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Quantum Monte Carlo study of the dynamic structure factor in the gas
and crystal phase of hard-sphere bosons
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We investigate the dynamic structure factor of a system of Bose particles at zero temperature using quantum
Monte Carlo methods. Interactions are modeled using a hard-sphere potential of size a and simulations are
performed for values of the gas parameter na3 ranging from the dilute regime up to densities n where the
thermodynamically stable phase is a solid. With increasing density, we observe a crossover of the dispersion of
elementary excitations from a Bogoliubov-type spectrum to a phonon-maxon-roton curve and the emergence of
a broad multiphonon contribution accompanying the single-quasiparticle peak. In particular, for na3 = 0.2138,
which corresponds to superfluid 4He at equilibrium density, the extracted spectrum turns out to be in good
agreement with the experimental energy-momentum dispersion relation in the roton region and for higher
momenta. The behavior of the spectral function at the same density in the stable solid and metastable gas phase
above the freezing point is also discussed.
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I. INTRODUCTION

The dynamic structure factor of a many-body system
contains a wealth of information about the nature and energy
spectrum of the excitations coupled to density fluctuations. At
zero temperature, the dynamic structure factor is defined as the
Fourier transform of the density-density correlation function
evaluated on the ground state |�0〉:

S(q,ω) = 1

2πN

∫ +∞

−∞
dt eiωt 〈�0|ρ−q(t)ρq|�0〉

〈�0|�0〉 . (1)

Here, ρq = ∑N
i=1 e−iq·ri , with ri being the coordinates of

the N particles in the system, is the operator corresponding
to a density fluctuation with wave vector q and ρq(t) =
eiHt/h̄ρqe

−iH t/h̄ is the same operator following a time evolution
with the Hamiltonian H . By introducing the complete set
of energy eigenstates |�n〉, the definition of S(q,ω) can be
equivalently expressed as the positive-definite sum of terms

S(q,ω) = 1

N

∑
n�0

δ

(
ω − En − E0

h̄

) |〈�n|ρq|�0〉|2
〈�0|�0〉 , (2)

involving all excited states with excitation energy En − E0

from the ground state which are not orthogonal to the
density perturbation ρq|�0〉. Important relations involving the
dynamic structure factor are provided by its zero momentum

S(q) =
∫ ∞

0
dω S(q,ω) = 1

N

〈�0|ρ−qρq|�0〉
〈�0|�0〉 , (3)

which defines the static structure factor S(q), and by its first
momentum ∫ ∞

0
dω ωS(q,ω) = h̄q2

2m
, (4)

also known as the f -sum rule and holding for any system of
N particles of mass m interacting via velocity-independent
potentials.

In the context of quantum degenerate Bose systems, the
dynamic structure factor has provided an invaluable tool for
the experimental and theoretical investigation of superfluid

4He (Ref. 1) as well as of ultracold atomic gases.2 A landmark
achievement of these studies has been the precise measurement
of the phonon-maxon-roton spectrum in superfluid 4He and,
in more recent years, important experimental contributions
came from the observation of the Bogoliubov dispersion in a
dilute condensate of 87Rb atoms3 and of the spin response in
a strongly interacting superfluid Fermi gas.4

In the most interesting regime of strong interactions,
quantitative theoretical investigations of the dynamic structure
factor can only rely on numerical simulations. In Ref. 5,
quantum Monte Carlo (QMC) methods have been applied
to the calculation of S(q,ω) in superfluid helium. Since
this first study, similar calculations have been carried out
again in systems of 4He atoms both in the liquid and in
the solid phases,6–10 in systems of bosons with soft-core
repulsive potentials,11 and in two-dimensional systems of 4He
(Ref. 12) and fermionic liquid 3He.13 Even if equilibrium
properties can be calculated exactly, the main drawback of
such methods consists in the analytic continuation from purely
imaginary to real time of the correlation function entering
the Fourier transform in Eq. (1), which strongly limits any
possibility of a precise determination of S(q,ω). This is a
well-known mathematically ill-conditioned problem saying
that, however small is the statistical error in the estimate of the
imaginary-time correlations, an unambiguous reconstruction
of the corresponding spectral function is ruled out.5 A possible
strategy to partly overcome this difficulty is offered by the
maximum entropy method, which has been largely utilized
in the first simulations aimed to determine S(q,ω).5–7 More
recently, an alternative method based on a genetic algorithm
and known as genetic inversion via falsification of theories
(GIFT) has been put forward and has already been applied in
several studies.8,9,12,13

In this work, we determine the dynamic structure factor
at T = 0 of a system of bosonic hard spheres, using the
“exact” path-integral ground-state (PIGS) method to calculate
the density-density correlation function in imaginary time and
the GIFT method to perform the inversion in the spectral
domain. The interaction parameter is varied from the weakly
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coupled regime, where the elementary excitations of the gas
are well described in terms of Bogoliubov quasiparticles, to the
regime of strong coupling where, similarly to liquid helium,
the dispersion law exhibits the typical phonon-maxon-roton
features. With increasing coupling, we observe the appearance
of an incoherent, multiphonon contribution in the spectral
function at frequencies higher than the single-quasiparticle
peak and we determine the density at which the dispersion
curve of this peak is first featuring a roton minimum. For
high densities, the thermodynamically stable phase is a crystal
and S(q,ω) at the reciprocal lattice vectors is expected to be
concentrated at zero frequency. The differences in the response
function in the stable solid and in the metastable gas phase at
the same density are also discussed.

