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Devil’s staircases and continued fractions in Josephson junctions

Yu. M. Shukrinov,1 S. Yu. Medvedeva,1,2 A. E. Botha,3 M. R. Kolahchi,4 and A. Irie5

1BLTP, JINR, Dubna, Moscow Region, 141980, Russia
2Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141700, Russia

3Department of Physics, University of South Africa, P. O. Box 392, Pretoria 0003, South Africa
4Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-1159, Zanjan, Iran

5Department of Electrical and Electronic Systems Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
(Received 22 August 2013; revised manuscript received 17 October 2013; published 26 December 2013)

Detailed numerical simulations of the IV characteristics of a Josephson junction under external electromagnetic
radiation show the devil’s staircase within different bias current intervals. We have found that the observed steps
form very precisely continued fractions. Increase of the amplitude of the radiation shifts the devil’s staircase to
higher Shapiro steps. An algorithm for the appearance and detection of subharmonics with increasing radiation
amplitude is proposed. We demonstrate that the subharmonic steps registered in the well-known experiments by
Dayem and Wiegand [Phys. Rev. 155, 419 (1967)] and Clarke [Phys. Rev. B 4, 2963 (1971)] also form continued
fractions.
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I. INTRODUCTION

Josephson junctions are regarded as excellent model
systems for studying a variety of nonlinear phenomena in
different fields of science1,2 such as frequency locking,
chaos, charge-density waves, transport in superconducting
nanowires, interference phenomena, and others.3–6 These
phenomena, and especially properties of the Shapiro steps7

(SSs) in Josephson junctions, are very important for technical
applications.8

In a Josephson system driven by external microwave
radiation, the so-called devil’s staircase (DS) structure has been
predicted as a consequence of the interplay of the Josephson
plasma frequency and the applied frequency (see Refs. 9 and
10 and references therein). To stress the universality in the
scenario presented, we note that the devil’s staircase appears
in other systems including infinite spin chains with long-range
interactions,11 frustrated quasi-two-dimensional spin-dimer
systems in magnetic fields,12 systems of strongly interacting
Rydberg atoms,13 and the fractional quantum Hall effect.14 We
note the recent paper by Hriscu and Nazarov15 in which the
synchronization of Josephson and Bloch oscillations results
in the quantization of transresistance, which also leads to a
devil’s staircase structure for this coupled system. A series
of fractional synchronization regimes (devil”s staircase) in a
spin-torque nano-oscillator driven by a microwave field was
experimentally demonstrated.16 In Ref. 17 it is considered that
a devil’s staircase shows a high degree of self-organization.

A detailed experimental investigation of the subharmonic
SSs in superconductor–normal metal–superconductor (SNS)
junctions was made by Clarke.18 He found that the ap-
plication to a junction of rf electromagnetic radiation of
frequency � induced constant-voltage current steps at voltages
(n/m)��/(2e), where n and m are positive integers. The
results were explained based on the idea that the phase
difference in a Josephson junction is increasing in time in
a uniform manner and the current-phase relation is nonsinu-
soidal. The junction generates harmonics when it is biased at
some voltage, and these harmonics may synchronize with the
applied radiation to produce the steps. Another well-known

experiment on the behavior of thin-film superconducting
bridges in a microwave field by Dayem and Wiegand19 also
demonstrates the production of constant-voltage steps in the
IV characteristics. Some experimental results are explained
by a nonsinusoidal current-phase relation.20,21 Ben-Jacob and
coauthors10 found subharmonic steps within the resistively
and capacitively shunted junction (RCSJ) model with a purely
sinusoidal current-phase relation.22,23

In this paper we clearly show by high-precision numer-
ical simulations that the IV characteristic of a Josephson
junction under microwave radiation exhibit a DS structure
of subharmonic Shapiro steps. To show that we have a
devil’s staircase, we demonstrate its self-similar structure by
analyzing our results in terms of continued fractions.24,25

We stress that the present description helps to simplify
the analysis of the experimental and simulated results, as
it provides a predictive power. We show that the results
in the published papers are easily classified based on our
continued fraction formula (3). In particular, we show that
the steps observed in many previous experiments3,18,19,26–30

and numerical simulations4,9,10,31 form continued fractions.
We analyze the data of the experiments of Clarke [see Ref. 18
and Fig. 9(a) there] and Dayem and Wiegand (see Ref. 19 and
Fig. 16 there) in terms of continued fractions and show that
the steps observed in these papers also form very precisely
continued fractions.

