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Probing the energy barriers in nonuniform magnetization states of circular dots
by broadband ferromagnetic resonance
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The time evolution of the ferromagnetic resonance output signal in the arrays of permalloy circular dots of
submicron sizes was measured near the critical fields of the vortex nucleation and annihilation. Surprisingly
short times of the transition from the quasiuniform to the vortex magnetization state (several milliseconds) were
detected. The observed effects are explained by overcoming the field dependent energy barriers in the process
of vortex core nucleation. The energy barrier values found from the time dependences of the ferromagnetic
resonance peak intensities were compared with the ones calculated within the rigid vortex model. The rigid
vortex model overestimates the nucleation barriers and a more adequate magnetization reversal model is needed.
There is a strong dependence of the stable, metastable energy minima and energy barriers on the magnetic field
and dot geometrical parameters.
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The problem of overcoming energy barriers by thermal
activation is one of the longstanding fundamental problems in
physics and physical chemistry. The corresponding relaxation
times vary from nanoseconds to many years. The first descrip-
tion of the problem was made by van’t Hoff and Arrhenius
at the end of 19th century, who related a rate constant of
a chemical reaction to the activation energy of the process.
Then, the van’t Hoff–Arrhenius equation was derived1 from
statistical thermodynamics within the transition state theory.2

In the field of magnetism overcoming an energy barrier was
described by Néel3 for a particular case of uniform magneti-
zation rotation in a uniaxial single domain particle. Then, the
Néel’s problem was solved rigorously by Brown.4 A review of
thermal relaxation is given by Aharoni5 and simulation aspects
are reviewed in Ref. 6. Calculation methods still need to be
developed to find the energy barriers in an inhomogeneous
magnetization state, where the magnetization reversal modes
are essentially nonuniform, but such methods are neces-
sary to calculate the magnetization switching times, switch-
ing fields, and thermostability of different magnetization
states.

A typical stable, inhomogeneous magnetization configu-
ration in submicron flat particles (dots) in a zero field is a
vortex state (VS).7 Applying an in-plane magnetic field H ,
the vortex can be expelled from the dot at an annihilation
field Han, forming a single-domain (SD) saturated state.8

When decreasing the field starting from the SD state, a
magnetic nonuniformity appears in the dot at a nucleation
field Hn. This nonuniformity, called the C state (CS), can
be described as a magnetization distribution created by a
fictitious vortex centered outside the dot. With decreasing
H the vortex approaches the dot, a vortex core forms at
the dot edge, and propagates to the dot center,8 i.e., the
magnetization reversal can be represented as a vortex motion
through the dot. But it is unclear how the reversal process
occurs in time when the external field is changed. The reversal

is inevitably related to overcoming energy barriers existing
between different magnetization configurations: SD, VS, and
CS.9 The field dependence of these barriers allows one to
predict the temperature dependence of Han(T ), Hn(T ).10

In this Rapid Communication we present the measurements
of the magnetization dynamics of permalloy (Py) circular
dot arrays by applying an in-plane magnetic field H . The
excited eigenfrequencies are determined by the magnetic
energy minima. Probing the time evolution of the dot array
high-frequency response we are able to make conclusions
about changing the dot occupation numbers in different energy
minima. Overcoming the energy barrier by an individual
dot is essentially a random process, and its parameters can
be found from many repeated experiments with the same
dot,11–13 whereas measurements of an integral signal of the
dot array allow one to probe the magnetization dynamics in
a statistically averaged dot magnetization state. The results
of overbarrier jumps can be detected and magnetization
relaxation parameters are estimated after one measurement.

The time of the transition of a dot between minimal energy
states is determined by an energy barrier �E separating these
states. The magnetic energy of a dot having the shape of a
circular cylinder of radius R and thickness L depends on its
magnetization distribution M(r), external field H , and values
of R,L.7 The magnetization of a thin dot M(ρ), where ρ is the
in-plane radius vector, can be represented by the rigid vortex
model (RVM) as a displaced vortex, M(ρ,H ) = M(ρ − X),
with the core center located in the point X(H ).7,8 Both
M(ρ,H ) and the magnetic energy E(s) accounting for the
exchange, magnetostatic, and Zeeman energy within the RVM
are functions of only one parameter, the vortex core position
s = X/R. This allows one to simplify essentially the problem
of energy barrier description by reducing it to a one “reaction”
coordinate s approach. The vortex core penetrating to the dot
(s ≈ 1) costs a finite energy and the corresponding energy
barrier can be found.
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FIG. 1. (Color online) Magnetic energy of the dot vs vortex
core position s [W (s) + h] for different in-plane magnetic fields
h = H/Ms : (a) h = 0 (1), h = hn = 0.066 (2), h = 0.20 (3),
h = h0 = 0.405 (4), h = han = 0.717 (5), and h = 0.90 (6); (b)
h = hn = 0.066 (1), h = 0.0745 (2), and h = hC = 0.078 (3). Inset:
The energy barrier at the dot border at H = 0. The Py dot sizes are
R = 150 nm, L = 14 nm, and the saturation magnetization is Ms =
800 G. The reduced vortex core radius is c = Rc/R = 0.09.

