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Disorder effects on superconducting tendencies in the checkerboard Hubbard model
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The question of whether spatially inhomogeneous hopping in the two dimensional Hubbard model can lead to
enhancement of superconductivity has been tackled by a number of authors in the context of the checkerboard
Hubbard model (CHM). We address the effects of disorder on superconducting properties of the CHM by using
exact diagonalization calculations for both potential and hopping disorder. We characterize the superconducting
tendencies of the model by focusing on the pair-binding energy, the spin gap, and d-wave pairing order parameter.
We find that superconducting tendencies, particularly the pair-binding energy, are more robust to disorder when
there is inhomogeneous hopping than for the uniform Hubbard model. We also study all possible staggered
potentials for an eight-site CHM cluster and relate the behavior of these configurations to the disordered system.
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I. INTRODUCTION

The problem of high temperature superconductivity (HTS)
in cuprate materials has been at the forefront of condensed
matter research since its discovery over 25 years ago.1

Despite the overwhelming theoretical and experimental ef-
forts focused towards this topic, the microscopic origin of
HTS remains elusive. From the theoretical side, the doped
two dimensional Hubbard model has been central to many
attempts to understand HTS.2,3 Recent numerical simulations
of this model appear to confirm that it can support d-wave
superconductivity.4 Nevertheless, variants of this model are
appealing to study as they may allow for further insights
into the two dimensional Hubbard model. One such variant
that has received much recent attention is the checkerboard
Hubbard model (CHM),5–11 in which hopping on the two
dimensional lattice is spatially modulated in a checkerboard
pattern.12–16 This modulation can be tuned to interpolate
between the limit of isolated plaquettes and the limit of
the uniform two dimensional Hubbard model. The isolated
plaquette limit is exactly solvable since it is possible to
write down the wave functions and energies as a function
of electron number, Hubbard U , and intraplaquette hopping
parameter t for a four site Hubbard model.17 As interplaquette
hopping t ′ is turned on but t ′/t � 1, one can view the
CHM as weakly coupled plaquettes and a perturbative ap-
proach can be developed.5 Additional motivation for studying
Hubbard models with modulated hopping comes from the
evidence for spatial modulations of electronic properties in
underdoped cuprate materials18–20 and proposals for realiz-
ing checkerboard fermionic Hubbard models in cold atom
systems.21–24

Particularly in the context of cuprates, there has been
much discussion as to whether inhomogeneity in hop-
ping can enhance superconductivity or not. Kivelson and
collaborators5–7,25,26 have argued that there is an optimal
inhomogeneity in the hopping for superconductivity in the
Hubbard model based on analytic calculations and exact diag-
onalization studies.6 Work using contractor renormalization
methods supports this claim.9 However, calculations using
quantum Monte Carlo (QMC) by Doluweera et al.10 and
cluster dynamical mean field theory (DMFT) by Chakraborty
et al.11 suggest that hopping inhomogeneity may enhance

superconductivity for some interaction strengths and dopings,
but at others it does not.

Previous studies of the checkerboard Hubbard model have
not included disorder, and in this paper we study the effect
of disorder on the superconducting properties of the CHM
using exact diagonalization calculations. Our motivations for
including disorder in the CHM are twofold. First, as mentioned
above, when t ′/t = 0, the model is exactly solvable and so,
in this limit, one is able to add disorder to an interacting state
that is known exactly, in contrast to the usual Hubbard model
(t ′/t = 1). Second, in Ref. 6 exact diagonalization calculations
performed on the CHM were used to argue for an optimal
inhomogeneity for superconductivity–if this result is relevant
to experimental systems, then it is useful to have understanding
of the effects of disorder. We study the effects of both weak
and strong potential and hopping disorder on three proxies
for superconducting order: the pair-binding energy (PBE),
�p, the spin gap, �s , and a d-wave order parameter, �d .
The pair-binding energy is a measure of the tendency towards
pairing of hole excitations. The spin gap is the gap between
the lowest energy S = 0 state and the lowest energy S = 1
state. Numerical studies of the homogeneous two-dimensional
Hubbard model4,27–29 using the dynamical cluster approxima-
tion (DCA) and quantum Monte Carlo (QMC) simulations
have suggested that S = 1 particle-hole spin fluctuations act
to mediate d-wave pairing. However, neither the PBE nor the
spin gap give information about the symmetry of the ground
state. Hence we also calculate a d-wave order parameter, which
has been investigated by several authors, to obtain insight
into the ground state symmetry of the CHM.6,11 Although
potential disorder is a pair-breaking perturbation for d-wave
superconductors,30 a recent numerical study of the uniform
Hubbard model suggested that very weak potential disorder
can enhance antiferromagnetic spin correlations and lead to a
small increase in the critical temperature.27

We study eight- and twelve-site systems at dopings x = 1/8
and x = 1/12, respectively, for both potential and hopping
disorder over a wide range of disorder strengths. Our results
in the weak disorder limit are similar to previous exact diag-
onalization studies: we find that superconducting tendencies
are enhanced for intermediate hopping inhomogeneity, with
the tendency most pronounced in the PBE and the spin gap.
We also find that with increasing disorder, superconducting

1098-0121/2013/88(21)/214518(13) 214518-1 ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.214518


PETER M. SMITH AND MALCOLM P. KENNETT PHYSICAL REVIEW B 88, 214518 (2013)

tendencies are most robust to disorder in the region of
intermediate hopping inhomogeneity, which is our main result.
We note that potential disorder can be considered as a random
linear combination of specific staggered potentials, although
the resulting electronic properties are not a simple linear
combination of the properties for each potential configuration.
For eight-site clusters, it is straightforward to enumerate all
inequivalent staggered potentials and we study the effects of
each of these potentials on the pair-binding energy, the spin
gap, and the d-wave order parameter.

