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Pressure-induced 0-π transitions and supercurrent crossover in antiferromagnetic weak links
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We compute self-consistently the Josephson current in a superconductor-antiferromagnet-superconductor
junction using a lattice model, focusing on 0-π transitions occurring when the width of the antiferromagnetic
region changes from an even to an odd number of lattice sites. Previous studies predicted 0-π transitions when
alternating between an even and an odd number of sites for sufficiently strong antiferromagnetic order. We
study numerically the magnitude of the threshold value for this to occur, and also explain the physics behind
its existence in terms of the phase shifts picked up by the quasiparticles constituting the supercurrent in the
antiferromagnet. Moreover, we show that this threshold value allows for pressure-induced 0-π transitions by
destroying the antiferromagnetic nesting properties of the Fermi surface, a phenomenon which has no counterpart
in ferromagnetic Josephson junctions, offering a way to tune the quantum ground state of a Josephson junction
without the need for multiple samples.
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Introduction. The study of the interplay between supercon-
ductivity and magnetism has been of considerable interest in
condensed matter physics over the past decades. Phenomena
such as the 0-π transition1 in ferromagnetic Josephson junc-
tions has received much attention from a fundamental quantum
physics point of view, in addition to being suggested as a
potential basis for qubits.2 While most of the focus in the above
context has been on ferromagnetic (F) order, antiferromagnetic
(AF) Josephson junctions are also of fundamental interest,
due to the close relationship between the superconducting
(S) phase and the antiferromagnetic phase in, for instance,
high-temperature cuprate and iron-pnictide superconductors.
Superconductivity and antiferromagnetism spin-density wave
states may even coexist in the superconducting pnictides.3

Similar to SFS junctions, antiferromagnetic Josephson junc-
tions (SAFS) have been predicted to display 0-π transitions.4

However, for SAFS these transitions display a high sensitivity
to the exact number of atomic layers (even versus odd
number) in the antiferromagnet. Reference 5 reported that an
antiferromagnetic Josephson junction is in a π state for an odd
number of layers, while it is in the 0 state for an even number
of layers, provided that the antiferromagnetic order is much
stronger than the superconducting order. An even-odd effect
has also been observed in Josephson junctions with magnetic
impurities in the middle layer.6,7

In this Rapid Communication, we report on an aspect
of antiferromagnetic Josephson junctions which allows for
control over 0-π transitions within a single sample in a way
which has no counterpart in SFS structures. We first compute
numerically the threshold value for the antiferromagnetic order
parameter at which the even-odd effect occurs. Below this
threshold, even and odd junctions behave qualitatively similar,
both displaying a monotonic decay of the supercurrent with
superimposed small-scale oscillations, but without any sign
change of the critical current. As a result of this, we show
that it is possible to obtain pressure-induced 0-π transitions
in antiferromagnetic Josephson junctions. Namely, applying
pressure alters the Fermi level by moving it away from
the van Hove singularity of the system, which simultane-
ously destroys the Fermi-surface nesting properties giving

antiferromagnetism in the first place. In this way, the pressure
controls the magnitude of the staggered order parameter
which triggers a 0-π transition once it drops below the
aforementioned threshold value. This effect has no counterpart
in conventional SFS junctions, since ferromagnetism does
not rely on Fermi-surface nesting. The antiferromagnetic
order thus offers a mechanism for controlling the quantum
mechanical ground state of a Josephson junction.

Theory. Our approach closely follows that of Ref. 8. The
system in question consists of an itinerant antiferromagnet
sandwiched between two conventional s-wave supercon-
ductors. The interfaces are cut in the (110) direction and
are considered transparent. We model the antiferromagnetic
region as consisting of two square sublattices shown in Fig. 1,
where the A and B lattices have oppositely preferred spin
directions. The mean-field Hamiltonian then reads (see, for
instance, Ref. 4)
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iσ ĉjσ +

∑
i

(�iĉ
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integral, and mi and �i are the magnetic and superconducting
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nσ (i)γ †
nσ̄ ], where σ̄ = −σ , to obtain the
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Here, Hijσ = −tδ〈i,j〉 − μδij + σmiδij , where σ = ±1 for
spin up and down, and δij and δ〈i,j〉 are the Kroenecker
deltas for on-site and nearest-neighbor sites, respectively. The
off-diagonal block �ijσ = −�iδij for s-wave symmetry.