The structure of the paper is as follows. In Sec. II, we
introduce the model of hard-core bosons and we explain in
some details the PIGS method. We also provide a precise
determination of the equation of state of the gas and solid phase
close to the point of the phase transition, including the values
of the freezing and melting critical densities. In Sec. II B,
we describe the calculation of the density-density correlation
function in imaginary time and its inversion by means of the
GIFT algorithm. In Sec. III, we report the results on S(q,ω)
and on the dispersion of excitations for different values of the
interaction strength, both in the gas and in the solid phase. In
this section, we also compare both the dynamic and the static
structure factors of the hard-sphere gas with those of superfluid
4He at the equilibrium density.

Finally, in the last section, we draw our conclusions.

II. METHOD

A. Quantum hard-sphere model and PIGS method

The quantum degenerate hard-sphere (HS) gas serves as
an important reference model for a many-body system with
short-range repulsive interactions. The model is particularly
useful in the dilute regime, where the details of the interatomic
potential are irrelevant and the picture of impenetrable particles
captures the essential properties of ultracold atoms with a
positive scattering length.14 At higher densities, the attractive
tail of the potential plays a crucial role and predictions from the
HS model can only be qualitatively correct. Nevertheless, the
HS model has been used to characterize semiquantitatively
the static properties of a strongly interacting system such as
superfluid 4He.15,16 Moreover, the model provides one with
a well-defined system where quantum correlations from the
weak to the strong coupling regime can be investigated by
varying a single parameter, namely, the reduced density in
units of the HS range.

The HS model corresponds to the following Hamiltonian
for N identical particles of mass m:

H = − h̄2

2m

N∑
i=1

∇2
i +

∑
i<j

V (|ri − rj |), (5)

with

V (r) =
{

∞ (r � a),

0 (r > a).
(6)

We notice that the range a of the HS potential coincides
with the s-wave scattering length of the two-body problem.
The model contains a single energy scale h̄2/(2ma2) and a
single dimensionless parameter (gas parameter) na3, where
n = N/V is the particle density. The system volume V = L3

consists of a cubic box of size L, and periodic boundary
conditions are enforced to simulate the infinite system.

In the dilute regime (na3 � 1), the equation of state of
the HS gas at zero temperature has been established using
perturbation theory in a series of fundamental papers14 for both
bosonic and fermionic particles. Results for the ground-state
energy of a Bose HS system have been obtained over a
wide range of densities using exact quantum Monte Carlo
methods.16,17 Similar results for a two-component Fermi
system with HS interspecies interactions were reported in
Refs. 18 and 19 from calculations based on the fixed-node
diffusion Monte Carlo method.

At very high density, the ground state of a HS system
should be a fcc crystal similarly to the classical case.20,21

The freezing (nf ) and melting (nm) densities have been
determined for Bose particles at T = 0 using the variational
Monte Carlo method15 [nf a3 = 0.23(2) and nma3 = 0.25(2)],
the Green’s function Monte Carlo method16 [nf a3 = 0.25(1)
and nma3 = 0.27(1)], and the density functional approach22

(nf a3 = 0.25 and nma3 = 0.28).
In this work, the properties of a Bose HS system at zero

temperature are calculated using an exact numerical technique:
the PIGS method.23 In contrast to the diffusion Monte Carlo
method, the PIGS method allows for an unbiased estimate also
of nonlocal observables such as the one-body density matrix
(OBDM), whose off-diagonal terms at large distance define
the fraction of condensed particles in the system.24,25

The PIGS method is a projection technique in imaginary
time that, starting from an initial wave function �T (R), where
R = (r1, . . . ,rN ) denotes the set of spatial coordinates of the N

particles, projects it onto the ground-state wave function �0(R)
after evolution over a long enough imaginary-time interval τ .
In fact, if �T (R) is not orthogonal to the ground state, the
following relation holds:

�0(R) = N lim
τ→∞ e−τH �T (R)

= N lim
τ→∞

∫
dR′G(R,R′,τ )�T (R′), (7)

where N is a normalization factor, and in the second
equation we introduced the Green’s function G(R,R′,τ ) =
〈R|e−τH |R′〉. The time propagator is in general not known but
suitable approximation schemes are available at small time
steps δτ . Using one of these approximation schemes in place
of the true Green’s function, G(R,R′,δτ ) is one of the two
approximations which characterizes the PIGS method. Then,
the convolution formula allows one to calculate G(R,R′,τ )
using a large enough number M − 1 of intermediate points
such that M = τ/δτ :

G(RM,R0,τ ) =
∫

dR1 . . . dRM−1

M−1∏
j=0

G(Rj+1,Rj ,δτ ).

(8)
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Then, the ground-state wave function �0(R) can be approxi-
mated with the multidimensional integral

�0(RM ) 	
∫ M−1∏

j=0

dRj G(Rj+1,Rj ,δτ )�T (R0). (9)

This choice corresponds to limit the imaginary-time propaga-
tion to τ = Mδτ ; this is the second approximation used with
the PIGS method. The method is “exact” whenever this and
the previous approximation affect the computed expectation
values to an extent which is below their statistical uncertainty;
such a regime is always attainable by taking M large enough
and δτ small enough.

