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Spiral magnetic structure in the iron diarsenate LiFeAs2O7: A neutron diffraction study
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The magnetic structure of LiFeAs2O7 (monoclinic, space group C2) has been solved using neutron powder
diffraction. This compound presents an antiferromagnetic behavior characterized by a long-range ordering
observed in the neutron diffraction patterns below the Néel temperature (TN = 35 K). The magnetic structure
is found to be incommensurate with respect to the nuclear structure, the magnetic peaks being indexed with
a propagation vector k = (0.709, 0, 0.155). The magnetic moments form a general spiral (helical-cycloidal)
arrangement with a constant magnetic moment of 4.21 μB. The magnetic structure is discussed in terms of
super-super exchange interactions involving two oxygen atoms belonging to an AsO4 tetrahedron, and compared
with the magnetic structure of the di-phosphate analogue LiFeP2O7. The presence of triangular super-super
exchange paths is believed to be at the origin of this incommensurate magnetic structure. The potential of
LiFeAs2O7 as a possible multiferroic material is discussed.
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I. INTRODUCTION

The magnetic ordering state is the result of a complex
system of quantum mechanical interactions: exchange inter-
actions and anisotropy terms due to relativistic spin-orbit
coupling. The prediction of the ground state, given the crystal
structure, is not an easy task as it needs full electronic structure
calculations; however, simpler mean-field calculations may
help to get some insight into the relative strengths of the
interactions. The seminal works of Yoshimori, Villain, Lyons,
Kaplan, and Freiser1–4 in the early 1960s on the general
problem of determining the classical magnetic ground state
of materials (applicable for high spin values), in which super
and super-super exchange magnetic interactions are known,
have paved the way to understand the magnetic structures
of phosphates, silicates, sulfates, arsenates, borates, or more
generally oxides.5–10 If most compounds present rather sim-
ple magnetic structures, some are more exotic, displaying
incommensurate propagation vectors. In recent years, much
attention has been paid to compounds presenting a small
magnetic moment (S = 1/2, maximum quantum effects) and
geometric frustration such as pyrochlore and Kagomé arrange-
ments which may present spin glass behavior, spin quantum
liquid ground state, or various long-range magnetic order
configurations.11 On the other hand, the coupling of magnetic
and electric properties, giving rise to multiferroic behavior,
has promoted a huge interest in the solid state community.12

We present here the occurrence of an incommensurate
magnetic structure in a relatively simple compound: the
iron diarsenate LiFeAs2O7. This compound was originally
studied because it may undergo reversible electrochemical Li+
insertion associated with the Fe3+/Fe2+ redox couple, when
used as a cathode material for Li-ion batteries.13 Our interest
here is related to the fact that it presents super-super-exchange
(more than one anion in the exchange path) interactions
between iron atoms involving diarsenate groups (made of two

corner-sharing AsO4 tetrahedra) that are, in principle, weaker
than super-exchange interactions. Moreover, the compound is
non-centrosymmetric so that its behavior under an applied field
may be interesting from the point of view of multiferroic prop-
erties. Understanding its magnetic structure, which appears to
be unusually complex with respect to its analogue LiFeP2O7,
will definitely improve the knowledge on this compound.

II. EXPERIMENT

Sample preparation. LiFeAs2O7 was prepared through a
“wet” method based on mixing stoichiometric aqueous solu-
tions of precursors followed by thermal treatments, which gen-
erally leads to pure compounds at a lower temperature than that
required for solid-state reactions, resulting in the formation
of smaller particles with higher surface area. The precursors
used were Li(CH3COO), NH4H2AsO4, and Fe(NO3)3.9H2O,
dissolved in demineralized water. Pure submicronic powders
of LiFeAs2O7 could be obtained at temperatures as low as
300 °C and further annealed at 600 °C to yield particles with
higher crystallinity.