Due to the crystal periodicity along the interface, we can
Fourier transform the BdG equations to make the problem
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FIG. 1. (Color online) Left panel: A model of the Josephson junction in the (110) direction. The red (blue) dots denote the A (B) lattice.
The dashed vertical line is the interface for an even junction, while the right solid line is the interface for an odd junction. The left solid line is
the same for both even and odd junctions. Right panel: Critical current as a function of length L for different values of the magnetic coupling
constant U . The data are normalized to the L = 4 value to simplify comparison. We have used V = 1.9.

effectively one dimensional. Using the method described in
Ref. 8, we get the one-dimensional BdG equations for the
(110) direction8
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The A(B) denotes the A(B) sublattice while the or-
der parameters are defined as �i = −Vi〈ĉi↓ĉi↑〉 and
m
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n
A(B)
iσ =

∑
n,ky

[∣∣uA(B)
n,i,σ (ky)

∣∣2
f (En,ky ,σ )

+ ∣∣vA(B)
n,i,σ (ky)

∣∣2
f (−En,ky ,σ )

]
, (5)

�
A(B)
i = −Vi

∑
n,ky ,σ

un,i,σ (ky)v∗
n,i,σ̄ (ky) tanh

(
βEn,ky ,σ

2

)
, (6)

where f (E) = [1 + exp (βE)]−1 is the Fermi-Dirac distri-
bution. Here, Ui and Vi denote the spatially dependent
coupling constants for the magnetization and superconducting
pairing, respectively. We model the coupling constants as
Ui = U�(i − iL)�(iR − i), Vi = V �(iL − i) + V �(i − iR),
where �(x) is the Heaviside step function, and iL,R denote the
left and right interface coordinates, respectively.

The dc Josephson current is obtained from4,5
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where e is the electron charge, and x and x ′ denote neighboring
points in the antiferromagnet.

We fix the phase at the end of each superconductor, obtain
self-consistent solutions from the above equations, and use
Eq. (7) to calculate the Josephson current for that particular
phase difference. We set μ = 0 throughout, and t is used as
the unit of energy in all calculations.

Results and discussion. In the right panel of Fig. 1 we
show the results for the critical current as a function of the
number of AF layers in the junction, for various values of
the magnetization coupling constant U . The main point to
note is that the even-odd effect (sign change for the current)
appears only provided that U exceeds a threshold value. Below
this threshold, the critical current displays no change of sign
with increasing L, although there are small oscillations in
the quantity superimposed on a monotonic decay. However,
increasing U sufficiently will induce 0-π transitions for
odd junctions, while only decreasing the effective interface
transparency for even junctions, as seen in Fig. 1. Note that
for L = 5, the threshold value for observing a 0-π transition
in the critical current is above U = 1.4, while for L = 7 the
threshold value is below U = 1.4. Since the magnitude of the
staggered magnetic order parameter increases monotonically
with U , this indicates that longer odd junctions require a
weaker magnetization to undergo 0-π transitions. This result
has some resemblance to the case of a ferromagnetic junction,
where such transitions can occur regardless of the magnitude
of the exchange field provided that the junction is sufficiently
long. We will discuss this point in more detail below.

In order to understand the physics behind these results, note
that even junctions have a vanishing total magnetic moment as
there is an equal number of spins with opposite direction. An
even junction is essentially an SNS junction with the extra
effect that increased staggering increases the resistance of
the junction. This may be understood in simple terms by
noting that an increasing staggering provides an increasing
spin-dependent potential that scatters the current-carrying
states in the AF junction for low values of U .