The expectation value of a local observable, corresponding
to the operator O, can be obtained from an average over
2M + 1 configuration points

〈�0|O|�0〉
〈�0|�0〉 =

∫
dR0 . . . dR2M p(R0, . . . ,R2M )O(RM ),

(10)

sampled from the probability distribution

p(R0, . . . ,R2M )

=
∏2M−1

j=0 �T (R2M )G(Rj+1,Rj ,δτ )�T (R0)∫ ∏2M−1
j=0 dRj�T (R2M )G(Rj+1,Rj ,δτ )�T (R0)

. (11)

Estimates such as Eq. (10) can be interpreted as ensemble
averages with the probability distribution (11) over a classical
system of N open polymers. Each polymer is formed by
2M + 1 monomers (beads) corresponding to the coordinates
(r(0)

i , . . . ,r(2M)
i ) which determine the points R in configuration

space: Rj = (r(j )
1 , . . . ,r(j )

N ). By virtue of the definition of �0

in Eq. (9), only the central beads of the polymers are sampled
according to the square of the ground-state wave function and
thus local operators, such as the one entering Eq. (10), are
evaluated only at the midpoint configuration RM . If we deal
with nonlocal observables, such as the kinetic energy or any
correlation function in imaginary time, Eq. (10) has to be
modified since the corresponding estimators depend on more
configuration points R. Nonetheless, it is important to choose
a sufficiently large number of projections M and to consider
only the central part of the classical polymers for the evaluation
of the averages. In the particular case of the ground-state
energy, the identity 〈�0|H |�0〉 = 〈�T |e−2τH H |�T 〉, holding
if τ is large enough, provides one with an estimate in
terms of the local energy EL(R) = �−1

T (R)H�T (R), which is
conveniently calculated starting from the trial wave function
and has to be evaluated on either of the configurations R0 or
R2M at the end point of the polymers. Alternative estimators
of the energy are also available, such as the direct and the
virial estimator.26,27 However, unless the trial wave function is
a particularly poor approximation of the ground-state wave
function, it is preferable to use the local-energy estimator
for the calculation of 〈�0|H |�0〉 since the other estimators
typically suffer of a larger variance.

In homogeneous systems, the OBDM is defined via the
equation ρ1(s) = 〈�0|ψ†(r+s)ψ(r)|�0〉

〈�0|�0〉 , in terms of the annihilation

and creation operators of particles. The first quantization
expression of ρ1(s) is given by

ρ1(s) =
∫

dr2 . . . drN�∗
0 (r + s, . . . ,rN )�0(r, . . . ,rN )∫

dr1 . . . drN |�0(r1, . . . ,rN )|2 ,

(12)

and is suited for an estimate with the PIGS method obtained
by cutting one of the N polymers at the position of the Mth
bead, i.e. dividing one polymer into two half polymers with
M + 1 beads each, and by collecting the occurrences of the
distances between the two loose ends. An efficient sampling
of the relevant configurations and the normalization of ρ1 are
provided by the worm algorithm, a technique developed for
path-integral Monte Carlo simulations at finite temperature28

in which the configurations are allowed to switch from the
“diagonal” sector (all N polymers with 2M + 1 beads) to the
“off-diagonal” sector (N − 1 polymers with 2M + 1 beads
and two half polymers with M + 1 beads each) and vice versa.
Swap moves are also allowed in the “off-diagonal” sector,
where one full and one half polymer are exchanged by cutting
the full polymer into two halves and by merging one of the two
with the half polymer. These latter moves enforce the proper
sampling of particle permutations.

The evaluation of the Green’s function at small time steps
can be performed, in analogy with the path-integral Monte
Carlo method at finite temperature, using the pair-action
approximation27,29

G(R,R′,δτ ) = G0(R,R′,δτ )
∏
i<j

Grel(rij ,r′
ij ,δτ )

G0
rel(rij ,r′

ij ,δτ )
. (13)

Here, G0 is the free-particle propagator consisting in the
contribution of the kinetic energy T = −(h̄2/2m)

∑N
i=1 ∇2

i to
the Green’s function

G0(R,R′,δτ ) = 〈R|e−δτT |R′〉

=
N∏

i=1

(
m

2πh̄2δτ

)3/2

e−m(ri−r′
i )

2/(2h̄2δτ ). (14)

The function Grel is the two-body propagator of the interacting
system, which depends on the relative coordinates rij =
ri − rj and r′

ij = r′
i − r′

j , and in Eq. (13) it is divided by
the corresponding noninteracting term

G0
rel(rij ,r′

ij ,δτ ) =
(

m

4πh̄2δτ

)3/2

e−m(rij −r′
ij )2/(4h̄2δτ ). (15)

In the case of the HS potential, a high-energy expansion of
the two-body propagator due to Cao and Berne30 provides an
accurate approximation holding at small time steps:

Grel(r,r′,δτ )

G0
rel(r,r′,δτ )

= 1 − a(r + r ′) − a2

rr ′

× e−m[rr ′+a2−a(r+r ′)](1+cos θ)/(2h̄2δτ ), (16)

where θ is the angle between r and r′.
A further ingredient of the method is provided by the trial

function �T (R). For the gas branch, we use the translationally
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invariant Jastrow function

�T (R) =
∏
i<j

f (|ri − rj |), (17)

where the two-body correlation function f is chosen as f (r) =
sin[k(r − a)]/r if r > a and f (r) = 0 if r < a. This choice
corresponds to the two-body s-wave scattering solution from
a HS potential and the wave vector k is chosen such that
the derivative f ′(r) vanishes at r = L/2 to fulfill periodic
boundary conditions. To simulate the solid, we instead use a
wave function that explicitly breaks translational symmetry,
obtained by multiplying the Jastrow function (17) by a one-
body term which localizes the particles at the lattice sites of
the crystal:

�T (R) =
N∏

i=1

e−(ri−Si )2/α2
∏
i<j

f (|ri − rj |). (18)

Here, the localization term is a Gaussian whose width α

is a variational parameter and the lattice sites (S1, . . . ,SN )
correspond to a fcc crystal. We notice that the above wave
function is not symmetric under particle exchange. Still,
permutations are correctly sampled during the simulation by
means of the swap moves in the worm algorithm, resulting
in a symmetric ground-state wave function24,25 �0(RM ) as
obtained from Eq. (9). The proper symmetry of �0(RM ) is
crucial when calculating the OBDM.