II. MODEL AND METHODS

Assuming the RCSJ model, we employ the following
system of equations for the phase difference ϕ across the
junction, taking into account the external radiation with
frequency ω and amplitude A:

V̇ + sin(ϕ) + βϕ̇ = I + A sin(ωt), (1)

ϕ̇ = V. (2)

Here the dc bias current I and ac amplitude A are normalized
to the critical current Ic, the voltage V to V0 = �ωp/(2e) (ωp
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is the plasma frequency), and time t to ω−1
p . β is the dissipation

parameter (β = β
−1/2
c , where βc is McCumber’s parameter).

In this study we investigate an underdamped Josephson
junction (JJ), with β = 0.2, which exhibits hysteresis in its IV
characteristics. The overdot indicates a derivative with respect
to the dimensionless time. In our simulations we used mostly
0.05 as the step in time, 104 as the time domain for averaging
with 103 units before averaging, and 10−5 as the step in the
bias current.

To find the IV characteristics of the JJ, we solve this system
of nonlinear differential equations (1) and (2) using the fourth-
order Runge-Kutta method. As a result, we find the temporal
dependence of the voltage in the JJ at a fixed value of the bias
current I . Then the current value is increased or decreased
by a small amount of δI (the bias current step) to calculate
the voltage at the next point of the IV characteristics. We
use the final phase and voltage achieved at the previous point
of the IV characteristics as the initial conditions for the next
current point. The average of the voltage V is given by V =

1
Tf −Ti

∫ Tf

Ti
V (t)dt where Ti and Tf determine the interval for

the temporal averaging. The details of the simulation procedure
are described in Ref. 32.

III. DEVIL’S STAIRCASE AND CONTINUED FRACTIONS

Figure 1(a) shows the IV characteristics of the Josephson
junction at ω = 0.5 and A = 0.8. We see that there is no
hysteresis in comparison with the case at A = 0.1 shown in
the inset, and chaos is developed in some current intervals.
There is manifestation of the second harmonic, i.e., an integer
Shapiro step at V = 2ω = 1, and the fifth and sixth harmonics,
at V = 2.5 and V = 3, respectively.
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FIG. 1. (Color online) Simulated current-voltage characteristics
of a Josephson junction under external electromagnetic radiation
with ω = 0.5 and different radiation amplitudes A. (b) and (d) show
enlarged views of the encircled devil’s staircases in (a), below, and
(c), above, the sixth principal SS harmonic.

Let us consider carefully the part of the IV characteristic
(IVC) marked by a circle which is enlarged in Fig. 1(b). A
series of steps in the form of (N − 1/n)ω, where N = 6 and
n is a positive integer, is observed between 5ω and 6ω. We
note that these steps are approaching the sixth harmonic from
below. As A is increased the chaotic region is expanded and the
DS structure disappears. Instead it develops above the sixth SS
harmonic. Figure 1(c) shows the IV characteristic of the same
Josephson junction at A = 0.9 with the DS structure which
is enlarged in Fig. 1(d). The steps are approaching the 6ω

harmonic from above and follow the formula (N + 1/n)ω,
again with N = 6 and n a positive integer.

The analysis of the various observed staircase structures
leads us to the conclusion that in general the steps follow the
formula for continued fractions given by

V =

⎛
⎜⎜⎜⎝N ± 1

n ± 1
m± 1

p±
...

⎞
⎟⎟⎟⎠ ω, (3)

where N,n,m,p, . . . are positive integers. We will call the
terms that involve only N the first-level terms or the Shapiro
step harmonics. The other terms describe the subharmonics,
or the fractional steps. Those involving N and n we call the
second-level terms, those with N , n, and m the third-level
terms, etc.

