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Time-reversal anomaly and Josephson effect in time-reversal-invariant topological superconductors
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Topological superconductors are gapped superconductors with protected Majorana surface/edge states on
the boundary. In this paper, we study the Josephson coupling between time-reversal-invariant topological
superconductors and s-wave superconductors. The Majorana edge/surface states of time-reversal-invariant
topological superconductors in all physical dimensions 1, 2, and 3 have a generic topological property which we
name the time-reversal anomaly. Due to the time-reversal anomaly, the Josephson coupling prefers a nonzero
phase difference between topological and trivial superconductors. The nontrivial Josephson coupling leads to a
current-flux relation with a half period in a superconducting quantum interference device geometry, and also a
half-period Fraunhofer effect in dimensions higher than 1. We also show that an in-plane magnetic field restores
the ordinary Josephson coupling, as a sharp signature that the proposed effect is a consequence of the unique
time-reversal property of the topological edge/surface states. Our proposal provides a simple and general approach
to experimentally verify whether a time-reversal-invariant superconductor is topological.
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I. INTRODUCTION

In recent years, topological states of matter such as
topological insulators (TIs) and topological superconductors
(TSCs) have attracted tremendous theoretical and experi-
mental interest.1–3 The first example of a TSC is the time-
reversal-breaking (p + ip)-wave superconductor of spinless
fermions in two dimensions.4 More recently, an additional
class of TSCs was proposed in time-reversal-invariant (TRI)
superconductors,5–7 which have a time-reversal-invariant
pairing order parameter in the bulk, and two-dimensional
massless Majorana fermions with linear dispersion on the
boundary. Candidate materials for TSCs include the 3He B
phase,5–8 Cu-doped Bi2Se3,9–11 and p-type TlBiTe2.12 With
these candidate materials, a natural question is what type of
experiment can distinguish topological superconductors from
trivial superconductors. Several experimental signatures have
been proposed10,13–16 but they are either material specific or
highly nontrivial to realize.

In this paper, we point out a topological effect that is easy
to measure with current experimental techniques and can be
used to distinguish TSCs from ordinary SCs in all physical
spatial dimensions D = 1,2,3. We consider the Josephson
coupling between TSCs and s-wave superconductors. The
regular Josephson coupling in such a junction is very weak due
to the different pairing symmetries, but the Majorana surface
states induce a nontrivial unconventional Josephson coupling.
The most dramatic feature of this Josephson junction is that
the lowest-energy state does not occur when the relative phase
θ between the TSC and the s-wave superconductor is 0 or
π . This is because the surface state is gapless at θ = 0 or
π , protected by time-reversal symmetry, while it generically
becomes gapped, and thus saves energy, for θ �= 0,π .

The behavior of this topological Josephson coupling de-
pends on whether the system has fermion-number parity
conservation. (As we will discuss, this can be controlled
by tuning the Josephson frequency.) In a junction with
fermion-number parity conservation, the Josephson current
has the ordinary frequency, but has a phase shift depending

on the fermion-number parity (i.e., fermion number mod2)
of the junction. In particular, at θ = 0 or π there is a finite
supercurrent, the sign of which depends on the fermion-
number parity. This is a direct measurement of the following
generic feature of the TSC surface states:7

T −1(−1)NF T = −(−1)NF . (1)

Here NF is the fermion number of the system. Since all
electrons are paired in the superconducting state except for
the zero modes, the fermion-number parity (−1)NF = iγ0↑γ0↓
is determined by the Majorana zero modes γ0↑,↓. Equation (1)
then directly follows from the time-reversal transformation
T −1γ0↑T = γ0↓,T −1γ0↓T = −γ0↑. Since fermion-number
parity should be preserved microscopically by time-reversal
transformation, the anticommutation between time reversal
and fermion-number parity given by Eq. (1) is forbidden
in a closed TRI superconductor. However, such violation
of fermion parity conservation is allowed to occur on the
surface of a TRI TSC, while the symmetry is still preserved
in the whole system with an even number of independent
surfaces. This is then an instance where a symmetry present
on the classical level is broken on the surface of a topological
phase due to the topological properties of the bulk state. In
other words, the anticommutation relation (1) can be regarded
as a quantum anomaly of the TSC surface state. This is a
direct analog of the parity anomaly17,18 that occurs at the
surface of a three-dimensional (3D) TI with TR-symmetry
(TRS) breaking.14,19 In the case of a TI surface state, the
TR symmetry changes the surface Hall conductance by an
odd integer in units of e2