Simulations are carried out starting from configurations
distributed according to the gas and solid wave functions,
respectively, Eqs. (17) and (18). Different system sizes are
simulated, up to N = 300 in the gas and to N = 500 in
the solid, and the corresponding energies are extrapolated
to the thermodynamic limit using a linear 1/N fit. The results
for the energy of the two phases, in the region close to the gas-
to-solid phase transition, are shown in Fig. 1. The PIGS method
has been shown to be able to generate the correct ground state
of the system irrespective of the starting configuration and
of the trial wave function utilized.25,31 However, for values
of the gas parameter close to the gas-to-solid transition, we
are able to stabilize the metastable solid and gas phase (see
Fig. 1) thanks to a proper choice of the initial configuration
and of the number of beads M . From the value of the static
structure factor S(G) calculated at the reciprocal lattice vectors
G, we check that the configurations obtained from the PIGS
method are belonging to the solid or to the gas branch.
By applying the Maxwell construction to the equation of
state of the gas and of the solid, we accurately determine
the freezing nf a3 = 0.262(1) and melting densities nma3 =
0.288(1), which are in agreement with previous findings.15,16,22

Recently, the freezing and the melting densities of the HS
system have been determined in another PIGS calculation:32

the results obtained in this work are in good agreement with
ours. We remark that, in the range of densities studied, the
energies of the bcc and hcp crystal are found to coincide, within
our statistical uncertainty, with those reported in Fig. 1 for the
fcc solid.

In Fig. 2, we show data corresponding to the OBDM both
in the gas and in the solid phase. In the gas, the plateau reached
at large distances corresponds to the condensate fraction n0 =
N0/N , where N0 is the number of particles occupying the

FIG. 1. (Color online) Equation of state of the gas (red symbols)
and of the fcc crystal (blue symbols) as a function of the gas
parameter na3. Dashed lines are polynomial fits to the PIGS results
for the two phases: for the gas phase, the PIGS data are fitted with
the equation EG = AG(na3 − ρG)2 + E0,G, with AG = 357.5 ± 5.1,
ρG = 0.0686 ± 0.0029, E0,G = 5.35 ± 0.21; for the solid phase, the
PIGS data are fitted with the equation ES = AS(na3 − ρS)2 + E0,S ,
with AS = 272.7 ± 6.0, ρS = 0.0342 ± 0.0054, E0,S = 4.76 ± 0.37
[the values of AG, E0,G, AS , and E0,S are in units of h̄2/(2ma2),
the parameters ρG and ρS are dimensionless]. The black solid line
corresponds to the double tangent construction and its low- and
high-density ending points indicate, respectively, the values of the
freezing (nf ) and melting (nm) densities.

k = 0 single-particle state. We notice that n0 decreases by
increasing the density, but remains finite in the gas branch
even in the metastable region. On the contrary, in the solid the
condensate fraction vanishes, showing that off-diagonal long-
range order in the OBDM does not survive when translational
symmetry is broken in the HS system. It has been recently
shown that in repulsive models of bosons with a soft core, n0

can remain finite in the crystal phase realizing the so-called
supersolid state.33,34

FIG. 2. (Color online) Radial dependence of the OBDM for
different values of the gas parameter in the gas and in the solid
phase. The same curves are shown in logarithmic scale (main figure)
and in linear scale (inset).
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B. Dynamic structure factor and GIFT algorithm

The direct output of the PIGS algorithm is the following
correlation function in imaginary time:

F (q,τ ) = 1

N

〈�0|eτHρ−qe
−τHρq|�0〉

〈�0|�0〉 . (19)

If the projection time onto the ground-state wave function is
much longer than the time difference appearing in F (q,τ ),
namely Mδτ � τ , the above correlation function can be
calculated in terms of the probability distribution defined in
Eq. (11):

F (q,τ ) = 1

N

∫
dR0 . . . dR2M p(R0, . . . ,R2M )

× ρ−q(RM+τ/δτ )ρq(RM ), (20)

where ρq(Rj ) = ∑N
i=1 eiq·r(j )

i denotes the density fluctuation
operator corresponding to the point in configuration space
Rj = (r(j )

1 , . . . ,r(j )
N ). The function F (q,τ ) is accessible also

from other QMC methods, such as diffusion Monte Carlo
(DMC): however, in DMC, the estimation of F (q,τ ) relies on
a mixed estimator and thus it is biased by the choice of the trial
wave function used for the importance sampling. Furthermore,
contrarily to the estimate of static properties, it is not possible
to determine the accuracy of the trial wave function comparing
the DMC result with the variational one since there is no
variational estimator for F (q,τ ).

We notice that the τ = 0 value of the scattering
function (19) coincides with the static structure factor of
Eq. (3):

F (q,τ = 0) = S(q). (21)

For finite values of τ , F (q,τ ) is instead related to the dynamic
structure factor (1) by the Laplace transform

F (q,τ ) =
∫ ∞

0
dω e−ωτS(q,ω). (22)

This is the equation which should be inverted in order
to determine S(q,ω) from the imaginary-time intermediate
scattering function F (q,τ ). As we already mentioned, the
problem is ill conditioned since many very different functions
S(q,ω), spanning from featureless to rich in structure spectral
functions, are compatible with the QMC results of F (q,τ ) for
whatever small statistical uncertainty is associated to these
results.

Different strategies have been used to extract real-time
response from imaginary-time correlation functions obtained
by means of QMC calculations. The maximum entropy method
has been first applied to lattice models35,36 and later to
continuous systems such as liquid 4He.5 The method uses
probability theory to infer the most probable S(q,ω) by
minimizing the χ2 measure for the quality of the fit of
F (q,τ ), calculated from Eq. (22), to the QMC data and by
maximizing an entropy functional which embodies some prior
information about S(q,ω), such as its positive definiteness and
the fulfillment of sum rules.