Neutron diffraction. Neutron diffraction experiments were
performed on LiFeAs2O7 at the Institute Laue-Langevin (ILL,
Grenoble, France), on the high-resolution powder diffractome-
ter D1A (with a wavelength of 1.91 Å) for the study of the
nuclear structure at room temperature (far above TN ). The
study of the magnetic structure as a function of temperature
was undertaken on the high-flux powder diffractometer D1B
(ILL). A standard orange cryostat was used to vary the
temperature between 2 and 300 K, and a wavelength of 2.52 Å
was obtained by using a highly oriented pyrolytic graphite
monochromator. For both D1A and D1B experiments, the
powdered sample was placed inside a vanadium can of 8 mm
of diameter. The program FULLPROF14 was used for crystal and
magnetic structure refinements using the Rietveld method.15
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FIG. 1. (Color online) Rietveld refinement of LiFeAs2O7 (a)
against an x-ray diffraction pattern, recorded on a Bruker D8
diffractometer (Co Kα radiation, λ1 = 1.7892 Å, λ2 = 1.7932 Å);
(b) against neutron powder diffraction data recorded at 300 K
(high-resolution D1A diffractometer, λ = 1.9104 Å). Calculated
(continuous black line) and experimental (red circles) intensities are
plotted. Black tick marks correspond to Bragg positions of space
group C2.

III. RESULTS AND DISCUSSION

A. Nuclear structure of LiFeAs2O7

The x-ray diffraction pattern of LiFeAs2O7 indicates that
the powder was pure and well crystallized. The powder pattern
was fully refined starting from the structural model obtained
from single crystal diffraction,16 in the polar space group
C2 [Fig. 1(a)]. A concomitant refinement of the structure
from high-resolution neutron diffraction data (D1A) was
performed leading to the same structural model [Fig. 2], but
in addition allowed a precise determination of the lithium
positions in the cell [Fig. 1(b)]. The absence of a center
of symmetry in the structure was verified by the authors of
Ref. 16 using second harmonic generation experiments. We
further checked this with a pseudo-symmetry search using
the Bilbao Crystallographic Server (program PSEUDO)17 and
confirmed that the crystal structure is polar, hence having the
possibility of presenting a spontaneous electric polarization.
In order to determine which atoms break the inversion center,
the enantiomorph of the original structure was simulated by
adding an inversion center at the origin of the cell, even
though the two enantiomorphs give rise to the same powder
pattern. By comparing these two structures, it appears that
three atoms are at the origin of the polarity: Li, As, and
one of the four crystallographically distinct oxygen atoms
(O4), which bridges the diarsenate group. The rest of the
atoms, i.e., the FeO6 octahedra, form a structure which is

FIG. 2. (Color online) Crystal structure of LiFeAs2O7 viewed
along the (a) [100] direction, (b) [010] direction, and (c) [001]
direction (contrary to what one may think when looking in this
direction, there is no edge sharing between AsO4 and FeO6). Lithium
ions (yellow ellipsoids) are located in tunnels delimited by FeO6

octahedra (in purple) and AsO4 tetrahedra (in blue) linked by vertices
to form diarsenate As2O7 groups, as can be seen from (c). (d) Structure
of the phosphate analog LiFeP2O7. PO4 tetrahedra are shown in blue.

centrosymmetric. When trying to force the structure to be
symmetrical (space group C2/c) with the PSEUDO program,
the resulting hypothetical structure breaks the AsO4 tetrahedral
groups and it does not fit the powder pattern at all.

The resulting structural parameters and atomic positions
deduced from the high-resolution neutron powder diffraction
refinement are reported in Table I. The single crystallographic
Fe site is located at the middle of the O6 octahedron, with
Fe-O distances ranging from 1.94(1) to 2.04(1) Å, typical of
iron in the Fe3+ valence state in octahedral coordination. This
is confirmed by a bond valence sum analysis18 (Table I). Each
FeO6 octahedron is connected to six diarsenate As2O7 groups,
so that only super-super-exchange type interactions will occur
between Fe atoms in this structure. Lithium ions adopt a
tetrahedral coordination, they sit in large tunnels running along
[001], and display highly anisotropic thermal parameters as
depicted by the elongated ellipsoid along the [100] direction
[Figs. 2(a)–2(c)]. This reflects the interest of this compound
as a Li-ion positive electrode material, as Li ions can easily
move within the framework.