h
, so that the Hall conductance of

the surface state in a TR-breaking insulating state is always
a half-odd-integer in the same units. The anomalous relation
between TR transformation and fermion-number parity given
by Eq. (1) is a superconducting analog of the half-integer
Hall conductance. We name this property of the surface
state the time-reversal anomaly. As a direct consequence of
the time-reversal anomaly, we show that a superconducting
quantum interference device (SQUID) shown in Fig. 1(a) has
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maximal critical current at the flux � = hc/4e for an odd
number of electrons in the system and at � = 0 for an even
number of electrons.

When the fermion number in the Josephson junction is
fluctuating due to impurity scattering, the behavior of the
junction is still qualitatively different from that of an ordinary
Josephson junction. The Josephson current has a doubled
frequency due to the anomalous energy-phase relation. This
can be experimentally detected in the behavior of the SQUID
and for the D = 2,3 case in the Fraunhofer effect. In particular,
we show that an in-plane magnetic field comparable with
the pairing gap at the Josephson junction can drive the
junction back to a normal one, which provides a clear
signature that time-reversal symmetry plays an essential role
in the topological Josephson effect. It should be clarified that
the topological Josephson effect discussed in this work is
qualitatively different from the fractional Josephson effect
discussed in Refs. 20 and 21, which applies to different
physical systems and also has different phenomenology.

II. MODEL HAMILTONIAN

Although our proposal applies to a generic TSC, for the
concreteness of our discussion we would like to start by
defining some model systems for TRI TSCs. TSCs in D =
1,2,3 can all be realized in the following lattice Bogoliubov–de
Gennes (BdG) Hamiltonian:

Hp = −μ
∑

rs

c†rscrs − t

D∑
i=1

∑
rs

(c†r+êi s
crs + H.c.)

+
D∑

i=1

∑
rss ′

[�(−êi · σσ2)ss ′c
†
r+ ˆ̂ei s

c
†
rs ′ + H.c.], (2)

with −2Dt < μ < −2(D − 2)t . In D = 2 (3), the model is
defined on a square (cubic) lattice, so r denotes the lattice sites
and the êi’s (i = 1,2, . . . ,D) are the orthogonal unit vectors.
σ = (σx,σy,σz) denotes the Pauli matrices, and s = ↑,↓ the
electron spin index.

III. JOSEPHSON EFFECT IN 1D TSC

We start from the 1D TSC, which gives us the clearest exam-
ple of how the Josephson coupling between the TRI TSC and
the s-wave SC arises from time-reversal-symmetry breaking.
The candidate materials include a class of quasi-1D organic
superconductors22 and LiMoO.23 1D is distinct from 2D and
3D in the sense that there is a finite gap separating the Majorana
zero modes from other quasiparticle excitations. As will be
discussed below, such a gap makes it possible to probe the “TR
anomaly” of Eq. (1), i.e., the fact that time reversal changes
the fermion-number parity of the Majorana zero modes.

The 1D Josephson junction we consider here is described
by the Hamiltonian H = Hp + Hs + H1, with Hp the Hamil-
tonian of a 1D TRI TSC chain given by Eq. (2) with D = 1, Hs

that of an s-wave SC chain, and H1 a spin-conserving hopping
between the first site of the TSC chain and the last site (labeled
m) of the s-wave chain:

H1 = −
∑

σ

[(δt)c†1σ fmσ + H.c.]. (3)

In the rest of our paper, we will focus on weak hopping, e.g.,
|δt/t | � 1, although our numerical methods also apply to the
|δt/t | ∼ 1 case analogous to Ref. 24.

For small coupling δt we can study the Josephson coupling
by perturbation theory. Since the TSC and the s-wave SC
are both gapped, the main effect of a small δt is to couple
the Majorana zero modes at the boundary of the TSC.
We start from the special case μ = 0,� = t for the TSC,
in which case the TSC Hamiltonian can be written as
Hp = −t

∑
nσ (cn+1,σ + c

†
n+1,σ )(cn,σ − c

†
n,σ ),20 and the Majo-

rana zero modes are completely localized at the boundary
site: γ0σ = c1σ + c

†
1σ . Therefore the interchain hopping H1

can be written as H1 = −∑
σ [ δt

2 {γ0σ − (c1,σ − c
†
1,σ )}fmσ +

H.c.]. Only the zero mode contributes to the lowest-order
perturbation, which gives the effective Hamiltonian