This paper is organized as follows. In Sec. II, we introduce
the disordered checkerboard Hubbard model and define the
quantities we calculate. In Sec. III, we show the results of our
finite diagonalization studies of eight- and twelve-site clusters
and discuss how disorder averaging affects the properties of
the PBE (Sec. III A), the spin gap (Sec. III B), and the d-wave
pairing order parameter (Sec. III C). In Sec. IV we discuss
the effects of introducing staggered potential disorder on these
quantities for an eight-site system. We conclude and discuss
our results in Sec. V.

II. MODEL AND QUANTITIES CALCULATED

In this section, we define the checkerboard Hubbard model,
specify the different types of disorder we consider, and define
the quantities we calculate: the pair-binding energy, the spin
gap, and the d-wave order parameter. The disordered CHM
consists of N electrons on an M site lattice with a Hubbard-
Anderson Hamiltonian,

H = −
∑
ij

tij (ĉ†iσ ĉjσ + H.c.) +
∑

i

Ui n̂i↑n̂i↓ +
∑
iσ

Win̂iσ ,

(1)

where ĉ
†
iσ is a fermionic creation operator for a spin-σ electron

on site i, n̂iσ = ĉ
†
iσ ĉiσ is the number operator, tij is a hopping

amplitude, Ui is an on-site Hubbard interaction, and Wi is an
on-site disorder potential. We choose Ui = U on all sites of
the lattice and Wi = Wδi , where δi is drawn with uniform
probability from [−0.5,0.5]. We focus on the situation in
which the hopping parameters define a checkerboard,5,6 as
illustrated in Fig. 1:

tij =
⎧⎨
⎩

t, 〈ij 〉 ∈ I,

t ′, 〈ij 〉,i ∈ I,j ∈ J,I 	= J,

0, otherwise.

Lowercase letters (ij ) label sites on the lattice, uppercase
letters (IJ ) label plaquettes, and 〈ij 〉 indicates that sites i

and j are nearest neighbors on the lattice. Thus t gives the
magnitude of the hopping term on a single plaquette, while t ′
gives the magnitude of interplaquette hopping. Without loss
of generality, we choose t ′ � t .

We consider two types of disorder: on-site potential disor-
der, as discussed above, and hopping disorder, corresponding
to disorder in the intraplaquette (tij = t) nearest neighbor
hopping terms. For sites i and j on plaquette I , we choose tij =
t[1 + ηij (W/t)], where ηij is drawn with uniform probability
from [−0.5,0.5]. For random hopping we always consider
W < 2, so that the tij are always positive.

δ14 δ13

δ12δ11

δ24 δ23

δ22δ21

δ34 δ33

δ32δ31

δ44 δ43

δ42δ41

t t'

FIG. 1. Illustration of the inhomogeneous hopping terms t and t ′

and the distribution of disorder in the checkerboard Hubbard model
with potential disorder. δAb is the disorder potential on site b of
plaquette A.

A. Pair-binding energy

Let Em be the ground state energy of an M site cluster with
m holes, where m � 1 and is measured from half-filling. The
pair-binding energy (PBE) for that M-site cluster is

�p = 2Em − (Em+1 + Em−1). (2)

The PBE can be interpreted physically in the following way:
for a system of two identical clusters with an average of m holes
per cluster, �p > 0 indicates that it is energetically favorable
to place m + 1 holes on one cluster and m − 1 holes on the
other, rather than m holes on both clusters.

To study the role of disorder on the pair-binding properties
of the inhomogeneous Hubbard model, we study both the
disorder-averaged pair-binding energy and the distribution of
pair-binding energies as functions of U/t , t ′/t , and W/t . For
a specific disorder configuration k, we define the associated
PBE to be

�k
p = 2Ek

m − (
Ek

m+1 + Ek
m−1

)
,

where Ek
m is the ground state energy of disorder configuration

k when it has m holes. The disorder-averaged PBE is

〈�p〉 = 1

K

K∑
k=1

�k
p, (3)

where the angle brackets 〈· · · 〉 indicate an average over K

disorder configurations and it is understood that 〈�p〉 is
a function of U/t , W/t , and t ′/t . We also calculate the
probability of measuring a positive PBE for any given disorder
configuration by averaging over K configurations at fixed W .
We denote this quantity by P (�k

p > 0).

B. Spin gap

Let E0(m = 2,S = 0) and E0(m = 2,S = 1) denote the
energies of the lowest-lying S = 0 state and the lowest-
lying S = 1 state of two holes, respectively. The spin
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gap,

�s = E0(m = 2,S = 1) − E0(m = 2,S = 0), (4)

also provides a measure of the energy scale towards pairing in
the CHM. In BCS theory, in the thermodynamic limit,

lim
N→∞

�s = lim
N→∞

�p = 2�0,

where N is the system size and �0 is the superconducting
gap.25 We calculate the disorder-averaged spin gap,

〈�s〉 = 1

K

K∑
k=1

�k
s , (5)

and study how it behaves as a function of disorder strength.
In the absence of disorder, the total spin eigenvalue of

the m = 2 ground state is S = 0 for all t ′/t and U/t not
too large (U/t � 20). The introduction of disorder alters the
energy spectrum, which may lead to level crossings between
S = 0 states and S = 1 states depending on the strength of
interactions, intraplaquette hopping, and disorder strength.
Hence we also calculate the probability of finding S = 1 in
the ground state of the m = 2 system for each cluster size as a
function of U/t , t ′/t , and W/t .