It is interesting to compare the structure adopted by the
title compound to that of the phosphate analogue, LiFeP2O7

[Fig. 2(d)] which also crystallizes in a non-centrosymmetric
space group, P 21. Lithium ions are located inside the tunnels
defined by diphosphate groups P2O7. The main difference
between the phosphate and the arsenate analogues is that,
for the phosphate, one of the P2O7 groups is bidentate (i.e.,
it connects two oxygen atoms belonging to the same FeO6

octahedron), so that the cavities are more elongated than in the
arsenate, for which FeO6 octahedra are linked to six different
As2O7 groups. Therefore replacing P with As leads to a distinct
framework, which may be due to the larger AsO4 groups as
compared to the PO4 groups (As−O 1.68 Å vs P−O 1.53 Å)
and/or to the occupation of the 3d10 configuration for As5+.
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TABLE I. Crystallographic data and atomic positions of
LiFeAs2O7 resulting from refinements of the structure against the
data collected on the high-resolution neutron powder diffractometer
D1A (ILL, Grenoble, France) obtained at room temperature with a
wavelength of λ = 1.9104 Å (RBragg = 2.39%, χ 2 = 1.09). Results
from the bond valence sum analysis (BVS) are also indicated.

Space group C2

a (Å) 6.6786(1)
b (Å) 8.2855(1)
c (Å) 4.7429(1)
α (deg) 90
β (deg) 103.950(1)
γ (deg) 90
V (Å3) 254.708(5)

Atom Wyckoff x Y z Biso (Å2) BVS

Li 2a 0 0.617(2) 0 *a 0.78(2)
Fe 2a 0 0 0 0.21(5) 3.14(2)
As 4c 0.7824(3) 0.3370(5) 0.5910(5) 0.35(5) 5.04(3)
O1 4c 0.7497(3) 0.4811(5) 0.8237(5) 0.40(6) 1.97(2)
O2 4c 0.8310(4) 0.1567(5) 0.7473(6) 1.14(6) 1.94(2)
O3 4c 0.6100(4) 0.3170(5) 0.2773(6) 0.25(6) 2.00(2)
O4 2b 0 0.4147(6) ½ 1.06(9) 2.17(2)

aAnisotropic β (×104): β11 = 275(58), β22 = 84(29), β33 = 178(86),
β12 = 0, β13 = −132(55), β23 = 0.

B. Magnetic measurements

The temperature dependence of the magnetic susceptibility
for the title compound is shown in Fig. 3(a). In a field of 500 G,
it shows cusps indicative of the onset of antiferromagnetic
ordering at about 35 K. Below 5 K, LiFeAs2O7 shows sharp
upturns characteristic of a paramagnetic contribution which
is likely generated by imperfections in the crystal and/or a
magnetic structure that may contain non-ordered Fe3+ ions.
It should also be noted that the zero-field cooled (zfc) and
field-cooled (fc) traces perfectly overlap.

The high-temperature region (150 to 350 K) of the inverse
susceptibility, obtained in a field of 500 G, was fit to the Curie-
Weiss equation, χ = C/(T − �CW ), in order to examine the
spin state of iron and the relative strengths of the interactions
[Fig. 3(b)]. An effective moment of 6.0(1) μB per Fe is
found. This value can be compared with the spin-only effective
moment of 5.92 μB expected for a single high-spin Fe3+ in
an octahedral coordination environment (d5, t3

2ge
2
g , S = 5/2,

L = 0). A Curie-Weiss �CW of −77(1) K is obtained for
LiFeAs2O7, reflecting strong antiferromagnetic correlations
between iron atoms. The value of the ratio |�CW/TN | � 2.2
indicates a small degree of frustration in the magnetic structure.
The good fit with the Curie Weiss law down to nearly TN

indicates that negligible short-range order builds up due to
frustration above TN .

C. Magnetic structure of LiFeAs2O7

In order to solve the magnetic structure of the title
compound, high-intensity neutron diffraction measurements
were performed on the diffractometer D1B at ILL, which is
especially devoted to this kind of study as it presents a good
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FIG. 3. (Color online) (a) Susceptibility curves of LiFeAs2O7 as
a function of temperature, under a magnetic field of 500 G. Blue and
red symbols are zero field cooled and field cooled, respectively. (b)
Inverse of susceptibility as a function of temperature, between 2 and
350 K, under a magnetic field of 500 G. The green dotted line is the
Curie Weiss fit of the high-temperature region (150–350 K).