Heff = J (iγ0↑γ0↓) sin φ,
(4)

iJ = (δt)2
∫

dt
〈
Tfm↑(t)fm↓(0)

〉
�′=i|�′| ,

where �′ is the pairing gap of the s-wave chain and φ its
phase; our gauge is set to give us a real δt and 〈T · · · 〉 denotes
the time-ordered expectation value. This effective Hamiltonian
has time-reversal symmetry, both sin φ and iγ0↑γ0↓ being time-
reversal odd. This means that if the Majorana zero-mode pair
does not form a Kramers doublet,25,26 the φ dependence of
the effective Hamiltonian will be different. It remains valid for
generic parameters μ,� even though the Majorana zero mode
γ0σ is not completely localized at one site.

The effective Hamiltonian Eq. (4) can give us a nonzero
Josephson current for the relative phase preserving time-
reversal symmetry: φ = 0,π . In a clean system, the local
fermion-number parity iγ0↑γ0↓ is conserved at T = 0. In a
realistic system, it may change, e.g., by a fermion leaking
from the zero modes to some impurity sites, at a rate we
denote as 1/τ . However, if the dc bias voltage V of the
junction is large enough so that ωJ ≡ 2eV/� � 1/τ , iγ0↑γ0↓
is quasiconserved, i.e., it will not change in many Josephson
periods. In this fast limit, our Josephson coupling should be
taken to be E± = ±J sin φ for iγ0↑γ0↓ = ±1, respectively,
giving us the Josephson current of I (φ = 0,π ) = ±Ic where
Ic ≡ 2eJ/�. A nonvanishing Josephson current usually occurs
in a TRS-breaking junction.27,28 Since our system is TR
invariant, the finite Ic is a direct manifestation that the iγ0↑γ0↓
eigenstates break TR symmetry.

In contrast, in the slow limit ωJ τ/π ∼ 1 we have a
π -periodic Josephson oscillation with discontinuities of I (φ)
at φ = 0,π . Note that the system can stay at the ground-state
energy EG = −J | sin φ| of the effective Hamiltonian Eq. (4)
if iγ0↑γ0↓ switches at the rate of ωJ /π . Therefore in this slow
limit, this parity switching is always likely at φ = 0,π , giving
us the current-phase relation of I (φ) = Ic

d
dφ

(−| sin φ|) =
−Ic

| sin φ|
sin φ

cos φ.
To physically observe this behavior of the Josephson

junction, we now consider a dc SQUID consisting of two
such Josephson junctions with flux � threading through,
as shown in Fig. 1(a). Each of the two junctions has a
Kramers doublet of Majorana zero modes γ0σ and γ ′

0σ , where,
for μ = 0 and � = t , γ ′

0σ = −i(cNσ − c
†
Nσ ). Therefore, the
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FIG. 1. (Color online) (a) Schematic picture of a dc voltage-
biased SQUID. (b) Dependence of the current oscillation amplitude
on the flux �. (c),(d) Numerical calculation of the dc SQUID I/Ic as
a function of φ for the flux of �/�0 = 0,1/8,1/4,3/8,1/2 in blue,
purple, brown, green, and black respectively; (c) is for the slow limit
and (d) for the fast limit with odd local fermion parity.

effective Hamiltonian of this SQUID is

Heff = −J [NF1 sin(φ − π�/�0) + NF2 sin(φ + π�/�0)],

(5)

where �0 = h/2e is the quantum flux and NF1 = iγ0↑γ0↓,
NF2 = −iγ ′

0↑γ ′
0↓ are the local fermion-number parities of the

two junctions. In the slow limit the system stays at the lowest-
energy state with energy EJ = −J [| sin(φ − π�/�0)| +
| sin(φ + π�/�0)|], so that the current-flux relation is

I

Ic

= −
∑
s=±

sin
(
φ + sπ �

�0

)
| sin

(
φ + sπ �

�0

)
|

cos

(
φ + sπ

�

�0

)
. (6)

As shown on Fig. 1(c), I (φ) has four discontinuities per 2π

period due to the fluctuations of NF1 and NF2 except at
� = n�0 and � = (n + 1/2)�0, where NF1 and NF2 fluctuate
together.