C. d-wave pairing order parameter

The PBE and the spin gap provide measures of the tendency
towards superconductivity in the CHM. However, neither of
these quantities give information about the symmetry of the
ground state in the region of parameter space where these
quantities are positive. It is expected5–11,25 that superconduc-
tivity in the CHM has d-wave symmetry; hence we calculate
a d-wave order parameter of a standard form.30 Let D̂ be the
singlet operator acting on the bonds, defined by

D̂ =
∑
〈ij〉

Dijci↑cj↓, (6)

where Dij is equal to +1 on bonds oriented along the
x direction and −1 for bonds along the y direction. The
disorder-averaged d-wave order parameter is then the matrix
element between ground states with m and m − 2 holes:

〈�d〉 = 1

K

K∑
k=1

〈S = 0,m; k|D̂|S = 0,m − 2; k〉. (7)

III. EXACT DIAGONALIZATION RESULTS

We now discuss the results obtained from exact diagonal-
ization of the disordered CHM in the presence of on-site
and hopping disorder on eight- and twelve-site clusters.
We consider the ladder geometries shown in Fig. 2 for
eight- and twelve-site clusters. The boundary conditions are

FIG. 2. Lattice geometry studied in this paper, shown for 12 sites.

periodic along the direction of the length of the ladder
for ladder geometries. We study the dopings x = 1/8 for
eight-site clusters and x = 1/12 for twelve-site clusters. We
calculate all quantities discussed in Sec. II as a function of
increasing disorder strength and compare our results to the
clean system. We measure all energies in units of t . For each
type of disorder, we average over 256 disorder realizations for
eight-site clusters and 64 disorder realizations for twelve-site
clusters.

The data presented in this paper focused primarily on exact
diagonalization of ladder systems. Tsai et al.5,6 performed
exact diagonalization calculations for the sixteen-site lattice at
doping x = 1/16 and 3/16 and found evidence for an optimal
value of inhomogeneity in the CHM. Tsai et al. were able to
make use of a number of symmetries to simplify their exact
diagonalization calculations. As soon as disorder is introduced,
all real-space symmetries of the lattice are lost immediately,
which means that it is harder to solve sixteen-site systems, and
makes calculating the disorder-averaged spin gap and d-wave
order parameter much more difficult. We have hence mainly
focused on obtaining disorder-averaged results for eight- and
twelve-site lattices.

Convergence to the extremal eigenvalues is rapid when
using the Lanczos method, so that ground state energies
(required for the pair-binding energy) can be calculated to
machine precision. Our results for the pair-binding energy
match up well with those of other studies.31 In addition to
calculating the ground state energy, we calculate the associated
eigenvector (which is required for calculation of the d-wave
order parameter) using the restarted Lanczos method. For
quantities such as the spin gap, excited states are required.
To calculate the first excited state, we restart the Lanczos
algorithm with the constraint that all Lanczos vectors are
orthogonal to the ground state. Once the convergence criterion
is met, we verify that the calculated state is orthogonal to the
ground state. This scheme allows us to calculate the ground
state and the first few excited states as a function of system
parameters.

A. Pair-binding energy

Numerical studies of the CHM employing dynamical
cluster QMC10 and cluster DMFT11 suggest that d-wave
superconductivity is generally suppressed relative to the
homogeneous case by introducing inhomogeneity in hopping.
These studies suggest that the maximum values of either Tc

or the d-wave order parameter generally do not exceed that
of the homogeneous system. On the other hand, results from
exact diagonalization studies of the CHM on 4 × 4 lattices5,6

and DMRG studies of the CHM on ladders25 suggest that
at low doping the CHM can have enhanced d-wave pairing
compared to the uniform Hubbard model. In Refs. 5, 6,
and 25, the optimal parameters that maximize the PBE are
t ′ = 0.5t and U = 8t for a 4 × 4 system at doping x = 1/16
and t ′ ≈ 0.6–0.8t and U = 6t in a ladder system at doping
x = 1/8. Moreover, these results indicate that other quantities
relevant to superconductivity, such as the spin gap, d-wave
pairing operator, and pair-field correlations, are also optimized
in the region where the PBE is maximal. Thus the PBE should
be a reasonable measure for predicting where in parameter

214518-3



PETER M. SMITH AND MALCOLM P. KENNETT PHYSICAL REVIEW B 88, 214518 (2013)

(a) (b)

0.2

0

<
Δ p

>

t’/t

U
/t

1.00.50

10.0

5.0

0

1

0

P
(Δ

p>
0)

t’/t
U

/t

1.00.50

10.0

5.0

0

(c) (d)

0.2

0

<
Δ p

>

t’/t

U
/t

1.00.50

10.0

5.0

0

1

0

P
(Δ

p>
0)

t’/t

U
/t

1.00.50

10.0

5.0

0

FIG. 3. (Color online) Disorder-averaged pair-binding energy,
〈�p〉, and the probability of observing a positive pair-binding energy,
P (�k

p > 0), for the eight-site ladder at doping x = 1/8 with po-
tential disorder: (a) 〈�p〉,W/t = 0.05; (b) P (�k

p > 0),W/t = 0.05;
(c) 〈�p〉,W/t = 1.00; (d) P (�k

p > 0),W/t = 1.00.

space the tendency towards superconductivity in the CHM
may be strongest.

Previous work on the superconducting properties of the
CHM was in the clean limit.5,6,10,11,25 Here, we ask how disor-
der affects these properties. We determine the degree to which
disorder enhances or suppresses d-wave superconductivity in
such systems. In Figs. 3–6, we plot 〈�p〉 and P (�k

p > 0)
as functions of t ′/t and U/t at W/t = 0.05 [Fig. (a)] and
W/t = 1.00 [Fig. (c)] for the eight-site ladder and twelve-site
ladder geometries for potential and hopping disorder. In order
to see the regions where pair binding is favored as disorder is
increased, we plot only the values 〈�p〉 > 0. For both types
of disorder, there exists an intermediate range of parameters
t ′/t and U/t where pair binding is enhanced relative to the
standard Hubbard model (t ′/t = 1).

For the eight-site ladder, at weak disorder, we find that 〈�p〉
appears to be maximum near t ′/t ≈ 0.42 at U/t ≈ 5.6 for x =
1/8. For the twelve-site ladder, at weak disorder, the optimal
parameters are qualitatively similar, as 〈�p〉 is maximal near
t ′/t ≈ 0.4 and U/t ≈ 5.0 for x = 1/12. This is similar to the
results of Tsai et al.,5,6 who found the pair-binding energy to
be maximal at U/t ≈ 8 and t ′/t ≈ 0.5 for doping x = 1/16
on a sixteen-site cluster.