resolution at low angles. The patterns collected below TN on
LiFeAs2O7 show the appearance of many extra reflections
at low angles (Fig. 4). Unlike the phosphate analogue,
these reflections cannot be indexed with a high symmetry
propagation vector at special points of the Brillouin zone
which would correspond to a magnetic cell commensurate with
the nuclear one. We used the program K-SEARCH (distributed
within the FULLPROF suite14) to determine the propagation
vector k. We found that the only propagation vector which
could index all the magnetic peaks was k = (X, Y , Z) = (0.709,
0, 0.155), so that the magnetic structure is incommensurate
with respect to the nuclear one. The propagation vector lies
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FIG. 4. (Color online) Neutron diffraction patterns of LiFeAs2O7

(D1B, λ = 2.52 Å) between 2 and 50 K, showing the appearance of
magnetic peaks (highlighted with arrows) below the Neel temperature
of 35 K.
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in the (a*, c*) plane. We can notice that X + 2Z is close
to 1, but if we impose this constraint (X + 2Z = 1) in the
refinement, the magnetic peaks are clearly shifted from their
experimental 2θ position. Therefore the propagation vector
shows no specificity except that its Y component is zero.

A symmetry analysis19 does not provide restrictions to the
orientation of the magnetic moments of the Fe3+ ions. Indeed
there is only a single small representation of dimension 1
and a single Bravais lattice (only one atom per primitive
cell), thus giving rise to a general complex Fourier coefficient
Sk = (u, v, w) with complex values u, v, w. If the real and
imaginary components of Sk are parallel we obtain sinusoidal
structures, and if they are perpendicular we obtain spiral
structures.

We tried different models for the magnetic structure. It
appears that the solutions with sinusoidal structures gave
magnetic moments abnormally high for Fe3+, and hence were
not further considered. After several trials concerning the
spiral structures, we found that the spiral axis (to which the
magnetic moments are perpendicular) is not along a specific
simple direction of the crystal. Moreover, this axis is not
along the propagation vector, so that the spiral magnetic
structure is neither a pure helix nor a pure cycloid. We used
simulated annealing techniques to determine the possible axes
of the spiral: it led to four possibilities that could account
for the observed magnetic reflections which correspond to
only two spiral orientations, as shown later. Let us consider
an orthonormal Cartesian system (aO, bO, cO) attached to the
monoclinic crystallographic cell (a, b, c), so that we can define
spherical (θ , ϕ) angles. In our convention, aO (respectively
bO) is parallel to a (respectively b) and cO is defined by
aO × bO. The four different sets of values for the spherical
angles (θ , ϕ) angles defining the possible spiral axes are the
following: (θ1 = 80.0(5)°, ϕ1 = 157.0(5)°), (θ2 = 100.0(5)°,
ϕ2 = 337.0(5)°), (θ3 = 100.0(5), ϕ3 = 23.0(5)°), and
(θ4 = 80.0(5)°, ϕ4 = 203.0(5)°). Looking carefully at these
different possibilities, it appeared that the second, third, and
fourth can easily be deduced from the first as (θ = 80.0(5)°,
ϕ = 157.0(5)°), (π − θ , π + ϕ), (π − θ , π −ϕ), and (θ ,
2π − ϕ). One can further notice that only two orientations
have to be considered, as the two others give the same spiral
axis, but taken in the opposite direction; it means that they are
of opposite chirality (see Fig. 5): magnetic moments on iron
atoms turn in the opposite way (left or right) under the effect
of the propagation vector when several units cells along a or c
are considered. The two remaining solutions (θ1 = 80.0(5)°,
ϕ1 = 157.0(5)°), and (θ , 2π−ϕ) = (80.0(5)°, 203.0(5)°)
correspond to two different spiral directions which are related
by the twofold rotation axis which is along [010] in space
group C2. These two possibilities (together with their different
chiralities) lead exactly to the same refinement although they
are physically different, but one cannot distinguish them from
neutron powder diffraction. In all cases, the magnetic moments
are confined to the plane perpendicular to the spiral axis. The
refined amplitude value is 4.28(3) μB, in good agreement
with what is expected for high spin Fe3+ ions (S = 5/2).
The Rietveld refinement from the data recorded at 2 K
using the spiral axis (θ1 = 80.0(5)°, ϕ1 = 157.0(5)°) and a
moment of 4.28(3) μB perpendicular to the axis is presented
in Fig. 6, together with a pattern recorded at 60 K (above

FIG. 5. (Color online) View of the four possible helix-cycloid
magnetic structures along the c axis [each with different spherical
angles (θ , ϕ) whose values are written for clarity; see text]. The
magnetic moments on iron atoms are displayed as black arrows. Five
unit cells are displayed along the c axis to see the effect of the Z

component of k on the orientation of the magnetic moment. The first
two solutions (θ1, ϕ1) and (θ2, ϕ2) correspond to the two different
chiralities of the same spiral direction, whereas the two others (θ3,
ϕ3) and (θ4, ϕ4) correspond to a spiral axis with is deduced from the
first one by the twofold symmetry axis parallel to the [010] direction,
as seen in Fig. 7. Note that we cannot distinguish these four solutions
from neutron powder diffraction.