The dependences of the reduced energy
W (s) = E(s)/M2

s V on s calculated within the RVM,
where V is the dot volume, are plotted in Fig. 1 for different
values of H . There is only a single energy minimum at
H � Han (Fig. 1) corresponding to the SD state (s = ∞).
The VS energy minimum appears at H = Han and becomes
the lowest one at H < H0.7 ESD = EVS at H = H0 and
the SD state is metastable at the fields Hn < H < H0. A
new additional metastable state (CS, 1/s ≈ 0.9) appears at
H = HC slightly above Hn (Hn < HC < H0) and exists down
to H = 0, resulting in a bistability of the dot magnetization
states VS and CS at H < Hn. This strongly nonuniform,
metastable C state was overlooked in Refs. 8 and 14, where
only a quasiuniform C state with 1/s � 1 was considered.
The SD state corresponds to the W (s) local minimum at
H > Hn and the local maximum at H � Hn, and there is
transition over a small energy barrier of the SD state to a new
CS with 1/s ≈ 0.9 (see Fig. 1) at H � Hn. The transitions
from the metastable CS to the ground VS start at H < Hn. The

dependence of the energy W (s) near s ≈ 1 (CS → VS energy
barrier) at H = 0 is shown in the inset to Fig. 1, i.e., there
are three stable states within the field interval 0 < H < Han

of interest, the VS, CS, and SD states. When decreasing H ,
the magnetization evolution for a typical L (10–50 nm) goes,
starting from the saturated SD state through CS to VS. The
situation is very different for ultrathin [1 monolayer (ML)]
dots,15 where the transition from the metastable SD to stable
VS was detected at H = 0 and no intermediate CS minima
appear.

When increasing the field from H = 0 the ground VS
becomes metastable at H > H0 (curve 4 in Fig. 1), but there
is no transition to the stable SD (s = ∞) state up to H = Han

due to a considerable energy barrier at s < 1, which decreases
with increasing H and disappears at Han. The field calculated
by the RVM, Hn = 0.066Ms ≈ 53 Oe, is in good agreement
with the field extracted from the hysteresis loop, Hn ≈
50 Oe, which is measured by the Kerr effect. The calculated
Han = 0.717Ms ≈ 570 Oe is higher than the experimental
value, ∼410 Oe. Possible sample defects should decrease
Hn and increase Han in comparison to the ideal, defect-free
critical field values. This allows us to speculate that the
defects do not contribute essentially to the dot magnetization
reversal.8

If the dot is in the SD state in a field H > Hn and we
abruptly change the field to H = 0, then the dot transits
initially to the CS (overcoming an energy barrier7,14), and
eventually to the ground VS with s = 0. The transition
time is determined by the energy barriers �Eij between
the SD state and CS, and then between CS and VS, where
i,j = {SD, CS, VS} ≡ {1, 2, 3}. According to the Arrhenius–
van’t Hoff law the transition time (relaxation time) from state
i to state j , τij , is

τij = 1

ν0
exp

(
�Eij

kBT

)
, (1)

where kB is the Boltzmann constant, T is temperature
(T = 293 K in our case), and ν0 is an attempt frequency.
If the relaxation times τij are found experimentally, then the
corresponding energy barriers �Eij can be calculated.

To check these ideas we consider a two-dimensional (2D)
array of uncoupled ferromagnetic dots. The number of the
dots in the array is N > 106 and the number of the dots in
the i state is Ni . There are transitions of the dots from one
metastable state to the other one, changing H . Accounting for
the fact that interdot coupling is negligibly small, we assume
that these transitions occur randomly and independently in
each dot. Initially, the dot array stays a long time at the field
H > Han. Therefore, all the dots are in the SD state (i = 1), and
N1 = N , s1 = ∞. At the field that decreases down to H � H0

we still have N1 = N , s1 = ∞, because the SD state is the
ground state. If we instantly change the field to 0, then in the
initial moment t = 0 the occupation numbers preserve their
values: N1 = N , s1 = ∞. Then, due to the instability of the
SD state at H = 0 (see Fig. 1), the SD state dots transit to CS
(i = 2), and then to VS (i = 3), where s3 = 0.