We find the maximum value of 〈�p〉 is always less than
the maximum value of the PBE in the absence of disorder.
As disorder strength is increased, the maximum value of 〈�p〉
decreases. Furthermore, the region in t ′ − U parameter space
where 〈�p〉 > 0 shrinks as W/t is increased, with the greatest
persistence in the region of maximum PBE in the absence of
disorder. For the eight-site ladder, we find that 〈�p〉 becomes
negative at W/t ≈ 1.50 for all t ′/t and U/t studied for on-site
disorder and W/t ≈ 1.00 for hopping disorder, with similar
cutoff values for the twelve-site ladders. For weak disorder, the
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FIG. 4. (Color online) Disorder-averaged pair-binding energy,
〈�p〉, and the probability of observing a positive pair-binding energy,
P (�k

p > 0), for the eight-site ladder at doping x = 1/8 with hop-
ping disorder: (a) 〈�p〉,W/t = 0.05; (b) P (�k

p > 0),W/t = 0.05;
(c) 〈�p〉,W/t = 1.00; (d) P (�k

p > 0),W/t = 1.00.

pair-binding properties of the system in the region of maximum
〈�p〉 are qualitatively unchanged in the case of either on-site
disorder or hopping disorder. The range in t ′ − U space where
there is a nonzero probability that pair binding is favored for
some disorder configurations is much wider than the region
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FIG. 5. (Color online) Disorder-averaged pair-binding energy,
〈�p〉, and the probability of observing a positive pair-binding energy,
P (�k

p > 0), for the twelve-site ladder at doping x = 1/12 with po-
tential disorder: (a) 〈�p〉,W/t = 0.05; (b) P (�k

p > 0),W/t = 0.05;
(c) 〈�p〉,W/t = 1.00; (d) P (�k

p > 0),W/t = 1.00.
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FIG. 6. (Color online) Disorder-averaged pair-binding energy,
〈�p〉, and the probability of observing a positive pair-binding energy,
P (�k

p > 0), for the twelve-site ladder at doping x = 1/12 with hop-
ping disorder: (a) 〈�p〉,W/t = 0.05; (b) P (�k

p > 0),W/t = 0.05;
(c) 〈�p〉,W/t = 1.00; (d) P (�k

p > 0),W/t = 1.00.

where pair binding is favored on average and persists to much
higher values of W/t .

If one interprets the PBE as a measure of the tendency of
the system to become superconducting, then our results can be
interpreted in the following way: as disorder is increased, the
region in parameter space where pair binding is favoured on
average decreases, consistent with finite disorder suppressing
superconductivity. However, the fact that P (�k

p > 0) 	= 0 even
when 〈�p〉 < 0 suggests that there are local regions in real
space where superconductivity can persist even when it is
suppressed on average. Our results also suggest that pair
binding in the CHM is more robust to disorder than in the
uniform Hubbard model as W/t increases. As disorder is
increased, 〈�p〉 is suppressed rapidly near t ′/t = 1, while
pair binding persists at intermediate values of inhomogeneity
for large values of W/t .

We also find that disorder affects the spin eigenvalue of the
ground state. In Figs. 7 and 8 we plot the probability of finding
S = 1 eigenvalues in the m = 2-hole ground state, P (S = 1),
for the eight- and twelve-site ladder clusters. We find that
the ground state of the eight-site ladder always has S = 0 for
weak disorder. However, at W/t = 1, P (S = 1) appears to be
maximum at t ′/t = 1 and U/t ≈ 2, which corresponds to the
maximum of the PBE of the uniform, homogeneous eight-site
ladder cluster. In the twelve-site ladder cluster, there is a region
with 0.4 � t ′/t � 0.8 for U/t < 3 where the ground state is
mainly S = 1 even for weak disorder. As disorder strength
increases, the value of P (S = 1) decreases in this region while
simultaneously increasing around t ′/t ≈ 0 and t ′/t ≈ 1. At
W/t = 1, P (S = 1) = 0 for intermediate values of t ′/t and
U/t > 5 for both the eight- and twelve-site ladder clusters.

For both eight- and twelve-site clusters, the region in
parameter space where P (S = 1) > 0 is larger for hopping
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FIG. 7. (Color online) Probability of observing a S = 1 ground
state in the m = 2-hole doped system, P (S = 1), for the eight-site
ladder cluster at doping x = 1/8: (a) potential disorder, W/t = 0.05;
(b) potential disorder, W/t = 1.00; (c) hopping disorder, W/t =
0.05; (d) hopping disorder, W/t = 1.00.

disorder than for potential disorder as disorder strength
increases. In both cases, at weak disorder the largest values of
P (S = 1) are found for intermediate t ′/t and U/t � 3. From
the definition of the d-wave order parameter, when the total
spin of the ground state is S = 1, �d = 0. We expect 〈�d〉 to
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FIG. 8. (Color online) Probability of observing a S = 1 ground
state in the m = 2-hole doped system, P (S = 1), for the twelve-site
ladder cluster at doping x = 1/12: (a) potential disorder, W/t =
0.05; (b) potential disorder, W/t = 1.00; (c) hopping disorder,
W/t = 0.05; (d) hopping disorder, W/t = 1.00.
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be most robust against potential disorder in the regions where
P (S = 1) = 0 up to W/t = 1.