TN ) to appreciate the magnetic contribution. The two possible
magnetic structures corresponding to the two spiral directions
are displayed in Fig. 7. The magnetic moment of the Fe atom
at the unit cells with origins given by the vector positions Rl =
(l1 + ½ s)a+ (l2 + ½ s)b + l3c (with li integers and s = 0
or s = 1 because we are dealing with a C cell) is calculated
in terms of the Fourier coefficient Sk = ½(U + iV) by the
expression

ml =
∑

k

Sk exp(−2πikRl) = U cos(2πkRl) + V sin(2πkRl),
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FIG. 6. (Color online) Observed (red circles) versus calculated
(black continuous line) neutron powder diffraction patterns of
LiFeAs2O7 (D1B, λ = 2.52 Å) recorded at 2 K. The positions of the
Bragg reflections are represented by vertical bars (first line = nuclear,
second line = magnetic). The difference (obs−calc) pattern is
displayed in green. The pattern recorded at 60 K (i.e., above the
magnetic transition) is displayed for comparison.
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FIG. 7. (Color online) Representation of the two possible spiral
(helix-cyloid) magnetic structures for LiFeAs2O7, viewed along the
[001] direction. The spherical (θ , ϕ) angles defining the spiral
direction are (80°, 157°) and (80°, 203°) for (a) and (b), respectively.
We can notice that they are symmetric by the twofold symmetry axis
parallel to the [010] direction. Arrows indicate the magnetic moments
on the iron atoms.

with U = (−1.733 63, 0.290 40, −4.343 67) and
V = (−1.672 33, −3.939 76, 0.0) for the (80°, 157°)
case and U = (−1.733 63, −0.290 40, −4.343 67) and
V = (1.672 33, −3.939 76, 0.0) for the (80°, 203°) case.
The vectors U and V are given with components in Bohr
magnetons (μB) with respect to the unitary basis with axes
along the conventional cell: (a/a, b/b, c/c). Therefore, in
both magnetic structures, the absolute values of the magnetic
moments are the same for all iron atoms, only the orientation
of the moments changes from one atom to another when the
structure is seen perpendicular to the [010] direction (Fig. 8),
as a result of the k = (X,0,Z) propagation vector. Note that
none of the two spiral axes [θ = 80.0(5)°, ϕ = 157.0(5)°,
and ϕ = 203.0(5)°] have a simple expression in terms of
[hkl] directions. The angle between the spiral axis and the
propagation vector is ω = 46.5°, so that the magnetic structure
is intermediate between a pure helical (ω = 0.0°) and pure
cycloidal structure (ω = 90.0°).

In the phosphate analogue LiFeP2O7, the magnetic structure
was found to be rather simple with a magnetic propagation
vector k = (0,0,0) and an almost collinear arrangement of the
magnetic moments along the [100] direction of the P 21 cell.20

We address now the question of why the diarsenate compound
is so different in terms of magnetic arrangement.

FIG. 8. (Color online) Representation of the magnetic structure
for LiFeAs2O7 with spherical angles (θ , ϕ) = (80°, 157°). This
representation clearly shows the change in the moment’s orientation
due to the propagation vector k = (0.709, 0, 0.155).

