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Networks of Josephson junctions and their synchronization
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One can demonstrate that a 1D Josephson network containing junctions with different tunneling resistances
can be synchronized at frequencies, which are multiples of 2eV , where V is the total dc voltage applied across
the network. The appearance of such synchronization follows from the law of charge conservation and takes
place if charge transfer is dominated by the Josephson channel. One can observe also a subharmonic structure.
The result holds for cluster-based arrays as well as for the general case of a tunneling network.
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I. INTRODUCTION

This paper is concerned with Josephson tunneling networks.
It represents a continuation of our analysis1,2 of networks
formed by superconducting nanoparticles. Those papers1,2

describe the transfer of dc current, while here we study the
impact of an external voltage applied to the network. More
specifically, the focus of this paper is on the possibility of
network synchronization. It should be emphasized that the
problem of synchronization is not specific to nanosystems but
is of general importance and has attracted a lot of interest
(see, e.g. Refs. 3–7).

As is known, a single junction radiates at the frequency
ω = 2eV , where V is the externally applied voltage. If the
voltage has both dc and ac components,

U = V + v sin �t, (1)

then at certain frequencies � = 2eV/n, Shapiro steps can be
observed.8

Consider a 1D Josephson tunneling network consisting of
N junctions with an external dc voltage V applied to its ends.
If the junctions are all equivalent, then the network radiates at
the frequency ω = 2eV/N .

In this paper, we focus on the more realistic case when
the junctions are not equivalent. Then one might expect that,
because of the nonuniform distribution of voltages across
the network, there would appear a rather broad spectrum of
radiated frequencies. However, the picture is more involved
and on the whole represents a complex nonlinear problem.
Nevertheless, it can be demonstrated, and this is the main goal
of this paper that, despite the variation of junction tunneling
resistances, the network can be synchronized at the frequency
ω = 2eV , where V is the total voltage. This follows from the
law of charge conservation. The microscopic derivation of this
statement will be presented below.

II. MAIN EQUATIONS

Consider a 1D tunneling network containing N junctions.
With a total voltage V applied across it,

V =
N∑

n=1

Vn. (2)

Here, Vn is the voltage across the nth junction.

As noted above, V = const. As for the voltages Vn(n =
1, . . . ,N), they, generally speaking, depend on time so that
Vn ≡ Vn(t). The current jn flowing through the nth junction
has the form

jn = j 0
n sin

(
2e

∫ t

0
Vndt + ϕn

)
+ (Vn/Rn) j 0

n ≡ jn;max. (3)

The first term describes the Josephson current. The second
term corresponds to single-particle current, i.e. the tunneling
of thermal excitations [∼ exp(−εn/T )]. This term is small
at temperatures T � εn, that is, at low temperatures. The
displacement current can also be incorporated (see below).

Because of charge conservation, currents flowing through
neighboring junctions must be equal, that is, js = js+1 or

Vs

Rs

+ J 0
s sin

(
2e

∫ t

0
Vsdt + ϕs

)

= Vs+1

Rs+1
+ J 0

s+1 sin

(
2e

∫ t

0
Vs+1dt + ϕs+1

)
, (4)

where s = 1, . . . ,N − 1.
Equations (2) and (4) are the main equations which form

the basis for the analysis. As noted above, we are dealing
with a complex and nonlinear problem, and our main goal
is to demonstrate the possibility for the network to become
synchronized. According to Eq. (3), the tunneling current has
two components: (1) Josephson tunneling and (2) one-particle
(“normal”) component. The situation when charge transfer is
dominated by the Josephson channel (T � εn) is of special
interest.

III. SYNCHRONIZATION

Consider a Josephson tunneling network with an external dc
voltage V applied across it. We focus on the most interesting
case when charge transfer across the network is dominated
by the Josephson channel. As indicated above, we consider
the realistic situation of inequivalent Josephson junctions. We
now demonstrate that such a network can be synchronized at
frequencies determined by the external potential V . One also
can show (see below) that the displacement current as well as
the additional contribution from single-particle tunneling do
not affect the synchronization.