Usually mathematicians use a positive sign to express
continued fractions.24,25 We have included the minus sign
for convenience only; this allows us to easily analyze the
subharmonics in the chosen interval of voltage (or frequency).
Another reason to use continued fractions with a negative
sign is the following. The formula with positive signs puts
physically equal sequences of subharmonics at different levels
of the formula. Consider the sequences 3/2,4/3,5/4, . . . and
1/2,2/3,3/4, . . . which describe subharmonics placed at the
same distance from the first Shapiro step; i.e., at ω. In all
positive continued fractions they are related to the different
levels described respectively by the formulas N + 1/n and
(N − 1) + 1/(n + 1/m) with N = 1 in the first case and
N = 1,n = 1 in the second case. Including the negative sign
allows us to use N ± 1/n, with + for the first and − for the
second sequence, and to keep N = 1 for both sequences.

The algorithm of continued fractions is schematically
presented in Fig. 2. We show by the numbers in circles the SS
harmonics (red online). The second level of continued fractions
gives two groups of subharmonic steps (blue online): (N −
1) + (1/n) and N − (1/n). The first group is approaching the
(N − 1)th SS, and second one is approaching the N th SS. So,
if the sequence in an interval (a,b) is building to approach
the step a, we need to take the + sign, and if the sequence
is approaching the step b, then −. To find subharmonics
corresponding to the third level we first determine the interval
we are interested in; this entails choosing n and n + 1, which
are then kept constant, as m is varied. Each of them leads to
the appearance of two other groups, approaching the first and
second terms. In Fig. 2 we show the sequences of the third
level between the subharmonics with n = 1 and n = 2 also.
Other sequences are formed by the same algorithm.
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FIG. 2. (Color online) Schematic demonstration of the appear-
ance of continued fractions in IV-characteristic of Josephson junction
under external electromagnetic radiation. N is the SS number, n and
m are positive integers.

In view of Eq. (3) we note that the continued fraction
description is not directly related to the steady-state dynamics
of the junction. For any choice of the quantities N,n,m, . . .,
one can of course always reduce the right-hand side of Eq. (3)
to the form p/q, where p and q are some positive integers, in
a ratio that reflects the phase locking between the Josephson
oscillations and external radiation. However the continued
fraction form of Eq. (3) provides a very convenient way of
mapping the potentially infinite number of these ratios to the
observable hierarchical structure in the IV characteristic. We
mention that the continued fraction is used in the classification
of the devil’s staircase in other contexts, for one-dimensional
lattice gases,33,34 for Wigner lattices,35 and for the Frenkel-
Kontorova model.36

IV. SELF-SIMILARITY

We now set out to show the different levels of continued
fractions of the devil’s staircase. The DS in the IV characteristic
of the Josephson junction at ω = 2 and A = 0.5 is presented
in Fig. 3.

The one-loop IV characteristic, which is obtained by
sweeping the bias current from I = 0 to I = 1.2 and back
down to I = 0, is shown in the inset to Fig. 3(a). Here we
see that the return current is low enough to allow the V = 2
step to develop. The steps reflect the second level of continued
fractions (N − 1/n)ω with N = 1. There is no half-integer
step at (1/2)ω in the IVC [cf. Figs. 1(a) and 1(c)], because
of the larger value of the return current at these chosen
parameters.

The staircase bounded by the subharmonics 3/4 and
4/5 and marked by a rectangle in Fig. 3(a) is en-
larged in Fig. 3(b). In particular, we see the sequence
4/5,7/9,10/13,13/17, . . ., reflecting the third-level continued
fraction [N − 1/(n + 1/m)]ω with N = 1, n = 4 and the
sequence 3/4,7/9,11/14,15/19, . . ., reflecting [N − 1/(n −
1/m)]ω with N = 1, n = 5. Moreover, the part between
the steps 7

9ω and 4
5ω also marked by a rectangle in

this figure is enlarged in Fig. 3(c). We found here the
steps 7/9,11/14,15/19,19/24, reflecting the fourth level of
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FIG. 3. (Color online) The manifestation of the continued frac-
tions in the IV characteristic of a Josephson junction at ω = 2 and
A = 0.5. (a) The steps in the interval between the zeroth and first SS;
(b) the steps between 3ω/4 and 4ω/5 marked by the rectangle in (a);
(c) the steps 7ω/9 and 4ω/5 marked by the rectangle in (b).

continued fractions {N − 1/[n + 1/(m + 1/p)]}ω with N =
1, n = 4, and m = 1, and the sequence 4/5,11/14,18/23,
reflecting {N − 1/[n + 1/(m − 1/p)]}ω with N = 1, n = 4,
and m = 2. The voltages found in our high-precision numerical
simulations coincide with the corresponding values calculated
by formula (3).