The recently introduced GIFT method offers an alternative
approach: given the large number of dynamic structure factors
S(q,ω) compatible with the QMC estimations of F (q,τ )
via (22), the aim of the GIFT method is to collect a large

group of such spectral functions in order to discern the
presence of common features (as, for example, support, peak
positions, and intensities) in the majority of them. The idea37

underlying this procedure is that only such common features,
shared by the majority of the spectral functions compatible
with F (q,τ ), can be ascribed to the true dynamic structure
factor.

As discussed above, QMC projector techniques are based
on a discretization of the imaginary-time domain, with time
step δτ . For a given wave vector q, such discretization allows
for an estimation of F (q,τ ) only in correspondence with a finite
number of imaginary-time values {0,δτ,2δτ, . . . ,lδτ }, F ≡
{F (q,0),F (q,δτ ), . . . ,F (q,lδτ )}. In general, F is obtained
as an average of several QMC calculations of F (q,τ ), each
affected by statistical noise and which are used to estimate
the statistical uncertainties {σ0,σ1, . . . ,σl} associated with
F . The task is then to evaluate the dynamic structure factor
starting from limited and noisy data. Often, sum rules provide
useful help, either imposing exact constraints on S(q,ω) or
allowing to perform additional QMC measurements which
provide estimations for some moments of S(q,ω): C ≡ {cn =∫ +∞
−∞ dω ωnS(q,ω), n ∈ Z}. Moreover, some a priori knowl-

edge may be assumed such as the support, non-negativity,
or some further properties. When F has large statistical
uncertainties, too many different spectral functions would
result compatible toD = {F ,C} and no common features could
be identified; on the contrary, in the presence of high accuracy
in the QMC estimation of F (q,τ ) one could expect that some
relevant features of the true S(q,ω) might be shared by the
majority of the spectral functions compatible with F , via (22),
and C.

We now introduce how the GIFT method concretely
implements such statistical inversion scheme. The GIFT
algorithm needs (i) a space of models S, containing a wide
collection of spectral functions consistent with any prior
knowledge about S(q,ω), (ii) a falsification procedure relying
on the QMC “measurements” D = {F ,C}, and (iii) a simple
strategy to capture the accessible physical properties of the
true S(q,ω).

Let {s1,s2, . . . ,sNω
} be a set of Nω non-negative integers

(spectral weights), whose sum is a value M. We partition an
interval of the real positive axis [0,ωmax], which we assume
to be greater than the support of S(q,ω), in subintervals all
of width 
ω = ωmax/Nω. The space of models S is made of
linear combinations of delta functions, i.e., we rely on models
S of the form

S(q,ω) =
Nω∑
j=1

sj

M
ω
δ(ω − ωj ),

Nω∑
j=1

sj = M, (23)

where ωj represents the middle points of the Nω subintervals
of [0,ωmax] and M provides the maximum number of quanta
of spectral weight available for the ensemble of the intervals.
From Eq. (23), it is evident that

∫ ∞
0 S(q,ω) = 1 ∀ q, thus

S(q,ω) differs from the physical dynamic structure function
S(q,ω) by a factor c0, the zero momentum, which belongs to
the set of observations.

We explore S and check the compatibility of its elements
with QMC observations D with a genetic algorithm; genetic
algorithms provide an extremely efficient tool to explore a
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sample space by a nonlocal stochastic dynamics, via a survival-
to-compatibility evolutionary process mimicking the natural
selection rules; such evolution aims toward an increasing com-
patibility with D. Taking into account the estimated statistical
noise of D, any set D� compatible with D provides equivalent
information to build a compatibility function. Thus, in our
genetic algorithm, any random set D� = {F �,C�} obtained by
sampling independent Gaussian distributions centered on the
original observations D, with variances which correspond to
the estimated statistical uncertainties, can be used to define the
compatibility:

�D� (S) = −
l∑

j=0

[
F�(q,jδτ ) −

∫
dω e−ωjδτ c�

0 S(q,ω)

]2

−
∑

n

γn

[
c�
n −

∫
dω ωn c�

0 S(q,ω)

]2

, (24)

where the free parameters γn > 0 are adjusted in order to
make the contributions to �D� coming from F � and from
C� of the same order of magnitude. If it happens that one
cn is exactly known, no error is added making c�

n = cn.
In our genetic algorithm, we start randomly constructing a
collection of S(q,ω); each S(q,ω) is coded by Nω integers
sj in Eq. (23). The genetic dynamics then consists in a
succession of generations during which an initial population
of spectral functions is replaced with new ones in order to
reach regions of S where high values of �D�(S) exist, for a
givenD�. In the passage between two generations, a succession
of “biological-like” processes takes place, namely, selection,
crossover, and mutation, which are operators acting on S
devised in such a way to comply with the definition in Eq. (23).
Technical details of the method and of the implemented genetic
algorithm can be found in Ref. 8.

The GIFT method is thus based on a genetic algorithm to
propose new trials S(q,ω), satisfying a number of consistency
constraints, which should be tested against the QMC data.
In our context, the genetic algorithm dynamics performs
a falsification procedure: only the S(q,ω) with the highest
compatibility in the last generation provides a model for
S(q,ω) which has not been falsified by D�. Many independent
evolutionary processes, say NS , may be generated by sampling
different D�, thus obtaining the set SD� made of the NS

different elements c�
0 S(q,ω); at this point, an averaging

procedure insideSD� appears as the most natural way to extract
shared features, i.e., relevant physical information:

SGIFT(q,ω) = 1

NS

NS∑
j=1

c�
0,j Sj (q,ω). (25)

In fact, in SGIFT(q,ω) only those features present in the
majority of the spectral functions inside SD� will survive
to the average procedure, whereas undetermined features
will be averaged out. When applied to helium liquids,
the GIFT method has provided very accurate results,8,9,12,13

recovering, in the 4He case, spectral functions with sharp
single-quasiparticle excitations and separating quantitatively
the single-quasiparticle excitation peak from the multiphonon
contributions.