Due to the TR anomaly, when the fermion parity is
conserved, this dc SQUID behaves like a normal SQUID for an
even number of electrons and a π SQUID for an odd number of
electrons; this implies that the SQUID behavior is determined
hysteretically. When the local fermion parities do not fluctuate,
we have four possible current-phase relations determined by
the eigenvalues of NF1 and NF2,

I =
{−2NF1Ic cos(π�/�0) cos φ, NF1NF2 = +1,

−2NF1Ic sin(π�/�0) sin φ, NF1NF2 = −1,
(7)

which gives us a normal SQUID for even total fermion parity
NF1NF2 = +1 and a π SQUID for odd total fermion parity
NF1NF2 = −1. In the latter case, the SQUID at zero flux has
a spontaneous circulating current,29 as a clear signature of
spontaneous time-reversal-symmetry breaking. We see from
Fig. 1(c) that, even in the slow limit, the SQUID is in the
NF1NF2 = +1 eigenstate at � = n�0 and the NF1NF2 = −1
eigenstate at � = (n + 1/2)�0. Therefore we can obtain the

(a) (b)

FIG. 2. (Color online) The Zeeman field effect on the Josephson
current in the slow limit for δt/� = 0.2. (a) The Zeeman field is
applied along the junction with the magnitude of gμBh/� = 0 (black
dashed), 0.005 (blue), 0.01 (red), and 0.02 (brown). (b) The Zeeman
field of magnitude gμBh/� = 0.02 applied along the junction (red)
and perpendicular to the junction (blue). While the field along the
junction changes the location of the discontinuity and eventually
removes it altogether, the field perpendicular to the junction has
negligible effects.

π SQUID by ramping up ωJ from slow to fast while the
flux is fixed at � = �0/2, and the normal SQUID by going
through the same process at � = 0. We note that periodicity
change controlled by the Josephson frequency has also been
proposed30 in topological insulator/superconductor systems,31

but the physical mechanism studied there is different, and the
periodicity change there is between 4π and 2π .

The TR anomaly can also be revealed through the effect of
the Zeeman field. The Zeeman field breaks TRI and provides an
alternative channel for gapping out the Majorana zero modes.
To the leading order, our effective Hamiltonian of a single
junction is modified to

Heff = (iγ0↑γ0↓)(J sin φ + gμBh · n̂), (8)

where g is the normal-state g factor of the TRI TSC, μB

the Bohr magneton, h the effective Zeeman field, and n̂ a
unit vector along the junction.8,32 As in Eq. (4), this form
of the Zeeman field dependence requires that the Majorana
zero-mode pair form a Kramers doublet. We can see that
once h · n̂ > J/(gμB), there is no level crossing between the
even- and odd-parity states, giving us a conventional Josephson
junction. The numerical calculation shown in Fig. 2 confirms
both the sensitivity to the Zeeman field direction and the
absence of level crossings at sufficiently strong field. This
Zeeman field effect is due to both spin accumulation28,33 and
the Zeeman-field-induced s-wave pairing on the TRI TSC
boundary. We will show that analogous effects exist also in
higher dimensions.

IV. GENERALIZATION TO HIGHER DIMENSIONS

In higher dimensions, the TR anomaly leads to a Zeeman-
field-induced period-doubling in the s-wave/TRI TSC Joseph-
son junction. As in 1D, this tunneling gaps the boundary state
for the relative phase φ �= 0,π . However, as the boundary state
of a TRI TSC has a continuous spectrum, we are always in
the slow limit ωJ τ � 1. Just as in 1D, the Josephson coupling
between a TSC and an s-wave SC can be described by the cou-
pling Hamiltonian H1 = −∑Ny

n=1

∑
σ [(δt)c†σ (1,n)fσ (m,n) +

H.c.] (n = 1,2, . . . ,Ny labels the boundary sites).
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(a) (b)

(c) (d)

FIG. 3. (Color online) We have set |δt |/� = 0.7. (a) Numerical
results for the current-phase relation I (φ). (b) Numerical results
for I (φ) with the Zeeman field h̃/|�| = 0 (black), 0.02 (red), and
0.06 (blue) along the junction. (c) The scheme for the Fraunhofer
diffraction experiment. hout gives us the flux � through the junction,
hin gives rise to Eq. (11). (d) The Fraunhofer diffraction pattern with
the Zeeman field h̃/|�| = 0 (black), 0.02 (red), and 0.06 (blue) along
the junction; the filled curves are calculated from the current-phase
relation Eq. (12) and the dots from the numerical calculation.