We should like to emphasize that we deal with a problem
in the physics of synchronization. This means that stable
periodic orbits exist for the junction (or pendulum) at
frequencies that are rational multiples of the drive frequency.
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In principle, we could have any rational multiple, and in
this sense the set of stable orbits constitutes a dense set,
unlike that of the harmonics. It is at this stage that the
mathematical concept of the continued fraction paves the way.
A continued fraction forms a representation for any irrational
(but not transcendental) number. This makes for a dense,
yet countable, set. The fact that the set is dense means that
between any two rationals we can find a countably infinite
number of rationals, and this we have pointed out in our
description of levels. The self-similar property of the devil’s
staircase is reproduced by the progressive generation of the
subharmonics within it.37 The algorithm presented here for
the generation of levels, giving the structure of the continued
fraction, prescribes such a progressive generation as well.
The Josephson system provides a unique opportunity to take
this mathematical idea and show its physical application.
This is yet another aspect of the precision in the frequency
measurements in the Josephson system that we have been able
to reproduce here with our very high-precision simulations.

V. ANALYSIS OF THE EXPERIMENTAL RESULTS

Let us finally discuss the experimental results for the
subharmonic steps in the IV characteristic of a Josephson
junction in the presence of rf radiation. Our main statement
is that the set of constant-voltage steps found in previous
experiments18,19,26,27 are structured such that they are repro-
duced by continued fractions.

We first consider the experiments of Clarke, and in
particular look at Fig. 9(a) in Ref. 18. In Fig. 4(a) we reproduce
these experimental results and compare them with continued
fractions in the corresponding intervals of voltage. The voltage
is normalized to the value of the first Shapiro step. In the
experimental paper the subharmonic 1/2 is registered between
the zeroth and first Shapiro steps, reflecting the sequence
N − 1/n with N = 0,n = 2. In the second SS interval (1,2)
a series 1,3/2,5/3 is fixed which follows V = (N − 1/n)
with N = 2. In the third (2,3) and fourth (3,4) SS intervals
the steps at voltages 3/1,5/2,7/3 and 4/1,7/2, . . . ,13/4
follow the fractions V = (N + 1/n) with N = 2 and N = 3,
respectively. In the last series, it was only the 10/3 step that
was not noticed in the experimental paper.

The subharmonics which were experimentally measured
by Dayem and Wiegand in Ref. 19 precisely follow the
continued fraction formulas also. Figure 16 of Ref. 19 shows
the IV characteristics at different power levels, for applied
microwave radiation at 4.26 GHz. In Fig. 4(b) we also
reproduce these experimental results and compare them with
continued fractions. Subharmonic steps in the SS intervals
(0,1) and (1,2) were found. The analysis shows that the steps
0,1/2,2/3,3/4 follow (N − 1/n) with N = 1 and the series
1/n is just (N + 1/n) with N = 0. For clarity we enlarge
this part of the figure in the inset. In the SS interval (1,2)
the experiment shows the steps 2/1,3/2,4/3,5/4 according to
N + 1/n with N = 1, and 1,3/2,5/3 according to N − 1/n

with N = 2. It seems that there is a misprint in the original
paper: the step around V = 4μV denoted as 1/5. Actually,
it is the step 2/5 and it follows the third level of continued
fractions N + 1/(n + 1/m) with N = 0,n = 2, and m = 2.
We see also in the analyzed figure the signature of the step
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FIG. 4. (Color online) Comparison of the experimental results of
(a) Clarke (Ref. 18) and (b) Dayem and Wiegand (Ref. 19) with
continued fractions. Filled circles show the experimental results, and
squares different continued fractions.

3/5 between 1/2 and 2/3, following N − 1/(n − 1/m) with
N = 1, n = 3, and m = 2, which was not marked by the
authors.

We note that in Ref. 26 the authors observed two series of
subharmonic steps up to the sixth order (n = 6) experimen-
tally. We consider these to be special cases of Eq. (3): the
first series corresponds to V = (0 + 1/n)ω and the second to
V = (1 + 1/n)ω.