FIG. 3. (Color online) Scattering function F (q,τ ) for two dif-
ferent values of the interaction strength. The (green) solid line
corresponds to the GIFT reconstruction of the signal, the (red)
dashed line is the exponential fit to the long-time tail. In the upper
panel, the exponential fit coincides with and is hidden by the GIFT
reconstruction.

III. RESULTS

A. Gas phase

The calculation of the dynamic structure factor in a HS
Bose system at a given gas parameter na3 has been carried
out by performing PIGS simulations with N = 400 particles
interacting with the two-body potential in Eq. (6) and confined
in a cubic box with periodic boundary conditions. The optimal
values of the imaginary-time step δτ and of the number of
beads M , which both depend on the gas parameter, have
been chosen studying the convergence of the mean energy per
particle for small time step δτ and for large evolution time τ .

Typical results of the imaginary-time correlation function
F (q,τ ) obtained from QMC simulations are shown in Fig. 3
for two values of the gas parameter na3.

In the regime of weak correlations, one expects that mean-
field theory provides an accurate description of the dynamics
of the gas. Within this approach, the dynamic structure factor
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FIG. 4. (Color online) Dynamic structure factor at na3 = 10−4

for different values of the wave vector q. Inset: Color map of S(q,ω)
as a function of q. The Bogoliubov dispersion (27) is shown for
comparison.

is exhausted by a single excitation

S(q,ω) = S(q)δ
(
ω − εBOG

q /h̄
)
, (26)

where

εBOG
q = h̄2

2mξ 2

√
(qξ )4 + 2(qξ )2 (27)

is the Bogoliubov spectrum written in terms of the healing
length ξ = 1/

√
8πna. By using Eq. (22), the scattering

function F (q,τ ) is given, in this case, by the exponential
function

F (q,τ ) = S(q) e−τεBOG
q /h̄. (28)

At na3 = 10−4, a single exponentially decaying function fits
indeed very well the whole time evolution of F (q,τ ) for all
values of q [see Fig. 3] and the extracted excitation energy is
in excellent agreement with the Bogoliubov spectrum (27) as
it is shown in Fig. 4.

FIG. 5. (Color online) Dynamic structure factor at na3 = 10−2

for different values of the wave vector q. The signal corresponding to
q = 0.635/ξ is rescaled by a factor 0.33. Inset: Color map of S(q,ω)
as a function of q.

FIG. 6. (Color online) Dynamic structure factor at na3 = 5 ×
10−2 for different values of the wave vector q. Inset: Color map of
S(q,ω) as a function of q.

For larger values of the gas parameter, the long-time tail
of F (q,τ ) can still be well fitted by an exponential function
corresponding to the lowest excitation peak [see Fig. 3].
The short-time decay of the correlation function is instead
dominated by higher-energy multiphonon excitations, which
can not be described by a simple exponential law. This is
clearly shown in Fig. 3 where one has to use the function
F (q,τ ) reconstructed from SGIFT(q,ω) using Eq. (22) to
reproduce the QMC data at all times.

Spectra of S(q,ω) for different values of na3 obtained
from the GIFT algorithm are shown in Figs. 4–7. At the
smallest value of the interaction strength na3 = 10−4 (see
Fig. 4), the dynamic structure factor is exhausted, for all
reported values of q, by a single narrow peak corresponding
to the excitation of a quasiparticle with energy h̄ω(q). The
dispersion of the peak with the wave vector q follows closely
the Bogoliubov spectrum (27) (see inset). A small damping of
the quasiparticles, Beliaev damping, was predicted in Ref. 38,
resulting in a broadening of the excitation peak. We attribute

FIG. 7. (Color online) Dynamic structure factor at na3 = 10−1

for different values of the wave vector q. Inset: Color map of S(q,ω)
as a function of q.
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FIG. 8. (Color online) Dispersion of the central position of the
highest peak in S(q,ω) for different values of the gas parameter. The
error bars represent the 1

2 -height widths of the peaks. The solid line is
the Bogoliubov prediction and the dotted-dashed line corresponds to
the free-particle dispersion (qξ )2. The dashed lines show the phonon
dispersion ch̄q, where the speed of sound c is calculated from the
equation of state.

the small width of the peaks in Fig. 4 to the limited ability
of the GIFT method to determine their exact position in the
inversion procedure and not to the physical processes involved
with Beliaev damping.

The results at na3 = 10−2 are shown in Fig. 5. While at
the smallest wave vector S(q,ω) is still given by a narrow
peak centered at the phonon energy h̄ω(q) = ch̄q where c

is the speed of sound (see Fig. 8), at larger values of q
some broadening of the peak becomes clearly visible as well
as some high-frequency tail of the spectral function. These
features are more evident at na3 = 5 × 10−2 (see Fig. 6)
where, in addition, a secondary broad multiphonon peak starts
to appear at large wave vectors. We notice, from the insets of
Figs. 5 and 6, that the curvature of the spectrum at small wave
vectors changes from positive to negative in this interval of
values of the gas parameter. A positive curvature, similar to
the Bogoliubov spectrum (27), implies that long-wavelength
phonons can decay into pairs of phonons by means of Beliaev
processes. These decaying mechanisms are instead forbidden
if the curvature of the spectrum is negative. We also notice
that, at the value na3 = 5 × 10−2 of the gas parameter, the
dispersion of the central position of the highest peak exhibits a
shoulder in the region 1.5 � qξ � 2. This shoulder develops
into a visible minimum at the largest interaction strength
na3 = 10−1 (see Fig. 7). In the region of the minimum
qξ = 1.901, one can clearly distinguish one relatively narrow
peak at small frequency, corresponding to the excitation of a
single quasiparticle, from a broad multiphonon peak at higher
frequency.