The system of differential equations (the master equations)
describing the time evolution of the occupation numbers Ni
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after the field switch-off at t = 0 can be written in the form16,17

dNi

dt
= −(Ni − Ni∞)

∑
j �=i

1

τij

+
∑
j �=i

(Nj − Nj∞)
1

τji

, (2)

where τij are given by Eq. (1), and Ni∞ is the equilibrium
number of the dots in the i state at t → ∞. We assume that
N1∞ = N2∞ = 0, N3∞ = N , i.e., after the field switch-off all
the dots transit to VS (s = 0) during a long enough time. On the
basis of the RVM (see Fig. 1) we can consider that the transition
times from the ground VS τ31,τ32 are essentially higher than
all other transition times. Accounting for the time hierarchy
τ31 > τ32 > τ23 	 τ21 > τ12, we can solve the system of
equations (2) and find the time evolution of the occupa-
tion numbers: N1

∼= N [e−t/τ23τ12/τ21 + (1 − τ12/τ21)e−t/τ12 ],
N2

∼= N [e−t/τ23 − e−t/τ12 ], N3
∼= N [1 − e−t/τ23 ]. N1(t) de-

creases exponentially with elapsing time, initially following
the “rapid” exponent exp(−t/τ12), then following the “slow”
exponent exp(−t/τ23). N2(t) increases, passes through a
maximum at t ∼ τ12, and then decreases with the same rate
as N1. Finally, there is an accumulation of dots in the VS
with the rate determined also by the “slow” exp(−t/τ23). The
dependences τ12,21(H ) can be calculated easily, but they are of
minor importance for our experiment, where the time evolution
of the spectra is determined by the relaxation time τ23(H ).

To measure the relaxation times we developed a setup
allowing one to switch the magnetic field from 0 to 400 Oe and
back during t ∼ 1 ms, i.e., we were able to study the transient
dynamics having the characteristic times τij � 1 ms. The setup
consists of two coaxial solenoids, inserted one into the other.
One of the solenoids operates in a stationary regime with a
maximum field ∼800 Oe (well above Han = 410 Oe). The
second solenoid operates in a pulse regime with a pulse rise
time ∼1 ms. Its magnetic field is controlled by the Honeywell
Linear Output Magnetic Field Sensor SS495 and it can be
directed parallel or antiparallel to the field created by the first
solenoid for a time �t = 0–15 s.

Switching of the dot array magnetization is accomplished
in the following way. Initially all the dots are saturated (SD
state) in the field of a stationary solenoid H > Han. Then, the
field is reduced to H = 290 Oe ≈ H0 (see Fig. 1), keeping
the dots in the SD state. Then, after a 10 s delay, the total H

is reduced to zero by the pulse magnet field for a time �t .
According to the solutions Ni(t), a part of the dots transits
to CS (s ≈ 1.1) or VS (s = 0) (see Fig. 1) during the time
t = �t . After switching off the pulse field and establishing
the field H0 again (see Fig. 1), the dots that were transited to
the VS state stay in the same state, but their cores are shifted
from the positions s = 0 (H = 0) to s = 0.53 (H = H0). All
the CS dots transit to the SD state because the CS minimum
disappears. Therefore, after switching off the pulse magnetic
field, the occupation numbers are

N1
∼= Ne−�t/τ23 , N2 = 0, N3

∼= N (1 − e−�t/τ23 ). (3)

To investigate the time evolution of the particle numbers in
the SD (N1) and V (N3) states we used the Vector Network
Analyzer ZVA-8. A square array 5 × 5 mm2 of circular Py
dots with radii R = 150 nm and thickness L = 14 nm
prepared by electron-beam lithography was placed over a
coplanar waveguide. The dot edge-to-edge distance was large

FIG. 2. (Color online) The transmission coefficient �S21(ω)
through the coplanar waveguide covered by the dot array at different
values of the in-plane magnetic field H : (1) H = 580 Oe > Han; (2)
H = 290 Oe = H0, the field is decreased from Han; (3) H = 290 Oe,
the field is increased after a waiting time �t = 5 ms at H = 0; (4)
H = 290 Oe, the field is increased after a waiting time �t = 8 s at
H = 0.

