic form of the Cherenkov
radiation shown in Figs. 1(b) and 1(c) for vh > v0.

From Fig. 1, one notices that the two SW branches are
well separated with the one of larger �k always in front. This
mode separation results from different group velocities vg of
the two SW modes, a feature that is guaranteed by the shape
of the SW phase velocity curve vp(k). With the condition
dvp/dk|k0 = 0, it follows that vp(k0) = dω/dk|k0 ≡ vg(k0).
Hence, the SW group velocity is equal to the phase velocity at
k0, which is graphically shown by the crossing of the vp(k) and
vg(k) for the permalloy strip in Fig. 2. For k �= k0 it follows
that vg < vp if k < k0 and vg > vp if k > k0. Therefore, any
two SW modes that are degenerate in their phase velocity with
their respective k values bracketing k0 must have different
group velocities. This results in the spontaneous separation of
SW branches in the SCE. At the onset of the radiation, two
SW modes with equal vp are excited, forming two SW packets.
Due to dispersion, the SW packet with large �k (vg > vp) moves
to the front of the source and leaves the one with smaller
�k (vg < vp) behind. After a few nanoseconds, a dynamic
equilibrium between spin excitation and dissipation is reached,
after which two stable and separated monochromatic branches
are formed. This k-vector splitting resembles the phenomenon
reported recently by Rubino et al. in photonic crystal fibers.26

As the pulse velocity vh changes, the SW branches adjust
their wavelength and frequency accordingly to match their
phase velocity with vh, as demonstrated in Figs. 1(b) and
1(c). A systematic study with varying vh shows that the
evolution of the SW branches is precisely determined by
the dispersion relation. This is illustrated in Fig. 2, where

the colored horizontal lines indicate four different values of
vh and the colored symbols correspond to the k vectors of
the SW branches excited by the SCE. The SW dispersion is
obtained by applying a localized harmonic oscillating field
and extracting the wavelength of the resulting monochromatic
SWs. The ability to reconstruct the vp(k) curve by exciting
SWs with moving field pulses demonstrates that the two
methods of exciting SWs, either by matching their frequency
or their velocity, are equivalent.

The simulations of the thin-film strip presented above
elucidate the fundamental mechanism and some basic char-
acteristics of the SCE. We now go further and study the SCE
in 2D and 3D systems, which allow for the propagation of
SWs in different directions. Following the same spirit, we
simulate the response of a ferromagnetic thin-film disk and
a ferromagnetic (“bulk”-like) rectangular prism to a moving
field pulse, respectively. The pulse is spatially localized so that,
at any instant, it only affects a small portion of the magnetic
sample. This ensures a good approximation for a pointlike
moving source. In the 3D case, the field is localized in a small
spot at the surface with only a few nanometers penetration
depth. In our simulations, the disk and the rectangular prism
are homogeneously magnetized and the field pulse moves
along the direction of the magnetization. Similar to the 1D
case, SWs are excited only when the pulse reaches a critical
speed, indicating the same Cherenkov nature of the excitation.
Above the critical velocity, the simulations yield radiation
profiles of both 2D and 3D SCEs, which are displayed by
snapshots of the magnetization in Figs. 3 and 4, respectively.
For better visibility, the propagating SWs in the 3D case are
shown on inclined cut planes. A half-cone of SW fronts can
be recognized ahead and behind the moving field source in
the 3D case. The wave fronts in 2D and 3D SCEs are bent,
forming a shape which we refer to as the magnonic Mach cone
because of its direct analogy to the Mach cone in the sonic
boom. As the pulse speed increases, the bending of the wave
front becomes more pronounced [cf. Fig. 3(b)]. This is again
similar to the sonic Mach cone, which becomes narrower as the
aircraft goes faster. Unlike the sound wave or light, however,

FIG. 3. (Color online) Snapshots of SWs in a permalloy disk
(2 μm diameter and 10 nm thickness) induced by a 40 mT field
pulse moving with a constant speed of 1080 m/s (a) and 1280 m/s
(b). The yellow dots display the position of the field pulse, which is
moving in the x direction. As sketched in (a), two bent SW fronts
can be identified: one in front of the source and another behind it.
In the high velocity case, the wave fronts are distorted and merge,
thereby preventing a clear-cut distinction between anticipating and
retardating cones.
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FIG. 4. (Color) Snapshot of the magnetization fluctuations δmz

in a homogeneously magnetized prism (2 μm × 1 μm × 1 μm, cell
size: 5 nm). The spin waves are displayed on different cut planes in
order to indicate their 3D propagation. The SWs are induced by an
80 mT field pulse moving with a constant speed of 2000 m/s along
the surface in x direction. The inset is a close-up of the wave front,
where the yellow dot shows the pulse position. As a guide to the eye,
the particular form of the SW Mach cone is drawn in red, with one
SW front preceding the pulse and another following it.

the SW dispersion is anisotropic, i.e., it depends on the relative
direction of wave vector and magnetization. It is therefore more
difficult to precisely calculate the wave front in the SCE. But
at least qualitatively, the bending of the wave front can be
understood rather simply: In 2D and 3D SCEs, the moving
source can excite SWs propagating in any direction, as long as
the source velocity has a component in that particular direction
exceeding the minimum SW phase velocity. Therefore, SWs of
wave vectors with larger angle relative to the moving direction

of the source can be excited when the source moves faster,
resulting in more significant bending of the wave front and a
thinner magnonic Mach cone.

Despite the similarity between the magnonic Mach cone
and the sonic (or photonic) Mach cone, there is a fundamental
difference between them. In the latter ones, the moving source
is always located at the apex of the cone, or, in other words,
the wave front is always behind the moving source. This
is because of the linear dispersion of the sound wave and
light, which yields a single-valued phase velocity of the wave.
In magnetic media, however, the nonlinear dispersion yields
two SW modes for any phase velocity above the magnonic
threshold. Once again, the SCE excites SW modes whose
phase velocity matches the source velocity. Although the SW
dispersion is anisotropic, the twofold degeneracy of the SW
modes with same phase velocity as well as their unequal
group velocity are general features, as discussed previously. As
shown in Figs. 3 and 4, the waves develop both in front of and
behind the source, according to the two branches with different
wave numbers. The bichromaticity is therefore a signature of
a magnonic Mach cone, which distinguishes it from the sonic
boom and the electric-charge-induced Cherenkov effect.

In summary we have derived a general picture of the SCE
within the framework of micromagnetic theory. Due to the
nonlinear SW dispersion relation, the radiation profile shows
a characteristic bichromatic form, a phenomenon which could
also apply to wave excitations in other systems with nonlinear
wave dispersions. Considering the fundamental interest and
potential applications in magnonic devices based on SW
propagation, the SCE deserves experimental explorations.27
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