B. Spin gap

Karakonstantakis et al.25 calculated the spin gap and the
PBE in the ladder CHM using density matrix renormalization
group (DMRG) methods and argued that there is an optimal
inhomogeneity that leads to maximal values of �p and �s .
Similar to Ref. 25, we calculate the disorder-averaged spin
gap, 〈�s〉, as the average gap between the S = 0 state and the
lowest-energy S = 1 state in the m = 2-hole doped system.
The spin gap, like the pair-binding energy, may be interpreted
as a measure of the pairing scale of the system.29

In order to evaluate the spin gap, we calculate the eigenval-
ues and associated eigenvectors of the ground state and the first
few excited states, determine the S2 eigenvalue of each state,
isolate the lowest-lying S = 1 eigenstate, and then calculate
E0(S = 1) − E0(S = 0). There also exist several low-lying
states with S = 0 near the S = 1 state, and for large enough
t ′/t , we see crossings between the lowest-lying S = 1 state and
S = 0 excited states. We plot 〈�s〉 as a function of t ′/t and U/t

at fixed W/t for the eight-site ladder, but focus on U/t = 8.0
for the twelve-site ladder. The reason for the latter situation is
that there are multiple level crossings between excited states
in the twelve-site model, which makes it difficult to survey
numerically the spectrum of excited states for many values
of t ′/t and U/t . We also calculate the disorder-averaged gap
between the ground state and the first excited S = 0 state,
〈E1 − E0〉, to get a better sense of how the lowest-lying S = 0
states behave as t ′/t is varied. The value of 〈E1 − E0〉 is
calculated only for those configurations where the ground state
has S = 0.

We plot 〈�s〉 and 〈E1 − E0〉 for the eight- and twelve-site
ladders in Figs. 9–14. For eight-site clusters with weak
disorder and moderate interactions, the spin gap increases
monotonically as t ′/t → 1. As disorder increases, the gap
appears to soften slightly as t ′/t → 1, which leads to the
optimal 〈�s〉 occurring for t ′/t < 1, albeit with different
U/t and t ′/t to where pair binding is favored. On the
other hand, the results for 〈E1 − E0〉 for eight-site clusters
show that this quantity is maximized for intermediate values
of inhomogeneity. Also of interest is that for t ′/t � 0.7,
〈E1 − E0〉 < 〈�s〉, indicating that the lowest-lying excitations
are S = 0 states. However, there is a maximum in 〈E1 − E0〉
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FIG. 9. (Color online) Disorder-averaged spin gap, 〈�s〉, as a
function of t ′/t and U/t at doping x = 1/8 on the eight-site ladder
with potential disorder: (a) W/t = 0.05 and (b) W/t = 1.00.
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FIG. 10. (Color online) Disorder-averaged gap to the lowest en-
ergy S = 0 excited state, 〈E1 − E0〉, as a function of t ′/t and U/t

at doping x = 1/8 on the eight-site ladder with potential disorder:
(a) W/t = 0.05 and (b) W/t = 1.00.

at t ′/t ≈ 0.5 for which 〈E1 − E0〉 > 〈�s〉. As t ′/t → 1, we
find 〈E1 − E0〉 < 〈�s〉.

At weak disorder in eight-site clusters, the results for
〈�p〉 and 〈E1 − E0〉 show little qualitative difference between
potential and hopping disorder. However, we see a clear
difference between both types of disorder at large W/t .
As illustrated in Figs. 11 and 12, for hopping disorder,
〈�s〉 and 〈E1 − E0〉 grow with increasing W/t , whereas for
potential disorder large values of W/t appear to suppress these
quantities slightly.

For twelve-site ladder clusters with U/t = 8, 〈�s〉 appears
to be maximized at t ′/t ≈ 0.5, while 〈E1 − E0〉 appears to be
maximized at t ′/t ≈ 0.4. A comparison between this result and
the data for the spin gap calculated on eight-site clusters, which
show no signs of “optimization” for intermediate t ′/t , suggests
that doping effects are significant when calculating the spin
gap. However, similarly to the eight-site clusters, we see a
crossover in the gaps as a function of intraplaquette hopping
around t ′/t ≈ 0.6 for weak disorder. Depending on disorder
strength and configuration, there may be several S = 0
states with lower energy than the lowest S = 1. Although this
may be an artifact of small system size and/or geometry, our
results still suggest that the spin gap is less than the gap to
other low-lying S = 0 states for t ′/t < 0.5; above this value,
other low-lying states may lie below the spin gap. Similarly to
the eight-site model, it appears that 〈�s〉 is affected more by
hopping disorder than by potential disorder, as can be seen in
Figs. 11 and 14.
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FIG. 11. (Color online) Disorder-averaged spin gap, 〈�s〉, as a
function of t ′/t and U/t at doping x = 1/8 on the eight-site ladder
with hopping disorder: (a) W/t = 0.05 and (b) W/t = 1.00.
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FIG. 12. (Color online) Disorder-averaged gap to the lowest en-
ergy S = 0 excited state, 〈E1 − E0〉, as a function of t ′/t and U/t

at doping x = 1/8 for the eight-site ladder with hopping disorder:
(a) W/t = 0.05 and (b) W/t = 1.00.

C. d-wave pairing

We investigate d-wave symmetry of the ground state by
studying the disorder-averaged d-wave order parameter, 〈�d〉.
The results for 〈�d〉 for the eight- and twelve-site ladder
clusters are plotted in Figs. 15–18.

The data for the eight-site and twelve-site ladder clusters
show that 〈�d〉 is maximized for intermediate values of
inhomogeneity, which is consistent with the results for 〈�p〉.
However, there are some important distinctions between the
regions where 〈�d〉 and 〈�p〉 are strong. First, there is a strong
maximum in 〈�d〉 near t ′/t ≈ 0 for small U/t as illustrated in
Figs. 15 and 16. Furthermore, the data shown in these graphs
suggest that 〈�d〉 is strongly dependent on the strength and
type of disorder in this region of parameter space. Second, 〈�d 〉
appears to be much more robust against increasing disorder
for intermediate values of inhomogeneity than 〈�p〉. As such,
it appears that disorder does not greatly affect the d-wave
symmetry of the ground state as t ′/t is increased from zero
to unity. We will discuss this second point in more detail in
Sec. III D.