enough (300 nm) to exclude the influence of the interdot
magnetostatic interaction. The coplanar line was sputtered on a
polycor substrate of thickness 0.5 mm, the width of the central
waveguide was 200 μm, and the gaps were of 100 μm. The
microwave field across the sample was nonuniform, similar
to the excitation field used in the experimental setups in
Refs. 18 and 19. We measured the microwave transmission
coefficient S21 in the frequency range ω/2π = 4–8 GHz at
different values of H . The dependences �S21(ω) are shown
in Fig. 2. The transmission coefficient S21 for the saturated
dot array (H = 580 Oe > Han) has a resonance maximum at
ω/2π = 6.4 GHz (see curve 1 in Fig. 2). At a field decreasing
to H = 290 Oe ≈ H0, the SD peak frequency decreases in
accordance with the Kittel equation down to 4.45 GHz. If the
field is increased from 0 up to 290 Oe after a waiting time
of �t = 5 ms at H = 0 (curve 3 in Fig. 2), then, except for
the SD peak, an additional resonance peak (6.7 GHz) appears.
This peak corresponds to the azimuthal spin waves excited in
the VS dots.18–20 When applying our measurement technique
we observe curve 2 in Fig. 2 at �t = 0. The number of the
dots in the SD state decreases with a time �t increase, and the
value of �S21(SD) also decreases (see curve 3 in Fig. 2).
We denote as �S21(SD) the decrease of the transmission
coefficient in this case. Simultaneously, with a decreased
number of the dots in the SD state, the dots in the VS appear.
These dots create absorption peaks at the resonance frequency
of the VS magnetostatic oscillations (6.7 GHz). We denote as
�S21(VS) the increase of the transmission coefficient for the
VS. For a large enough waiting time �t 	 τ23 the SD peak
disappears [�S21(SD) → 0 at �t → ∞], and there is only a
magnetostatic spin wave resonance in the VS [curve 4 in Fig. 2,
�S12(VS) → max at t → ∞].

We express the time evolution of �S21(VS) and �S21(SD)
by the occupation numbers N1(t), N3(t) given by Eq. (3). We
denote the maximal resonance decrease of the transmission
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FIG. 3. (Color online) Dependences of the dot numbers in the
SD state (N1) and VS (N3) on the waiting time �t after the field
decrease to 0 from the initial SD state at H = 290 Oe ≈ H0 (squares)
measured by the change in the resonance transmission coefficients.
Left panel: SD resonance; right panel: VS resonance. The solid lines
are the dependences calculated by Eq. (4) assuming τ23 = 7.0 ms.

coefficient �S21 in the SD state as �S0
21(SD), and in the VS

state as �S0
21(VS) (curves 2 and 4 in Fig. 2, correspondingly

at �t = 0 and �t = max) and write

N1/N = �S21(SD)/�S0
21(SD),

(4)
N3/N = �S21(VS)/�S0

21(VS).

The changes in the maximal transmission coeffi-
cient at the resonance in the field H = 290 Oe were
�S0

21(SD) = 0.016 dB, �S0
21(VS) = 0.027 dB, correspond-

ingly. In the field 580 Oe the transmission coefficient was
0.031 dB, independent on the waiting time �t . The depen-
dences �S21(SD), N1 and �S21(VS), N3 on time are plotted in
Fig. 3. The best agreement with experimental data is obtained
for the relaxation time τ23 = 7.0 ms. This relaxation time,
according to Eq. (1), corresponds to the energy barrier between
the CS and VS of �E23(0) = 16kBT assuming a typical
ν0 ∼ 109 Hz.12 The bias field can be reduced to a finite value
H < Hn and the dependence of the barrier height �E23(H )
on H can be measured. The results of the measurements of
the relaxation time τ23(H ) and the CS → VS energy barrier
�E23(H ) within the interval −84 Oe � H � 48 Oe < Hn are
shown in Fig. 4. The experimentally obtained barriers are
essentially lower than the barriers calculated within the RVM at
s ≈ 1. Another RVM prediction is the linear dependence of the
energy barrier near the dot border, �W (H ), on the magnetic
field H [yielding �W (Hn) ≈ 0.0082]. This prediction fails
because we measured rather the exponential field dependence
of the CS → VS barrier �E(H ) (Fig. 4).