To begin, let us analyze a network made up of only two
junctions. This case is interesting both for its own sake and
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because it allows us to demonstrate the main physics of the
synchronization phenomenon.

Then we have [see Eqs. (2) and (4)]

V = V1 + V2, (5)

J 0
1 sin

(
2e

∫ t

0
V1dt + ϕ1

)
= J 0

2 sin

(
2e

∫ t

0
V2dt + ϕ2

)
.

(6)

We consider the case of two different junctions. Assume
that J 0

1 > J 0
2 . With the use of Eqs. (5) and (6) can be written

in the form

ηsinZ1 = sin(2eV t − Z1 + θ ). (7)

Here,

Z1 ≡ Z1(t) = 2e

∫ t

0
V1dt + ϕ1; θ =

2∑
i=1

ϕi ;

η = J 0
1

/
J 0

2 > 1.

As a result, we obtain

Z1 ≡ 2e

∫ t

0
V1dt + ϕ1 = arctan

sin[2eV (t + t0)]

η + cos[2eV (t + t0)]
, (8)

where t0 = θ/2eV .
One can see directly from Eq. (8) that the function Z1(t)

and, correspondingly, the current j1 [see Eqs. (3) and (6)] are
periodic functions with frequency ω = 2eV . Because of this,
the quantity Z1 defined by Eq. (8) can be expanded in a series:

Z1 ≡ 2e

∫ t

0
V1dt + ϕ1 =

∞∑
n=1

Bn

nω
sin nω(t + t0). (9)

Here, ω = 2eV and

Bn

nω
= 1

π

∫ 2π

0
dz arctan[sin z(η + cos z)−1] sin nz. (9′)

One also can see from Eq. (9) that

2eV1(t) =
∞∑

n=1

Bn cos nω(t + t0); ω = 2eV . (10)

Therefore, the potential V1, as well as V2 = V − V1, are time
dependent.

One also can see that

Z2 ≡ 2e

∫ t

0
V2dt + ϕ2 = 2eV (t + t0) − Z1. (11)

Here, Z1 is determined by Eq. (8) and is described by the
expansion of Eq. (9) with coefficients in Eq. (9′).

Therefore, the network consisting of two different junctions
(J 0

1 �= J 0
2 ) is synchronized at frequencies ω = 2eV,4eV, . . . ,

which are multiples of the total external potential.
As was noted above, the potentials V1 and V2 depend on

time, so that V1 ≡ V1(t) and V2 ≡ V2(t). At the same time
V1 + V2 = V = const.

It is crucial that the average values of the potentials V1

and V2 are different. Indeed, one can see directly from the
definitions in Eqs. (8) and (9), and the expression in Eq. (5)

that 〈V1〉 = 0, whereas 〈V2〉 = V . Therefore, the law of charge
conservation, Eq. (6), leads to a rather peculiar time-dependent
potential distribution.

If the junctions are very different (η 
 1), then, as follows
from Eq. (9′), B1/ω � η−1 for n = 1, and Bn � B1 for n �= 1
(e.g. B2/ω ≈ −η−2). For η = 1, Eqs. (8) and (11) yield
V1 = V2 = V /2.

Based on Eqs. (8) and (9), one can see that, if the external
field has the general form in Eq. (1), it leads to an appearance
of Shapiro steps. However, here, the Shapiro step picture is
more complex relative to that for a single junction. Namely,
in addition to the main steps at h̄� = nh̄ω (h̄ω = 2eV ), one
also can observe a subharmonic structure. Indeed, for a single
junction, the current is described by a simple sinusoidal time
dependence. In the array case, the dependence is also periodic
but more complicated [see Eqs. (8) and (9)]. In this case,
one should perform an additional Fourier transform [Eqs. (9)
and (10)]. This yields the picture of Shapiro steps with 2eV =
h̄�n/n′. The scenario is similar to that for superconducting
microbridges (see, e.g. Ref. 9 and also the review in Ref. 10),
where the current is also described by a periodic nonsinusoidal
function. The I-V characteristics will display the usual Shapiro
steps at n = 1,2, . . . , but, in addition, one can observe a
subharmonic structure corresponding to different values of n′.