Recall from Eqs. (6) and (7) that 〈�d〉 has contributions
from the strong (t) and weak bonds (t ′). Tsai et al.6 showed
that for a clean system the contribution to the d-wave order
parameter comes strictly from the strong bonds. We find
however that the weak bonds contribute to the value of
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FIG. 13. (Color online) Disorder-averaged spin gap, 〈�s〉, and
disorder-averaged gap to the lowest energy S = 0 excited state,
〈E1 − E0〉, as a function of t ′/t for U/t = 8 and doping x = 1/12
for the twelve-site ladder with potential disorder: (a) W/t = 0.05 and
(b) W/t = 1.00.
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FIG. 14. (Color online) Plots of the disorder-averaged spin gap,
〈�s〉, and disorder-averaged gap to the lowest energy S = 0 excited
state, 〈E1 − E0〉, as a function of t ′/t for U/t = 8 and doping
x = 1/12 for the twelve-site ladder with hopping disorder:
(a) W/t = 0.05 and (b) W/t = 1.00.

the order parameter for nonzero disorder in the limits of
strong and weak inhomogeneity, and this effect is more
pronounced for hopping disorder than potential disorder.
For intermediate inhomogeneity, the strong bonds make the
dominant contributions to the value of the order parameter.
These results suggest that the properties of 〈�d〉 are more
robust against disorder for intermediate to large values of t ′/t

in comparison to the case of t ′/t ≈ 0 or t ′/t  1.
For x = 1/12, we see that for regions in parameter space

where P (S = 1)  1, we have 〈�d〉 = 0. As W/t increases,
P (S = 1) decreases on account of level crossings between the
S = 0 and S = 1 states, which in turn leads to an increase in
〈�d〉 in this region.

D. Disorder-induced fluctuations

The results for 〈�p〉 show that as disorder is increased,
pair binding is suppressed on average. However, the results
for P (�k

p > 0) suggest that pair binding can still be favored at
large W/t for certain configurations even when 〈�p〉 < 0. We
investigate disorder-induced fluctuations of the pair-binding
energy by calculating the variance of �p:

σp =
√√√√ 1

K

K∑
k=1

(
�k

p − 〈�p〉)2
. (8)
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FIG. 15. (Color online) Disorder-averaged d-wave pairing order
parameter, 〈�d〉, on the eight-site ladder with potential disorder:
(a) W/t = 0.05 and (b) W/t = 1.00.
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FIG. 16. (Color online) Disorder-averaged d-wave pairing order
parameter, 〈�d〉, on the eight-site ladder with hopping disorder: (a)
W/t = 0.05 and (b) W/t = 1.00.

In Figs. 19 and 20 we plot log(σp) to illustrate the magnitude
of the disorder-induced fluctuations. At weak disorder, log(σp)
shows a clear minimum in the region of maximum 〈�p〉 for
both potential and hopping disorder.

This minimum has the form of a cusp, although it is
smoothed out with increasing disorder strength. The cusp
is more pronounced for twelve-site clusters: for t ′/t <

(t ′/t)optimal, the value of σp decreases by almost an order
of magnitude from its value at t ′/t = 0.5 at weak disorder,
illustrating the change in the distribution of pair-binding
energies from t ′/t < (t ′/t)optimal to t ′/t > (t ′/t)optimal. One
possible explanation is that the location of the cusp signals
a crossover from isolated plaquette physics to inhomogeneous
lattice physics. This is similar to the transition observed by
Peterson et al.21 in the case of the d-Mott insulator state.

We have also investigated fluctuations in the spin gap and
the d-wave order parameters. In each case, the fluctuations are
weakest in the region where the disorder-averaged quantities
are maximal. Unlike σp, disorder-induced fluctuations in the
spin gap and the d-wave order parameter do not exhibit any
cusplike features.

IV. STAGGERED POTENTIALS

One way of viewing a particular disorder configuration in
either potential or hopping strength is as a linear combination
of staggered on-site potential or hopping configurations, where
the deviation from a uniform system on each site or bond can
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FIG. 17. (Color online) Disorder-averaged d-wave pairing order
parameter, 〈�d〉, on the twelve-site ladder with potential disorder:
(a) W/t = 0.05 and (b) W/t = 1.00. The black regions in (a)
correspond to P (S = 1) ≈ 1.
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FIG. 18. (Color online) Disorder-averaged d-wave pairing order
parameter, 〈�d〉, on the twelve-site ladder with hopping disorder:
(a) W/t = 0.05 and (b) W/t = 1.00. The black regions in (a)
correspond to P (S = 1) ≈ 1.

only take values of ±W
2 . On an eight-site ladder cluster, with

periodic boundary conditions along the ladder, there are 32
possible nontrivial inequivalent staggered configurations for
either potentials or hoppings. Even though for an interacting
problem we cannot take a linear combination of solutions for
different potentials to determine the full behavior, studying
individual staggered potentials can lead to insights into their
contributions in random potentials. Hence we study �p, �s ,
and �d at doping x = 1/8 for all staggered on-site potentials
and hopping patterns.