To determine the switching time from the VS to SD
state, the dot array initially was magnetized by applying a
bias magnetic field, which was increased from H = 0 to
H = H0. Then, the pulse field creating the total field H > Han

transferred the dot array to the SD state and kept it there during
a time �t . In this case, the relaxation time was lower than
the setup resolution time of ∼1 ms. The short time of the
VS → SD state transition is explained by the transition of the

FIG. 4. The measured magnetization relaxation time and reduced
barrier height (squares) of the Py dot array vs in-plane bias field H

for the CS → VS transition.

vortex with s = 0.53 (see Fig. 1, H = 0.405Ms) to s = ∞
occurring along the curve, where H = Han and the absence
of the energy barrier within the RVM. The equilibrium value
of s gradually increases with H , increasing up to a maximal
value s ≈ 0.85 at H = Han = 0.717Ms , and the vortex energy
minimum disappears at H � Han.

The interpretation of the experiment strongly depends on
whether there is a second metastable state (CS) of the circular
Py dot at H = 0. The RVM predicts a metastable CS H � HC

and two transitions decreasing the field from H > Hn down to
H = 0: (1) SD → CS and (2) CS → VS over the energy barrier
or the vortex core penetration to the dot. If there would be only
one stable VS at H = 0, then the energy barriers disappear, de-
creasing H below Hn, and the magnetization evolution occurs
starting from finite s 	 1 to s = 0, according to the Landau-
Lifshitz-Gilbert (LLG) equation of magnetization motion,5

due to the precession and damping terms. This equation allows
one to estimate a thermalization time τ0 ≈ 1/αω0 ≈ 30 ns,
where α is the damping constant, and ω0/2π ≈ 480 MHz is the
vortex gyrotropic frequency.7 Then, during the time (3–5)τ0 ≈
100–150 ns, the dot reaches the equilibrium VS (s = 0 if H =
0). But in our experiment this relaxation time is equal to several
ms, i.e., it is at least 104 times longer. Such a discrepancy can
be explained by the existence of an energy barrier between
the CS and VS at the dot border and/or random local energy
barriers (due to variable defects) along the path of the vortex
core to the dot center via the dot border. In real samples there
are other interactions which are related to the presence of
defects and may influence essentially the energy barriers,21

i.e., τ has an extrinsic, sample dependent contribution, which
cannot be calculated within a general approach. To calculate
τ we need to assume some specific defect distribution in
the sample and introduce corresponding pinning potentials.
But we believe that the contribution of the dot border to
the resulting nucleation barrier is dominating and is mainly
responsible for the measured values of τ of about 7 ms.

The RVM predicts a metastable CS and high energy barrier
for the CS → VS transition for the given dot geometrical
parameters. The calculated value of the barrier related to the
symmetry breaking vortex core nucleation is �W ≈ 0.0060
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or �E ≈ 93kBT . According to Eq. (1) there should be no
transitions over such a high barrier during a reasonable
measurement time. But a change of the dot excitation spectra
means that such transitions indeed occur in our experiments
during surprisingly short times (several ms), whereas times
of ∼10–103 s were expected.9,12,15 A real reversal mode can
be essentially different from the calculated one within the
RVM, especially if the core position s is close to 1 because
the vortex can be strongly deformed near the dot border.
Micromagnetic simulations showed that the vortex core is
elongated perpendicularly to the direction of the bias field H .
The RVM assumes a vortex displacement saving the core shape
and neglects this deformation. Therefore, it cannot describe
properly the magnetization reversal mode decreasing H near
Hn. An analytic theory allowing one to extend the dependence
of the energy E(s) in a one-dimensional configuration space
to the point s = 1 is missing because details of the deformed
core magnetization are unknown.22 Therefore, a more ad-
equate model is needed to describe the nucleation energy
barrier.

In summary, the low-field relaxation times of the array
of Py dots from the SD state to the VS were measured

by probing the dot spin excitation spectra. The relaxation
times are surprisingly short (∼7 ms at H = 0). They were
interpreted as a consequence of the energy barriers related
to the vortex core penetrations to the dots. The dependence
of the energy barriers on the in-plane field was extracted
from the broadband ferromagnetic resonance experiments.
The measured barriers are essentially smaller than the barriers
predicted by the RVM. The measured switching time from the
VS to SD state is also quite short, but it is not in contradiction
with the RVM. The developed method of measuring the time
dependent intensities of the ferromagnetic resonance peaks
in the different metastable and ground states is applicable to
explore the transient dynamics in any magnetic system.
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