We will now show that we have a π -periodic Josephson
coupling in the higher dimensions. In the weak-tunneling
limit, the boundary-state gap can be calculated by perturbation
theory exactly analogously to that of the 1D case. Here we
omit this derivation and directly write down the effective edge
theory induced by the tunneling:

Heff =
∑

k

[vk(γ−k↑γk↑ − γ−k↓γk↓) + i(M sin φ)γ−k↓γk↑]

(9)

for the 1D Majorana edge state of a 2D TSC. As required by
TRS, the mass term is proportional to sin φ and roughly the
same as in 1D Josephson coupling. The 2D Josephson energy
is determined by the change in the ground-state energy of the
effective model Eq. (9) due to the nonzero mass M sin φ:

EJ (φ) = 1

2

∑
k

[
−

√
v2k2 + M2 sin2 φ + v|k|

]
. (10)

In the thermodynamic limit the sum becomes an integral and
we obtain the energy and current-phase relation

EJ (φ) = −�0Ic

2π

[
1 + ln

4|�|2
M2 sin2 φ

]
sin2 φ,

(11)

I (φ) = −Ic

[
ln

4|�|2
M2 sin2 φ

]
sin 2φ,

where Ic ∝ M2. As the Josephson energy Eq. (10) depends
only on the mass term squared, we have I (φ + π ) = I (φ) for
the Josephson current, and this is confirmed in the numerical
calculation plotted in Fig. 3(a). The same holds for the 3D
TSC/s-wave junction; there Eq. (9) is also applicable and gives
us I (φ) = Ic sin 2φ.

The in-plane Zeeman field can restore the 2π periodicity.
Analogously to Eq. (8), the Zeeman effect leads to an
additional contribution to the gap of the edge state in the
effective Hamiltonian Eq. (9):

HZ =
∑

k

iγ−k↓γk↑gμBh · n̂ (12)

with n̂ the edge normal vector. With this modification, the
Josephson coupling is 2π periodic, with the current-phase
relation of

I (φ) = −Ic

[
ln

4|�|2/M2

(sin φ + h̃/M)2

] (
sin 2φ + 2h̃

M
cos φ

)
,

(13)
where h̃ ≡ gμBh · n̂. We see from this formula that for |h̃| �
|M| our Josephson coupling becomes essentially conventional,
with the effective critical current nearly proportional to the
in-plane field. Given |M| ∝ (δt)2, this crossover occurs in
the |h̃| � δt regime, which is confirmed by the numerical
calculations shown in Fig. 3(b). The underlying reason is
that the Zeeman energy term of Eq. (11) induces s-wave
pairing. As it also occurs in 3D, this crossover provides a
sharp experimental signature of the TSC.

The in-plane Zeeman field can also completely alter the
Fraunhofer diffraction in a single Josephson junction. When
the magnetic field is perpendicular, the Fraunhofer diffraction
pattern for 2D has zeros at both � = n�0 and � = (n +
1/2)�0, since the 2D Josephson current of Eq. (10) has only
even harmonics. However, if one measures the Fraunhofer
pattern in a canted magnetic field as shown in Fig. 3(c), the
critical currents at � = (n + 1/2)�0 are nonzero as shown in
Fig. 3(d), as the current-phase relation, now given by Eq. (12),
has nonzero odd harmonics.

V. EFFECT OF CONVENTIONAL JOSEPHSON COUPLING

The Josephson coupling will be dominated by our topo-
logical contribution as long as the spin-orbit-coupled hopping
across the junction, HSOC = ∑

R

∑
σ [λσc

†
R,σ fR+n̂,σ̄ + H.c.]

(the R’s are the interface lattice sites and n̂ the interface
normal), which can give rise to the regular sin φ term in the
Josephson current I (φ), is weak enough. This leads to the
conditions

|λ|
|δt | � |t |

|�|
for D = 1 and

|λ|
|δt | � |δt |2

|�|2
for D = 2,3 (see Appendix B for the derivation). Lastly
we note that it is possible to experimentally rule out the
possibility of our effects coming from Kondo impurities in
the junction if we do not see the resonant transparency of the
junction at a temperature above the critical temperatures of
both superconductors.34
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APPENDIX A: MODELS OF TSCS IN D = 1,2

Here we present the explicit form of the Hamiltonian
Eq. (2) for D = 1 and D = 2. For our numerical calculation
for D = 1 in Figs. 1 and 2, the BdG Hamiltonians for our two
superconducting chains are

Hp = −μ
∑

rs

c†rscrs − t
∑

rs

(c†r+x̂s
crs + H.c.)