In Figs. 21(a) and 21(b) we plot the maximum �p in the
U − t ′ plane for all 32 staggered potential and hopping config-
urations for several different values of disorder strength. For
most configurations the maximum value of �p is suppressed as
W/t → 1. However, as disorder strength is increased beyond
this limit, there are some configurations where pair binding
persists to large W/t . This is in contrast to the behavior of
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FIG. 19. (Color online) Plots of log(σp) for the eight-site ladder
cluster at doping x = 1/8: (a) potential disorder, W/t = 0.05;
(b) potential disorder, W/t = 1.00; (c) hopping disorder, W/t =
0.05; (d) hopping disorder, W/t = 1.00.
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FIG. 20. (Color online) Plots of log(σp) for the twelve-site ladder
cluster at doping x = 1/12: (a) potential disorder, W/t = 0.05; (b)
potential disorder, W/t = 1.00; (c) hopping disorder, W/t = 0.05;
(d) hopping disorder, W/t = 1.00.
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FIG. 21. (Color online) Plots of �p,max for each staggered con-
figuration as a function of W/t : (a) staggered potentials; (b) staggered
hopping.
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FIG. 22. Configurations of staggered on-site (i)–(iv) and bond
(v)–(viii) potentials discussed in Sec. IV A. Dashed lines correspond
to weak (t ′) bonds, solid lines correspond to strong (t) bonds, and
dots correspond to lattice sites. For configurations (i)–(iv), white
(black) dots correspond to on-site potential strengths +(−) W

2t
. For

configurations (v)–(viii), solid thin (thick) lines correspond to bond
strength 1 + W

2t
(1 − W

2t
).

the disorder-averaged PBE, which is suppressed beyond some
maximum W/t .

In the interest of brevity, we do not present data for all
32 configurations for the two types of disorder in this paper.
Instead, we have identified configurations of staggered on-site
potentials and hopping patterns, shown in Fig. 22, for which
the pair-binding properties appear to be most robust against
increasing W/t .

We observe no individual disorder configuration that
enhances the PBE above its value in the clean limit for any of
the disordered ladder models at any value of W/t . However,
there appears to be no consistent response to increasing W/t

between all configurations considered—the PBE of some
configurations is suppressed rapidly as disorder increases,
while the pair-binding properties of other configurations
appear to be much more resistant to disorder. The maximum
of the PBE for each configuration as a function of U/t and
t ′/t is plotted in Fig. 21.

A. Small W/ t

For small W/t , the configurations (i) to (viii) in Fig. 22 lead
to the largest PBEs. With the exception of configurations (i)
and (vi), the staggered potentials or hoppings “pair up” locally
on each plaquette, resembling a dimerlike structure. The sum
of all deviations from the uniform system add to zero except
for (i) and (v), with (i) and (vi) the only configurations for
which the sum of the deviations do not add to zero on each
plaquette.

We plot the values of �p, �s , and �d as a function of U/t

and t ′/t at doping x = 1/8 and W/t = 0.25 in Figs. 23–25 for
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FIG. 23. (Color online) Plots of �p for the eight-site ladder
cluster at doping x = 1/8 and W/t = 0.25 for (a) staggered potential
configuration (ii) and (b) staggered hopping configuration (vi). For
comparison, we also plot 〈�p〉 at W/t = 0.25 for (c) potential
disorder and (d) hopping disorder. (See Fig. 22 for configuration
details.)

configurations (ii) and (vi) shown in Fig. 22. These data appear
to be qualitatively similar to each other and to the results for
other staggered configurations and for random disorder for
intermediate t ′/t .
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FIG. 24. (Color online) Plots of �s for the eight-site ladder
cluster at doping x = 1/8 and W/t = 0.25 for (a) staggered potential
configuration (ii) and (b) staggered hopping configuration (vi). For
comparison, we also plot 〈�s〉 at W/t = 0.25 for (c) potential
disorder and (d) hopping disorder. (See Fig. 22 for configuration
details.)
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FIG. 25. (Color online) Plots of �d for the eight-site ladder
cluster at doping x = 1/8 and W/t = 0.25 for (a) staggered potential
configuration (ii) and (b) staggered hopping configuration (vi). For
comparison, we also plot 〈�d〉 at W/t = 0.25 for (c) potential
disorder and (d) hopping disorder. (See Fig. 22 for configuration
details.)

In general, �p, �s , and �d appear to be the most robust
against small W/t in configurations (ii)–(iv) and (vi). The local
configurations of these patterns appear to favor dimerization in
the case of staggered potentials and locally uniform hopping
on each plaquette in the case of configuration (vi).

B. Large W/ t

At large W/t Fig. 21 shows that the maxima of the PBE
for configurations (I ) and (II ) in Fig. 26 are more robust to
disorder than other configurations. Configuration (I ) may be
thought of as a staggered plaquette chemical potential μ =
±2W/t , whereas configuration (II ) [which is a relabelling of
configuration (vi) shown in Fig. 22] may be interpreted as a
hopping pattern staggered plaquette by plaquette, where the
nearest neighbor hopping on each plaquette is either t ± W/2.

The regions in t ′ − U parameter space for which pair
binding remains positive for large W/t are quite different
for configurations (I ) and (II ). Pair binding is favored for

(I) (II)

FIG. 26. Selected configurations of staggered on-site (I ) and
bond (II ) potentials for which pair binding persists at large W/t .
Dashed lines correspond to weak (t ′) bonds, solid lines correspond to
strong (t) bonds, and dots correspond to lattice sites. For configuration
(I ), black (white) dots correspond to on-site potential strengths
+(−) W

2t
. For configuration (II ), solid thick (thin) lines correspond to

bond strength 1 + W

2t
(1 − W

2t
).
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FIG. 27. (Color online) �p for the eight-site ladder cluster at
doping x = 1/8 for (a) configuration (I ) at W/t = 1.00, (b) configu-
ration (II ) at W/t = 1.00, (c) configuration (I ) at W/t = 5.00, and
(d) configuration (II ) at W/t = 1.98. (See Fig. 26 for configuration
details.)

intermediate t ′/t on configuration (I ), whereas pair binding
on configuration (II ) is favored primarily as t ′/t → 0. For
all values of W/t studied, there is always a region in
parameter space where the PBE remains positive for these
configurations. As shown in Fig. 27, for configuration (I ),
�p is maximum for t ′/t ≈ 0.5 at U/t ≈ 6–7 at W/t = 5.00,
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FIG. 28. (Color online) �s for the eight-site ladder cluster at
doping x = 1/8 for (a) configuration (I ) at W/t = 1.00, (b) configu-
ration (II ) at W/t = 1.00, (c) configuration (I ) at W/t = 5.00, and
(d) configuration (II ) at W/t = 1.98. (See Fig. 26 for configuration
details.)
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FIG. 29. (Color online) �d for the eight-site ladder cluster at
doping x = 1/8 for (a) configuration (I ) at W/t = 1.00, (b) configu-
ration (II ) at W/t = 1.00, (c) configuration (I ) at W/t = 5.00, and
(d) configuration (II ) at W/t = 1.98. (See Fig. 26 for configuration
details.)

while �p is maximum along the t ′/t = 0 axis at W/t = 1.98
for configuration (II ).