D. Analysis and discussion of
the magnetic structure

In order to understand the origin of the incommensurate
magnetic structure, we decided to examine the exchange paths
between iron atoms in LiFeAs2O7. A C centered Bravais lattice
and iron positioned at the origin of the cell lead to three differ-
ent isotropic super-super-exchange interactions (Ji , i = 1,2,3),
numbered in ascending order of distances between magnetic
atoms. The exchange paths differ by changes in distances or
in (Fe-Oi-Oj ), (OiOj -Fe) angles and (Fe-Oi-Oj -Fe) torsion
angles (Table II). The shortest isotropic exchange interaction,
J1, connects the two iron atoms which are related with the (0,
0, 1) lattice translation, via O1 and O3. J2 connects iron atoms
that belong to the same “ring” in the (a, b) plane via O1 and O2;
J3 is the largest distance that had to be considered: it connects
two iron atoms related by the lattice translation (½, ½, 1)
via O2 and O3, of special importance for the helix-cycloid
magnetic structure. A scheme of the interactions J1, J2, and J3

is shown in Fig. 9. The topology (how iron atoms are connected
through these three different exchange paths) is similar to
the one encountered in the phosphate analogue LiFeP2O7,
which is represented in Fig. 10. There are, however, a few
differences: for the phosphate analogue, only the exchange
integrals J1 and J2 had to be taken into account to get the
k = (0, 0, 0) observed magnetic structure as ground state. The
exchange integral J3 should be very weak in the phosphate
because no simple super-super-exchange paths exist through
the phosphate groups. Note that a topology with only J1 and
J2 can generate only commensurate structures, as is the case
for LiFeP2O7, because these two exchange integrals create a
non-frustrated 3D network. The introduction of J3 creates an
additional path that generates a triangular topology that may
be at the origin of some degree of frustration, and therefore
leads to the observed helical-cycloidal magnetic structure.
Moreover, the geometrical characteristics of the exchange path
for J3 in LiFeAs2O7 (see Table II) are more favorable (stronger
orbital overlap) than for the other two J1, J2 paths.
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TABLE II. List of effective exchange interactions considered between iron atoms and related super-super-exchange paths, bond lengths
(in Å) and angles (expressed in °) in LiFeAs2O7. The translational part to obtain the position of the second iron atom is indicated.

Interaction Path d1 d2 d3 α1 α2 γ d

J1 Fe-O1-O3-Fe along c 2.04 2.87 2.02 106.6 102.7 − 86.4 4.74
J2 Fe-O2-O1-Fe along 1

2 (a + b) 2.04 2.78 1.93 109.3 132.1 89.0 5.32

J3 Fe-O2-O3-Fe along 1
2 (a + b + 2c) 2.03 2.71 1.93 160.5 163.8 134.6 6.57

d1 = d(Fe-Oi), d2 = d(Oi-Oj ), d3 = d(Oj -Fe), α1 = (Fe-Oi-Oj ), α2 = (Oi-Oj -Fe), γ = torsion angle, d = d(Fe-Fe).

The problem of the magnetic ground state of a system of
classical spins connected by isotropic exchange interactions
was considered 40 years ago by several authors.2,21 The
first ordered state can be obtained from the resolution of an
eigenvalue problem where the matrix is the Fourier transform
of the exchange interactions. In the case of a simple Bravais
lattice, the first ordered magnetic state is also the ground state
(this is the so-called Villain-Yoshimori theorem).1,4 We have
used the method discussed in Ref. 22 to evaluate the conditions
to be satisfied by the exchange integrals Ji in order to have the
propagation vector k as the ground state. The full treatment is
performed in the Appendix. In our case, k = (0.709, 0, 0.155)
is the observed propagation vector and it must correspond
to the state of the lowest energy. This occurs when J1, J2,
and J3 are negative, and obey the following conditions which
were analytically deduced: J2 � 0.522 J1 and J3 � 6.932 J1

[see Appendix, Eq. (A8)]. If the conditions are not fulfilled,
then the propagation vector giving the lowest energy will be
simpler, e.g., (1, 0, 0). In order to get further insight on why
the propagation vector is k = (X, Y , Z) = (0.709, 0, 0.155) we
plotted the energy [obtained from Eq. (A2) in the Appendix,
but with Y = 0) defined as

ξ (k,J1,J2,J3) = −2J1 cos 2πZ − 4J2 cos πX

− 4J3 cos π (X + 2Z)

FIG. 9. (Color online) Representation of three exchange paths
between iron atoms in LiFeAs2O7. J1 (in red) connects two trans-
lational equivalent atoms along [001], J2 (in blue) connects iron
atoms belonging to the “rings,” and J3, the longest one, is displayed
in yellow. J3 presents angles much more linear then J1 and J2 (see
values in Table II).

as a function of X and Z, for an arbitrary negative value of
J1 and corresponding values of (J2, J3) taken as J1 = −1,
J2 = −0.522, and J3 = −6.932 (see Appendix). The k vectors
were varied in the (X, 0, Z) plane with X in [0, 1] and Z in
[0, ½], and Fig. 11 gathers the resulting energy ξ (k, J1, J2,
J3) as a high-dimensional phase diagram using X and Z as
Cartesian axes. It appears clearly that the propagation vector k
is in a region with relative low energy which looks like a valley
pointing between the propagation vectors (0, 0,½) and (1, 0, 0).