+
∑

rs

(�c
†
r+x̂sc

†
rs + H.c.), (A1)

for the TRI TSC and

Hs = −μ′ ∑
r′s

f
†
r′sfr′s − t ′

∑
r′s

(f †
r′+x̂s

fr′s + H.c.)

+
∑

r′
(�′f †

r′↑f
†
r′↓ + H.c.) (A2)

for the s-wave chain; note that Eq. (14) can be obtained from
the D = 1 case of Eq. (2) by applying a −π/2 spin rotation
around the z axis. We have set |t | = |t ′| = |�| = |�′|, μs =
μp = 0, and |δt/t | = 0.2, and both chains consisted of 100
lattice sites. For the numerical calculation in Fig. 2, we add
the Zeeman field term

HZ = −gμB

∑
ss ′

(h · σ )ss ′

[∑
r

c†rscrs ′ +
∑

r′
f

†
r′sfr′s ′

]
.

(A3)

For the D = 2 numerical calculation in Fig. 3, we used for
the TRI TSC the BdG Hamiltonian

Hp = − μ
∑

rs

c†rscrs − t
∑

ê=x̂,ŷ

∑
rs

(c†r+êscrs + H.c.)

+ �
∑

rs

[(c†r+x̂sc
†
rs − isc

†
r+ŷsc

†
rs) + H.c.], (A4)

which can be obtained, just as in D = 1, by applying a −π/2
spin rotation around the z axis. This BdG Hamiltonian gives
us px + ipy pairing between spin-up electrons and px − ipy

pairing between spin-down electrons. The s-wave SC on a
square lattice has the Hamiltonian

Hs = − μ′ ∑
r′s

f
†
r′sfr′s − t ′

∑
r′s

∑
ê=x̂,ŷ

(f †
r′+êsfr′s + H.c.)

+
∑

r′
(�′f †

r′↑f
†
r′↓ + H.c.). (A5)

The parameters we used were |�| = |�′|, |t/�| = |t ′/�′| =
3, μ/|�| = μ′/|�′| = −2, and |δt/�| = 0.7. We find that
these parameters open up an edge-state gap of M/|�| =
0.016 at φ = π/2; the fact that this deviates within an order
of magnitude from the crossover value of h̃ indicated by
Fig. 3(b) is because Eq. (13) assumes that the dispersion of the
edge state is linear and that the mass term is k independent,
neither of which is strictly true. To obtain the result shown

in Figs. 3(a) and 3(b), we have set our superconductors on
lattices of 100 sites along the junction (the y direction) and
30 sites perpendicular to the junction (the x direction), and
imposed a periodic boundary condition in the y direction. For
the numerical calculation in Fig. 3(d), we have 10 lattice sites
along the y direction (without a periodic boundary condition)
and 12 sites along the x direction; in addition the perpendicular
flux � modifies the hopping between the two superconductors:

H1 = −
Ny∑
n=1

∑
σ

[(δt)ei(2n−Ny−1)�/4�0c†σ (1,n)fσ (m,n) + H.c.].

(A6)

For the analytical calculation in Fig. 3(d), we used Eq. (13)
with M = 0.02/ sin(4π/25), which is the value we infer from
the numerical results in Fig. 3(b).

APPENDIX B: ADDITIONAL CONTRIBUTIONS FROM
THE ORDINARY JOSEPHSON EFFECT

Within our assumption of weak hopping between the two
superconductors, the bulk-to-bulk contribution in D = 1 is
negligible compared to the contribution of the Majorana zero
modes:

J = −i(δt)2
∫

dt
〈
Tfm↑(t)fm↓(0)