Figures 28 and 29 show the effect of increasing W/t on
the spin gap and d-wave order parameter of configurations (I )
and (II ) at W/t = 1.00 and beyond. For configuration (I ),
the plots of �d and �s show a distinct crossover to a region
where pairing is favored at U/t � 4–5 at W/t = 5.00. For
configuration (II ), increasing W/t appears to shrink the spin
gap in the pair-binding region, while also suppressing �d for
t ′/t � 0.1–0.2.

For each configuration where pair binding persists for very
large disorder strengths, except for the configurations shown
in Fig. 26, we can identify three common characteristics.
First, the maximum of �p appears for intermediate U/t and
t ′/t ≈ 0, which is the limit of disconnected plaquettes. Second,
although the sum of all potentials across the cluster is not zero
for each configuration, the values of the staggered potentials
add to ±2W on one of the plaquettes. For staggered potentials,
this is tantamount to a local shift in the chemical potential
of ±2W , while in the case of staggered hoppings, this is
equivalent to a local change in the interplaquette hopping
from −t → −t − W/2. Third, the average occupation of the
plaquette for which the sum of the potentials is not ±2W

is two electrons per plaquette, independent of the number of
doped holes per cluster. This leaves the remaining “uniform”
plaquette with four electrons per uniform plaquette at m = 2,
five electrons per uniform plaquette at m = 1, and six electrons
per uniform plaquette at m = 0.

V. DISCUSSION AND CONCLUSIONS

In this paper we have performed a detailed study of the
effects of disorder on superconducting tendencies in the
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checkerboard Hubbard model. From exact diagonalization
studies of eight- and twelve-site ladders at dopings x = 1/8
and x = 1/12, respectively, we have found that supercon-
ducting tendencies are much more robust to disorder at
moderate t ′/t than for the uniform Hubbard model (t ′/t = 1).
In particular, the disorder-averaged pair-binding energy 〈�p〉,
and the probability of nonzero pair-binding P (〈�p〉 > 0) are
peaked for intermediate U and t ′/t and decay more slowly
with disorder than for the uniform case. We observed similar
behavior for 〈�s〉 and 〈�d〉. This implies a real space picture
in which disorder leads to patches of superconductivity, some
of which persist even to strong disorder. Such a picture
emerges from studying the full distribution of pair-binding
energies in the presence of disorder, not just the mean value.
This additional robustness to disorder is reminiscent of the
observation of stabilization of the pseudogap by disorder in
Lanczos and quantum Monte Carlo simulations.32

Examining fluctuations in the pair-binding energy, in
Sec. III D we find that these have a cusplike minimum in the
region of strongest superconducting tendencies, which appears
to correspond to a crossover between single-plaquette and
more delocalized physics, reminiscent of the phase transition
to the d-Mott state at half-filling. We note that the behavior of
fluctuations in the vicinity of the maximum of the pair-binding
energy is quite nonuniform and depends on the direction in
the U − t ′ plane away from the “optimal inhomogeneity.”
This tends to suggest that the robustness of superconducting
tendencies to disorder is not just from the fact that the value
of the pair-binding energy is maximum for these values of
U and hence larger fluctuations are required to eliminate
superconductivity. If disorder mainly modifies the position in
parameter space of the localized/extended state crossover, it is
this crossover that governs the maximum PBE, and hence the
robustness of superconducting properties to disorder is driven
by the underlying mechanism that leads to superconducting
tendencies in the model rather than just the fact that the PBE
is largest in this region in parameter space. (This is consistent
with our observations in Sec. IV shown in Fig. 21 that for weak
disorder the maximum value of the pair-binding energy is not
greatly affected by staggered potentials but that the position
in parameter space where that maximum is found does vary.)

This picture gives an account of our results and is consistent
with the plots obtained for σp in Figs. 19 and 20.

To gain further insight into disorder effects on the CHM,
we studied all eight-site configurations in which a staggered
potential or staggered hopping was superimposed on the
underlying CHM. We found that the configurations with the
greatest robustness to increasing disorder strength generally
appeared to be those with a pattern of dimerization in either
the staggered potential or hopping. A caveat to our results is
the issue of finite size effects, which are always present in
numerical calculations. In disordered systems, one generically
expects shorter correlation lengths than the corresponding
ordered system, which is encouraging. However, it would be
desirable to have our results confirmed via other techniques,
such as the contractor renormalization approach9 or the
dynamical cluster approximation.11

Beyond the focus on the two dimensional Hubbard model
from the perspective of high temperature superconductivity,
the interest in “designer Hamiltonians”33–35 and the checker-
board Hubbard model in particular21,22 in the context of
cold atom systems gives an additional area to which our
results may be of interest. The crossover between single
plaquette and multiplaquette physics we see away from
half-filling is reminiscent of the transition to the d-Mott
insulator phase,7,8,21,36 which has been argued to be favored
at half-filling and is not adiabatically connected to any band
insulators. In this phase each plaquette on the lattice has a
local d-wave symmetry: rotation of a single plaquette by 90◦
leads to a change in sign of the wave function of the system.
Possible experimental signatures to identify the presence of
this state were suggested by Peterson et al.21 Cold atom
systems lack disorder, but efforts to introduce disorder using
incommensurate lattices37 and optical speckle fields38 might
allow for experimental realization of the disordered CHM.
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