Odd junctions, on the other hand, have a finite magnetic
moment due to the uncompensated spin at one of the edges
of the AF region. The layers adjacent to the interfaces have
parallel spins for odd junctions, while even junctions have
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antiparallel spins. This resembles the situation in, for instance,
SFIFS junctions with parallel or antiparallel alignment of the
exchange fields of the two ferromagnets,9 or SIFIS junctions
where the interfaces are spin active.10 In odd junctions, the
subgap states are spin split, while for even junctions, the states
are spin degenerate. Naively, odd junctions are thus equivalent
to ferromagnetic junctions, as there is a net magnetic moment
(albeit weak) if one averages over the junction length. One
notable difference is, however, that the average magnetic
moment density in the SAFS case scales with 1/L, while it is
constant in the SFS case. Moreover, it is known in the SFS case
that, provided the junctions are wide enough, any finite amount
of magnetic moment density suffices to induce a 0-π transition.
For the SAFS case, it is far from obvious that one should get the
same behavior, due to the effective 1/L scaling of the average
magnetic moment density. It is therefore of some importance
to investigate the scaling with L of the critical moment density
required to induce 0-π oscillations in the SAFS case, and
compare it with the behavior of the SFS case.

To do so, it is instructive to consider an analogy with
a ferromagnetic junction, where the Andreev bound-state
energy in the ballistic limit reads11 εσ (ϕ) = �| cos ( ϕ+σα

2 )|.
Here, α = 2EexL

h̄vF
, where Eex is the ferromagnetic exchange

energy, and vF is the Fermi velocity. We have assumed that
the interface transparency is perfect in order to use a simple
analytical expression for the ensuing discussion. Now, for even
L the total magnetic moment of the antiferromagnet is zero,
hence we get no 0-π transition in even junctions. For the odd
junction in question we can relate the finite magnetic moment
to an effective ferromagnetic exchange field. The two factors
contributing to this extra phase is the magnetic moment and the
width of the junction, by analogy to an effective ferromagnet
for odd L. A long junction can display a 0-π transition for
a smaller magnetic moment magnitude than a short junction,
as seen in the right panel of Fig. 1. For U = 1.4, L = 5 has
not yet undergone the transition, while it has undergone a
transition for L = 7 and longer junctions. This, superficially
at least, seems to indicate that the behavior is similar to that
of an SFS junction. Note, however, that in the SFS case,
the parameter α increases linearly with L and will exceed
any prescribed threshold value, provided L is large enough.
For an SAFS junction, however, where one naively expects
Eex ∼ 1/L such that EexL ∼ 1, a threshold value for the
magnitude of the staggered order parameter would be required
in order to observe a 0-π oscillation.

To investigate this further, we have numerically compared
an SFS junction with an odd SAFS junction. Figure 2 shows
the critical magnetic moment as a function of junction width
for both kinds of junctions, SFS and SAFS. Here, the critical
magnetic moment is defined as the value where the critical
current changes sign for a given value of the junction length L.
Although the fits appear to be quite similar on a linear scale,
they are significantly different when viewed on a log-log
scale. The results for the SFS junction follow the intuition one
gets based on the bound-state energy and phase shifts shown
above, namely, that the critical value of the magnetic moment
density, which is proportional to a threshold value of Eex in
order to get a 0-π transition, scales as 1/L. This is not so
for the SAFS case. Rather, since Eex ∼ 1/L in this case, one
expects the critical value of the magnetic moment density to
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FIG. 2. (Color online) Critical value of the magnetic moment
mc as a function of junction width L for an antiferromagnetic
junction (blue circles/diamonds) and a ferromagnetic junction (red
squares). In the inset, the results plotted on a log-log scale for the
ferromagnetic case fall on a straight line corresponding to 1/L. The
results for the antiferromagnetic case, however, saturate at large L.
For the ferromagnetic case, the results show that for a wide enough
SFS junction, any amount of ordering suffices to produce a 0-π
transition in the junction. For the antiferromagnetic SAFS case, a
threshold value is needed for this to occur, since only edge spins are
uncompensated. We have used V = 1.9.

be nonzero also for long junctions. This is indeed seen in the
log-log plot, where the results for the SFS junction fall on a
linear curve, while the results for the SAFS junction reach a
constant value asymptotically.