In a similar way, one can consider a three-junction network.
Here, we are dealing with the following equations:

η1;2 sin Z1 = sin Z2, (12)

η2;3 sin Z2 = sin Z3, (12′)

V =
3∑

i=1

Vi, (12′′)

where Zi = 2e
∫ t

0 Vidt + ϕi ; i = 1,2,3, ηr;s = J 0
r /J 0

s ; r;
s ≡ 1,2,3 [cf. Eq. (4)]; we assume that j 0

1 > j 0
2 > j 0

3 . One can
see that Z3 = 2eV (t + t0) − Z1 − Z2, t0 = ∑3

i=1 ϕi/2eV .
Using Eqs. (12′) and (12′′), we obtain

Z2 = arctan
sin[2eV (t + t0) − Z1]

η2;3 + cos[2eV (t + t0) − Z1]
. (13)

With the help of this expression and Eq. (12), one can
express the potential V1 in terms of V :

sin Z1 = η3;1
sin[2eV (t + t0) − Z1]{

1 + η2
3;2 + 2η3;2 cos[2eV (t + t0) − Z1]

}1/2 .

(14)

Therefore, all the quantities Z1,Z2,Z3 depend periodically
on time with the frequency ω = 2eV .

Once again, one can see that the system can be synchronized
with an external potential V applied to the edges of the
network. The main Shapiro steps again will be multiples of
V (� = 2eV n,n = 1,2, . . .); there will be also a subharmonic
structure, (cf. Ref. 10), see above. If η3;2 � 1, we obtain from
the Eqs. (12):

Z1 = η3;1 sin 2eV (t + to); Z2 = η3;2 sin 2eV (t + to);

Z3 = 2eV (t + to). (15)
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Therefore, this network is indeed synchronized with the
external voltage V . Note also that 〈V1〉 = 〈V2〉 = 0, whereas
〈V3〉 = V .

The derivations can easily be generalized to the case of N

junctions. By analyzing the system

J 0
s sin

(
2e

∫ t

0
Vsdt + ϕs

)
= J 0

s+1 sin

(
2e

∫ t

0
Vs+1dt + ϕs+1

)

(s = 1, . . . ,N − 1),

which is valid for the case when the Josephson channel is
dominant, analogously to the derivation described above, one
can demonstrate that all currents are periodic functions of the
total external potential V . This leads to the corresponding
synchronization and the appearance of Shapiro steps.

Consideration of the small additional contribution of single-
particle tunneling [see Eqs. (3) and (4)] will not affect the
synchronization picture. Indeed, consider again the system of
two junctions. Based on Eq. (4), one can write [cf. Eq. (7)]

η sin Z1 = sin[2eV (t + t0) − Z1] + S, (16)

where Z1,t0,η are defined by Eqs. (7) and (8) and

S = [
(V − V1)R−1

2 − V1R
−1
1

]/
J2.

Since S � 1 in the low-temperature region (T � εi), one
can treat this term as a perturbation. Correspondingly, one
can write V1 = V 0

1 + V 1
1 , so that V 0

1 is described by Eqs. (9)
and (10). After a simple calculation, we obtain

Z1
1 ≡ 2e

∫ t

0
V1dt + δϕ1

= S̃
{
η cos Z0

1 + cos
[
2eV (t + t0) − Z0

1

]}−1
, (17)

where f 0 = cos[2eV (t + t0) − Z0
1],S̃ = S + δθf 0.