〉
�′=i|�|

= −(δt)2 1

N

∑
k

F ′(ω = 0,k)�′=i|�|

= (δt)2
∫

2dξ ′

�v′
F

a′

2π

1

2

|�′|
ξ ′2 + |�′|2 = (δt)2

4t ′ sin k′
F a′ , (B1)

where k′
F is obtained from μ′ = 2t ′ cos k′

F a′. The bulk-to-bulk
Josephson coupling can come only from tunneling Cooper
pairs between two superconductors. Our numerical calculation
of the Josephson coupling is based on an exact diagonalization
of Hs + Hp + H1 for different values of φ and thus already
includes this bulk-to-bulk contribution for the case where spin
is conserved at the junction, and we can see that the bulk
contribution is negligible. This is because the bulk-to-bulk
coupling is nonzero only at the fourth-order expansion of
the parametrically small δt , as the coupling between the
spin-triplet TSC and the s-wave superconductor, which is
spin singlet, requires tunneling of one spin-up–spin-up pair
and one spin-down–spin-down pair. A nonzero bulk-to-bulk
contribution from tunneling of a single Cooper pair requires a
nonzero spin flip at the junction, which means including the
term

HSOC =
∑
σ=±

(λσc
†
1σ fmσ̄ + H.c.); (B2)

however, even after including HSOC, we find that the bulk-to-
bulk contribution remains very small. With HSOC, it is possible
for a like-spin pair from the TSC to now tunnel to the s-wave
superconductor as a spin-singlet pair, and hence there will be
an ordinary Josephson coupling that contributes a sin φ term
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to I (φ). But the strength of this Josephson coupling,

J̃bulk = 2
(δt)λ

N2

∑
k,k′

∑
σ=±

σ 〈c†σ (k)fσ̄ (k′)c†σ (−k)fσ (−k′)〉�′=|�|
Ep(k) + Es(k′)

= (δt)λ

N2

∑
k,k′

|�||�′|
Ep(k)Es(k′)[Ep(k) + Es(k′)]

= (δt)λ|�||�′|
4π2t t ′| sin kF a sin k′

F a′|
∫

dξdξ ′

EpEs

1

Ep + Es

, (B3)

where E2
p = ξ 2 + |�|2 and E2

s = ξ ′2 + |�′|2 (for this calcu-
lation we ignored the breaking of translational symmetry at
the junction) are much smaller than the Majorana zero-mode
contribution

J̃bulk/J ∼ λ

(δt)

|�|
t

; (B4)

this is because we physically expect the spin-flip tunneling
to be smaller than the spin-conserving hopping—hence λ <

(δt)—and the pairing gap to be much smaller than the
bandwidth—hence |�| � t ; note that for |�| � |�′|, we
have

∫
dξdξ ′/EpEs(Ep + Es) ∼ 1/|�′| for the integral of

Eq. (B3).
We note that the condition for the bulk-to-bulk Josephson

coupling to be negligible is different in the higher dimensions
D = 2,3. This is because, while the maximum gap of the
surface term |M| has the same dependence on the hopping
between the two superconductors, the Josephson coupling
through the surface term in D > 1 is quadratic rather than
linear in the gap of the Majorana surface state. Consequently,
when we evaluate Eqs. (10) and (11) of the main text for
D = 2,3, we obtain the Josephson coupling per site of

1

ND−1

�0Ic

2π
= 1

16

(
2a

πv|�|
)D−1 |M|2

|�| ∼ (δt)4

t ′2|�| ; (B5)

note that the surface-state velocity v, as it comes from
the pairing, is on the order of |�|/a. On the other hand,

1.0

0.5

-0.5

-1.0

ππ/2 2π3π/2

FIG. 4. (Color online) Plot of the Josephson current in D = 2
with the spin-conserving hopping of |δt/�| = 0.7 and the spin-flip
hopping of |λ/δt | = 0 (blue dots) and |λ/δt | = 0.2.

bulk-to-bulk Josephson coupling would not have a strong
dependence on D, and the ordinary Josephson coupling
due to the spin-orbit-coupled hopping across the junction,
which would be HSOC = ∑

nσ

∑
s=±1 λ[σc†σ (1,n)fσ̄ (m,n +

s) + H.c.] in D = 2 for example, is of the same order of
magnitude per site as that in D = 1. This means that for D > 1
the conventional Josephson coupling will be much smaller than
the Josephson coupling through the Majorana surface state in
the limit of

|λ/δt | � |δt/�|2; (B6)

this is consistent with the singlet-triplet Josephson junction
studied by Asano et al.35 We have numerically studied the
interplay between topological and regular Josephson effects
with the spin-orbit-coupling strength set at λ/|�| = 0.2, which
surely overestimates λ, with all the other parameters set the
same as for Fig. 3(a) of the main text and, as shown in Fig. 4,
we found the first harmonics to be less than 20% of the second
harmonics, even though |λ/δt | and |δt/�|2 are of the same
order of magnitude with our parameters.
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