The appearance of a minimum in the energy spectrum is
connected with that of a maximum in the static structure factor
S(q). Results of S(q) for the values of the gas parameter
considered in this work are reported in Fig. 9. At densities
larger than na3 � 0.1, a peak starts to develop for wave
vectors on the order of 2πn1/3, signaling the appearance

FIG. 9. (Color online) Static structure factor S(q) for various
densities in the gas phase. The dashed lines at small momenta
correspond to the linear slope S(q) = q/(2mc), where c is the speed
of sound calculated from the equation of state.

of local shell structures typical of a dense gas. A similar
feature in S(q) is exhibited by superfluid 4He, where the
well-known roton minimum in the spectrum of excitations
is occurring. Nevertheless, the description provided by the
Feynman relation h̄ω(q) = h̄2q2/[2mS(q)], which is easily
derived from the assumption that S(q,ω) is exhausted by a
single-quasiparticle peak, is correct only qualitatively. Our
results show that multiphonon excitations become relevant at
densities na3 � 10−2. As a consequence, the Feynman relation
can provide reliable quantitative results only in the limit of
weakly interacting systems.

The dispersion of the central position of the highest peak
in S(q,ω) is reported in Fig. 8 as a function of the wave
vector q for different values of the gas parameter. As we
already pointed out, at na3 = 10−4 the dispersion curve is
in good agreement with the prediction of Bogoliubov theory
[Eq. (27)] holding for dilute systems. For larger values of
na3, deviations start to appear both in the phonon region
(qξ < 1), where the excitation energy is higher than εBOG

q , and
in the single-particle region (qξ > 1), where h̄ω(q) < εBOG

q .
The roton minimum becomes clearly visible for the largest
value of the interaction strength. Our results show that
no long-range attractive tail in the interaction potential is
needed to observe a roton minimum in the density fluctuation
spectrum. We also point out that, for all values of the gas
parameter, the dispersion of the main peak in S(q,ω) at the
smallest wave vectors is in good agreement with the phonon
dispersion h̄ω(q) = ch̄q, where c is the speed of sound which
we determine from the compressibility relation mc2 = n

dμ

dn
,

involving the chemical potential μ = dE
dN

. In practice, we
calculate the value of c as a function of the gas parameter
by using the fit to the equation of state E(n) of the HS gas
found in Ref. 39.

The speed of sound c also enters the linear slope S(q) 	
q

2mc
, characterizing the static structure factor at small momenta

and arising from phonon excitations. Figure 9 shows that our
QMC results for S(q) well reproduce this asymptotic law. Only
at the lowest density na3 = 10−4, the smallest values of q set
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FIG. 10. (Color online) Dynamic structure factor at na3 =
0.2138 for different values of the wave vector q. The signal
corresponding to q = 1.732/ξ is rescaled by a factor 0.25. Inset:
Color map of S(q,ω) as a function of q; the red line represents the
experimental dispersion of the elementary excitations in liquid 4He
at saturated vapor pressure (Ref. 40) and the blue line represents the
phonon dispersion ω(q) = cq, with c obtained from the equation of
state of a HS gas (Ref. 39).

by the size of the simulation box appear to be already slightly
outside the phonon regime.

B. Comparison with superfluid 4He

Particular interest has to be devoted to the study of the HS
system at the gas parameter na3 = 0.2138. The HS gas at this
density has been used as a reference system for the simulation
of superfluid 4He at equilibrium in a previous work which
considers the hard-wall potential as the leading part of the He-
He interaction and the attractive tail as a weak perturbation.16

The value na3 = 0.2138 is obtained from the experimental
density of liquid 4He at saturated vapor pressure and from the
s-wave scattering length of the repulsive part of the Lennard-
Jones potential which models the He-He interaction.

Results for S(q,ω) in the HS gas at na3 = 0.2138 are
shown in Fig. 10: we see that the spectral function presents
a sharp quasiparticle peak for small values of q and in the
region where the excitation spectrum displays the minimum
1.5 � qξ � 2, while it is relatively broader for wave vectors
0.5 � qξ � 1.5 between these two regimes. In the inset of
Fig. 10, we also compare the spectra obtained in our work with
the dispersion curve for elementary excitations in superfluid
4He at low temperature, obtained from inelastic neutron
scattering experiments,40 conveniently rescaled in the units
of ξ−1 for the wave vector and of h̄/(2mξ 2) for the frequency.
At small q, we see that the dispersion of the main peak of
S(q,ω) is linear, as we expect from the phonon dispersion
law h̄ω(q) = ch̄q: the value for the speed of sound c obtained
from our result is in agreement with the one calculated from the
equation of state for a HS gas,39 but it is larger than the value
obtained from the experimental measurements on superfluid
4He, indicating, as one should expect, that the attractive part
of the He-He potential plays a relevant role in determining the
velocity of sound in the system. On the contrary, the dispersion

FIG. 11. (Color online) Static structure factor S(q) for the HS
gas at na3 = 0.2138 (blue symbols). The red solid line represents the
static structure factor measured in liquid 4He at T = 1 K by neutron
scattering experiments (Ref. 41).

of the main peak of S(q,ω) is in good agreement with the
experimental excitation spectrum in the roton region and for
higher momenta.