It is essential that the denominator on the right-hand
side of Eq. (17) does not vanish at any value of V and t .
Indeed, it vanishes only if tan Z0

1 = −[η + cos 2eV (t +
t0)]/sin 2eV (t + t0), which is incompatible with the solution
in Eq. (8). Therefore, Z1

1 � 1 and is a periodic function of the
external potential V ; this follows from Eqs. (9) and (14).

As a result, the conclusion that the system is synchronized
remains valid. This is also unchanged when displacement
currents Ci(∂Vi/∂t) are taken into account. We assume that
their contribution is also small relative to that of the Josephson
channel. In other words, we assume that the parameter
(CV ω/J 0

c ) � 1, which is perfectly realistic (see below). The
treatment can be performed similarly to that for single-particle
tunneling above. One can see that, in this case, the correction
to Z1;dc [cf. Eq. (15)] has the form

Z1;dc = (C1 + C2)J−1
2 {[η + cos 2eV (t + t0)] cos Z1

+ sin[2eV (t + t0)] sin Z1}−1∂V 0
1

/
∂t (18)

and is periodic at ω = 2eV .

IV. DISCUSSION

It has been demonstrated above that a 1D Josephson
tunneling network can be synchronized at a frequency equal
to ω = 2eV , where V is the external voltage applied across

the network. Correspondingly, Shapiro steps can be observed.
Thus, the network response is similar to that of a single
junction. The main condition which needs to be satisfied
in order to attain the synchronization is that the Josephson
tunneling channel must be dominant. That is, single-particle
tunneling must be relatively small (T � εi , where εi is the
energy gap).

The displacement current also should be relatively small.
Such a situation is perfectly realistic. For example, if the net-
work is characterized by the following parameter values: V �
2.2 mV,C ≈ 0.5 pF,ω ≈ 5 × 102 GHz,J 0

c ≈ 3 − 5 mA, then
(CV ω/J 0

c ) � 1 (∼10−1).
Network synchronization has been observed in a number of

studies (see, e.g. Refs. 5–7). Measurements were performed
mainly with 1D and 2D arrays where the junctions were
similar or almost similar. For a 1D network of N such
junctions, the synchronization occurs at ω = 2eV/N . Here,
we focus on the entirely different case when junctions are
very dissimilar. It is remarkable that, in this case, one still can
observe synchronization (and Shapiro steps) at frequencies
which are multiples of 2eV , where V is the total dc voltage
across the network. The analytical treatment described above
shows that this phenomenon occurs thanks to a peculiar voltage
distribution, which is time dependent, and follows directly
from the principle of charge conservation.

Synchronization of a pair of YBa2Cu3O7−δ junctions was
described in Refs. 11 and 12. Shapiro steps were observed
when 12 GHz microwave radiation with sufficient power was
applied. The I-V characteristics clearly display Shapiro steps
if V = �/2en, where V is the voltage across both junctions.
We suggest that these steps correspond to the synchronization
described above.

Let us also comment on the “giant” Josephson proximity
effect observed in Ref. 13. The electrodes were formed out of
La0.85Sr0.15CuO4 films (Tc � 45 K) and were separated by the
underdoped LaCuO compound with T ′

c � 25 K; the width of
the separating layer reached 200 Å (!). Despite such a large
separation scale, the authors of Ref. 13 observed at 35 K >

T > T ′
c both dc and ac Josephson tunneling. According to

our theory,14,15 the separating layer contains superconducting
regions embedded in a normal metallic matrix, hence we are
dealing with Josephson tunneling through a network of such
regions. Our analysis of the dc Josephson current16 is in good
agreement with the data.13 According to Ref. 13, Shapiro steps
can be observed, so the picture appears to be similar to that for
a single junction. We believe that this observation reflects the
synchronization described above. The superconducting state
in the isolated regions persists up to T ∗

c � 80 K,17 hence the
condition T < ε is satisfied.

As was noted in the Introduction, this paper represents a
continuation of our previous work.1,2 This study allows one
to state that a cluster-based Josephson network is also capable
of transferring an ac current synchronized at the frequency
corresponding to the total voltage applied across the network.
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