Furthermore, we have considered the crossing of the energy
levels of the current-carrying states as the strength of the
antiferromagnetic ordering, parametrized by U , is increased.
This is shown in Fig. 3. Level crossings of spin-up states and
spin-down states, with opposite φ dispersion, occur for a large
enough value of U , i.e., as the magnitude of the magnetic
ordering increases. Such level crossings tend to reverse the
sign of the current, which is essentially determined by the
φ derivative of the levels. The levels that contribute most
significantly to the currents are seen to be the levels close to
zero energy, as the levels further away are φ independent and
therefore carry little current. The main difference between such
spectra for the SAFS junctions and the corresponding ones for
SFS junctions is that complete level reversion of near-zero
energy states occurs much more easily in the SFS case than
the SAFS case, since the total magnetic moment scales with
the width of the junction in the SFS case, while it does not in
the SAFS case. Hence, the energy bands with a definite spin
content are much more susceptible to a Zeeman effect in the
SFS case, compared to the SAFS case. In particular, one feature
of the SAFS spectra shown below is that there is essentially
only one level reversion between the spin-up and spin-down
subgap states before the bands flatten out, thus no longer
contributing to the currents. For the SFS case (not shown here),
there are several level inversions of subgap states with only
minor flattening of the bands as the magnetization increases,
thus providing a much more efficient way of reversing the sign
of the currents over the junction.

214512-3



HENRIK ENOKSEN, JACOB LINDER, AND ASLE SUDBØ PHYSICAL REVIEW B 88, 214512 (2013)

FIG. 3. (Color online) Energy levels of current-carrying states of
the system as a function of superconducting phase twist across the
junction. The red lines denote spin-up states, and blue lines denote
spin-down states. As the strength of the antiferromagnetic ordering
increases (U increases), spin-down states are lowered in energy by the
Zeeman effect due to the uncompensated spin, while spin-up states
increase in energy. Upper left panel: U = 0.5. Upper right panel U =
1.2. Lower left panel: U = 1.545. Lower right panel: U = 2.0. The
contributions to the current are essentially determined by the φ deriva-
tive of each of the curves. As the levels cross, the levels contributing
most significantly to the current changes sign, leading to the 0-π
transition. This requires a threshold value, unlike in the ferromagnetic
case. Other parameter values are V = 1.9, μ = 0, and L = 5.

It is clear that antiferromagnetic order is not in itself suffi-
cient to induce 0-π transitions in the supercurrent. Reference 4
showed that for a sufficiently strong staggered order parameter,
the current-phase relation of an antiferromagnetic Josephson
junction revealed a 0 or π state depending on whether the
antiferromagnet had an even or odd number of atomic layers.
Above we have explicitly studied the actual threshold value
of the magnitude of the staggered order parameter where
transitions cease to occur, regardless of whether the interlayer
has an odd or even number of lattice sites. To observe the
even-odd effect (and its absence as predicted here for weak
antiferromagnets), it would be necessary to exert satisfactory

control of the junction length (of order lattice spacing). It
would certainly be an experimental challenge to tailor the
junctions in this way.12 Nevertheless, previous studies have
demonstrated that it is possible to fabricate ultrathin films
with atomic-scale control over the thickness,13,14 which would
allow for a test of our predictions. It is difficult within the
framework of our model to make quantitative predictions for
actual parameter values in candidate systems. That would
require a more refined approach, including nonideal effects
such as disorder both in terms of nonmagnetic impurities and
with regard to the magnetic sublattices.

The threshold value predicted here has an interesting
consequence, namely, that it becomes possible to induce a
0-π transition in antiferromagnets via pressure. The reasoning
is as follows. For an odd-L junction with sufficiently strong
AF order, the junction is in the π state. Were one to
bring the magnitude of the AF order back down below the
threshold value for the 0-π transition, one would effectively
have reversed the dc Josephson current across the junction.
Suppression of the AF order may effectively be obtained by
destroying the Fermi-surface nesting, something that can be
achieved by applying pressure to the sample. The pressure
may be induced via an electric mechanism, such that one
effectively is using electric means to control magnetic order,
and by that, in turn, current switching. This effect has no
counterpart in an SFS junction, since ferromagnetism does not
rely on Fermi-surface nesting. The combination of a threshold
value for the staggered order parameter at which one may
have 0-π oscillations, and the possibility to destroy nesting
and thus AFM order via pressure, amounts to electrically
controlled 0-π transitions in a single sample. This sets the
results for an SAFS junction apart from what is found for
the ferromagnetic SFS case, where any amount of magnetic
order in principle suffices to induce 0-π transitions. Such
transitions typically occur by changing the junction length,
requiring multiple samples (although temperature-dependent
transitions are also possible). The AFM order thus offers a
mechanism for controlling the quantum mechanical ground
state of a Josephson junction.
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