FIG. 10. (Color online) Topology of LiFeAs2O7 (top) and
LiFeP2O7 (bottom). Iron atoms are displayed as red balls. For the
arsenate counterpart, we have indicated J1 in red (along [001]), J2

in blue (along [½½ 0]), and J3 in yellow (along [½½ 1]). All of
them are of super-super-exchange type. For the phosphate analog,
three exchange integrals were considered (Ref. 20) that correspond
to J1 (in red), and two others (displayed in blue and green) that are
equivalent to J2 in the arsenate.
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FIG. 11. (Color online) Plot of the energy ξ (k, J1, J2, J3) as a
function of the X and Z components of the propagation vector k = (X,
0, Z), for exchange integrals values taken as J1 = −1, J2 = −0.522,
and J3 = −6.932 (see text and Appendix). The energy is displayed on
a color scale in units of J1. The left panel shows a wide range of energy
(between −27.8 and 0), while the right one displays a color scale
extremely reduced to focus on the lowest energies (between −27.8
and −27.7). The white crosses show the position of the experimental
k vector: X = 0.709 and Z = 0.155. The inset in the right panel
shows a three-dimensional plot of ξ . The k vectors were varied in the
(X, 0, Z) plane with the white arrow pointing to the experimental k
vector, lying in the deepest region of the valley (global minimum of
energy).

A global view of the ξ (k, J1, J2, J3) surface (Fig. 11, left) does
not show clearly the existence of a minimum at the observed
position; however, looking at the lowest range of energies we
detected the presence of a shallow global minimum centered at
k = (0.709, 0, 0.155). The valley does not follow the equation
X + 2Z = 1; it is slightly curved when seen from [1 0 ½]
(Fig. 11, right).

The form of the valley and the scale of energies indicate
that a small external perturbation, such as pressure, would
more likely change the magnetic propagation vector into a
simpler one, and as a consequence break the spiral magnetic
ordering. The orientation of the spiral with respect to the lattice
and the propagation vector (halfway between an helix and a
cycloid) should result from additional Dzyaloshinskii-Moriya
interactions, as reported for other systems, such as Cu-based
systems,23–25 molecular magnets,26 and some metals.27

Lastly, we would like to mention that the di-phosphate
analogue LiFeP2O7, despite having a different structure as
explained above, is also polar. It displays a simple magnetic
structure, and it has been recently shown from a single
crystal study that it presents some magnetocaloric effects and
interesting functional properties.28,29 Therefore LiFeAs2O7

would be a very good candidate for studying also such kind
of properties. It is known that the Dzyaloshinskii-Moriya
interactions, via the establishment of unconventional long-
range magnetic order, also favor the occurrence of multiferroic
properties.30,31 Single crystals of the arsenate could therefore
be very valuable, provided that they can be grown and that
risks associated with the As3+ ions can be carefully mastered.
Also they would be necessary in order to discriminate between
the different structural and magnetic chiralities using full

neutron 3D polarimetry. Moreover, the study of the behavior
of the magnetic structure under applied electric and magnetic
fields will help to get more insight into the properties of this
compound.

IV. CONCLUSION

The lithium-iron diarsenate LiFeAs2O7 presents a magnetic
phase transition at 35 K that we have studied by means
of neutron powder diffraction. LiFeAs2O7, despite having a
magnetic topology very similar to the phosphate analogue
LiFeP2O7, presents a completely different magnetic struc-
ture, which is incommensurate with a propagation vector
k = (0.709, 0, 0.155). Magnetic moments follow a spiral
(helix-cycloid), the axis of which does not point along a
specific crystallographic axis. From powder diffraction we get
two possible spiral axes deduced by the twofold symmetry
axis of the polar space group C2. As LiFeAs2O2 crystallizes
in a polar structure, it is a candidate for being a potential
multiferroic compound. The analysis of the topology and
of the exchange paths in LiFeAs2O7 indicates that three
super-super-exchange interactions have to be considered. The
presence of a topology with triangular paths induces frustration
effects that are at the origin of the incommensurate magnetic
structure.