In Fig. 11, we show the PIGS results for the static
structure factor S(q) of the HS gas at na3 = 0.2138 and we
compare these with experimental measurements in liquid 4He
at T = 1 K and saturated vapor pressure.41 We can see that
the agreement is excellent for qξ � 1, indicating that the
HS model is able to reproduce the microscopic structure of
the 4He system at distances comparable and smaller than
the mean interparticle separation. Deviations between the
PIGS results and the experimental curve are instead visible
in the range qξ � 1, which arise from the inability of the HS
model to describe the long-range correlations among the
4He atoms. Thermal effects are not expected to affect the
comparison since, at such low temperature, they are negligible
for q � 0.3 Å−1 = 0.277ξ−1 (see Ref. 42).

In conclusion, these remarkable results indicate clearly that
the structure and the density fluctuation spectrum of superfluid
4He, for wave vectors larger and on the order of the inverse
mean interparticle distance, can be well described in terms of
the hard-core repulsive potential alone.

C. Solid and metastable phases

For values of the gas parameter larger than the melting
density nma3 = 0.288(1), the thermodynamically stable phase
is the crystal, while the gas state can only survive as a
metastable phase (see Fig. 1). In Fig. 12, we show the dynamic
structure factor in the metastable gas phase at na3 = 3 × 10−1.
We notice that the distribution of spectral weight is in
general very broad and extends to relatively high frequencies.
Only in the roton region a narrow quasiparticle peak is
present accompanied by multiphonon excitations at higher
frequencies. More details about the spectrum of excitations in
the metastable gas phase can be extracted from Fig. 13 where
we plot the dispersion of the central position of the highest
peak as a function of the wave vector q. The roton minimum
is clearly evident at energies significantly lower than in the
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FIG. 12. (Color online) Dynamic structure factor in the
metastable gas phase at na3 = 3 × 10−1 for different values of the
wave vector q. The signal corresponding to q = 1.676/ξ is rescaled
by a factor 0.1. Inset: Color map of S(q,ω) as a function of q. We
set to 1 the maximum value of the color scale in the contour plot, in
order to show the contributions at low spectral weight.

gas phase at na3 = 10−1 (see Fig. 8). The small error bars
indicate that the peak is indeed well defined in the region
around the roton minimum corresponding to the energy gap

. The width of the peak increases dramatically as soon as the
excitation energy is above the threshold 2
 in agreement with
the theoretical explanation in terms of two-roton quasiparticle
decay processes. Similarly to Fig. 8, the points corresponding
to the smallest wave vectors available in our simulation box
q = 2π

V 1/3 agree with the phonon dispersion h̄ω(q) = h̄cq,
where the speed of sound c is estimated from the equation
of state.

FIG. 13. (Color online) Dispersion of the central position of the
highest peak in S(q,ω) at na3 = 3 × 10−1 in the metastable gas
phase (red squares) and in the fcc crystal phase: direction (1,1,1)
green up triangles, direction (1,0,0) blue diamonds, direction (1,1,0)
magenta down triangles. Similarly to Fig. 8, the dashed line shows
the phonon dispersion h̄cq in the gas phase. The horizontal dotted
line corresponds to twice the roton gap 
.

The wave-vector dispersions of the highest peaks of S(q,ω)
in the fcc crystal phase at na3 = 3 × 10−1 are shown in Fig. 13
along three independent spatial directions. The three spectra
agree at small momenta, where they all converge to the energy
h̄ω(q) = cLh̄q of longitudinal phonons propagating with the
speed cL, while at larger values of q they differ significantly,
and the spectral intensities associated to them have a vanishing
energy at different points corresponding to the wave vectors of
the reciprocal lattice. Here, the spectral function is exhausted
by the elastic peak at ω = 0 and the static structure factor S(q)
diverges with the number N of particles in the system. We
notice that, when the wave vector lies in the (1,1,1) direction
and explores the diagonal of the elementary cell, the smallest
nonzero wave vector of the reciprocal lattice is at q 	 1.7/ξ .
The roton minimum in the metastable gas phase at the same
value of the density of the solid is found very near this value
of q. The broad signals obtained in the central region of
the Brillouin zone presumably arise from the fact that the
energies of the three branches are not well separated from the
higher phonon bands and the GIFT method can not resolve
the different contributions to the dynamic structure factor.

IV. CONCLUSIONS

In conclusion, we investigated the dynamic structure factor
and the elementary excitations of a system of bosonic hard
spheres at T = 0 in the gas phase ranging from the dilute
to the dense regime, up to the solid phase reached at very
high density. The numerical method used is one of the most
reliable among the ones presently available and it consists of
the implementation of the GIFT algorithm on top of results
of imaginary-time correlation functions obtained via QMC
simulations. In this way, as the density of the gas increases,
we follow the change of the dynamic structure factor from a
narrow peaked feature whose dispersion closely agrees with
Bogoliubov spectrum, to a superposition of a relatively narrow
quasiparticle peak and a broader, high-frequency multiphonon
contribution where the quasiparticle energy exhibits the typical
phonon-roton dispersion similar to superfluid 4He. We find that
the roton minimum emerges in the spectrum within the range
of gas parameters 0.05 < na3 < 0.1. No long-range attractive
tail in the interaction potential is thus needed to observe a well-
defined roton in the density fluctuation spectrum. We studied
also the HS model with a gas parameter na3 = 0.2138, corre-
sponding to superfluid 4He at equilibrium density; remarkably,
the energy-momentum dispersion relation in the roton region
and at higher momenta turns out to be in good agreement
with the measured experimental spectrum of superfluid 4He.
This suggests that in strongly interacting systems characterized
by a hard-core interatomic potential at short distances, the
HS model is able to capture, at least semiquantitatively, the
density fluctuation spectrum for wave vectors reciprocal to
interparticle and lower distances. Above the freezing density
in the metastable gas phase, the roton minimum deepens and
it occurs near a value of q corresponding to the smallest wave
vector of the reciprocal lattice where, in the solid phase, the
strength of the dynamic structure factor vanishes.
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