We also note that steps with ratios p/q corresponding to
higher values of p and q generally feature less prominently in
the data. This is so because a given rational p/q forms a more
stable orbit, the smaller q is, in the sense that it occupies a larger
basin of attraction in the phase space of the system. The way
the continued fraction is defined makes it clear that, given two
rationals, the continued fraction at the next level introduces
rationals between the two, so that for the latter level, q is
increased. As mentioned above, we are numerically proving
the mathematical idea of synchronization at a countably
infinite number of frequencies given by p/q times the drive
frequency. Yet the precision of measurements, experimental or
numerical, naturally puts a limit to the observations that are to
serve as proof.

One of the main purposes of the present work is to
demonstrate the fact that the developed algorithm, represented
by Eq. (3), simplifies the analysis of experimental results.
Equation (3) accurately reproduces the observed structure in
the Shapiro steps. Furthermore, its application is not only
limited to the system considered here. It might also be useful
for the analysis of subharmonics in other systems, in particular,
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for subharmonics observed in high-Tc superconductors within
an applied magnetic field (Ref. 38, Fig. 1). Two groups of
observed steps (1,1/2,1/3,1/5) and (0,2/3,4/5) correspond
to the second level of continued fractions (0 + 1/n) and
(1 − 1/n), respectively. The steps 2/5 and 3/5 are at the
third level [0 + 1/(3 − 1/2)] and [1 − 1/(2 + 1/2)]. The half-
integral constant-voltage steps in high-Tc grain boundary
junctions in Ref. 39 are related to the second level of continued
fractions. The steps observed in the quantum Hall effect (see
Ref. 15) are also easy to classify by Eq. (3).

Reports on measurements of dc electron trans-
port and microwave dynamics of thin-film hybrid
Nb/Au/CaSrCuO/YBaCuO planar Josephson junctions were
presented in Ref. 27. The authors observed tunnel-like behav-
ior, and oscillations synchronous with the applied radiation at
integer and half-integer steps. For a junction fabricated on a
c-oriented yttrium barium copper oxide (YBCO) film a devil’s
staircase structure was observed under microwave irradiation
at 4.26 GHz.

VI. SUMMARY

A detailed numerical simulation of the IV characteristics of
a Josephson junction under external electromagnetic radiation
shows the presence of a devil’s staircase as a function
of the bias current. We have shown the particular structure
of the continued fraction that reproduces this staircase.
Increasing the amplitude of the radiation shifts the devil’s
staircase to higher Shapiro steps, and the algorithm that reveals
the structure of the staircase does contain this effect.

We have used the well-known RCSJ model to make high-
precision simulations of the IV characteristics. By analyzing
the results of these simulations and comparing them to the
available experimental data, we have stressed that the self-
similar structure of the Shapiro step subharmonics can be
understood in terms of the continued fractions formula, as
given by Eq. (3). We have related this formula directly to
the simulated and observable results, within the RCSJ-model
approximation. We have found that the subharmonic steps
registered in the experiments by Dayem and Wiegand, Clarke,

and many others also form continued fractions. The continued
fraction form of Eq. (3) provides a very convenient way of
systematically mapping the fine details of the devil’s staircase
to the observable hierarchy of steps in the IV characteristic.

Recently, systems of coupled Josephson junctions also have
attracted great interest in both the scientific and technologically
minded communities. In coupled systems of junctions, in
which capacitive and inductive coupling become important,
one would expect a gradual destruction of the uncoupled DS
structure as the coupling strength increases. In future work
it would be interesting to investigate the extent to which
the present model can help us explain the more complicated
nonlinear phenomena that are found in systems of coupled
junctions.

Another very interesting application of the methods devel-
oped in the present paper is in topological superconductivity.
Topological superconductors are currently being investigated
intensively.40,41 They support Majorana fermions which are
expected to be used for realization of quantum gates that are
topologically protected from local sources of decoherence (see
Ref. 42). The authors of this paper report the observation
of the fractional ac Josephson effect in a semiconductor-
superconductor nanowire junction as a signature of Majorana
quasiparticles. The use of subharmonics for the detection
of the Majorana fermions is a very interesting but unsolved
problem. Its solution may provide additional information on
Majorana physics and may warrant special consideration in a
more detailed investigation.
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