APPENDIX

The first ordered magnetic state is obtained, as a function
of k (on the surface or at the interior of the Brillouin Zone)
and the exchange integrals, as the eigenvector corresponding
to the lowest eigenvalue of the negative Fourier transform of
exchange integral matrix:

ξij (k) = −
∑
m

Jij (Rm) exp{2πikRm}. (A1)

The indices i,j refer to the magnetic atoms in a primitive cell,
and Jij (Rm) is the isotropic exchange interaction (including the
modules of the spins) between the spins of atoms i and j in
unit cells separated by the lattice vector Rm. Our convention is
that negative Jij means antiparallel coupling (pair interaction
energy: Eij = −Jij SiSj ). If we consider anisotropic exchange
interactions, or single ion anisotropy, we have to consider in
general a tensorJ αβ

ij (Rm) in which α,β = x,y,z; instead of the
scalar variables Jij (Rm).

Let us start with the scalar case that corresponds to a
very good first approximation (in general |Jisotropic| > 102

|Janisotropic|) to determine the propagation vector. In our case
we have only one atom per primitive cell; so that the above
matrix is very simple (1 × 1) and the problem can be solved
analytically. The eigenvalue coincides with the matrix and it
is given by the expression

ξ (k,J1,J2,J3) = −2J1 cos 2πZ − 4J2 cos πX cos πY

− 4J3 cos π (X + 2Z) cos πY, (A2)

where X, Y , and Z are the reduced coordinates of the
propagation vector k in the conventional reciprocal basis.

The conditions to get the possible stable magnetic struc-
tures are obtained by putting to zero the derivatives of the
eigenvalues with respect to the components of k and forcing
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the Hessian to be definite positive so that it corresponds to a
minimum in energy. The first set of three equations is given by
the expressions

∂ξ

∂X
= 4π cos πY [J2 sin πX + J3 sin π (X + 2Z)] = 0,

∂ξ

∂Y
= 4π sin πY [J2 cos πX + J3 cos π (X + 2Z)] = 0,

∂ξ

∂Z
= 4π [J1 sin 2πZ + 2J3 sin π (X + 2Z) cos πY ] = 0.

(A3)

Irrespective of the values of exchange interactions, the first
equation is satisfied with Y component of k equal to 1/2 and
the second equation is satisfied with Y = 0, 1. In order to
simplify the discussion we take from the beginning the value
Y = 0, which is the observed value, so we have two equations
from the above set that have to be satisfied by the exchange
integrals and the propagation vector components,

J2 sin πX + J3 sin π (X + 2Z) = 0,
(A4)

J1 sin 2πZ + 2J3 sin π (X + 2Z) = 0.

The Hessian matrix (restricted to Y = 0 and neglecting a
constant factor) can be written as

H =

⎛
⎜⎝

J2 cos πX + J3 cos π (X + 2Z) 0 2J3 cos π (X + 2Z)
0 J2 cos πX + J3 cos π (X + 2Z) 0

2J3 cos π (X + 2Z) 0 2J1 cos 2πZ + 4J3 cos π (X + 2Z)

⎞
⎟⎠ . (A5)

For the stability of the magnetic structure all the eigenvalues
of the Hessian matrix should be positive. The eigenvalues
are obtained by solving the equation det(H−λI ) = 0. This
equation can be written as

det(H − λI ) =
∣∣∣∣∣∣
α − λ 0 β

0 α − λ 0
β 0 γ − λ

∣∣∣∣∣∣
= (α − λ)(λ2 − (α + γ )λ + αγ − β2) = 0.

(A6)

in which the coefficients α, β, and γ are shorthand notations
for the terms appearing in the Hessian. The eigenvalues (all of
them should be positive) are

λ1 = α > 0, 2λ2 = α + γ +
√

(α − γ )2 + 4β2 > 0,
(A7)

2λ3 = α + γ −
√

(α − γ )2 + 4β2 > 0.

In our case the propagation vector is k = (0.709, 0, 0.155);
assuming that Eqs. (A4) and (A7) are satisfied by the
components Xo = 0.709 and Zo = 0.155, we obtain the
following conditions for the exchange integrals:

J2 = sin 2πZo

2 sin πXo

J1 = a21J1 ≈ 0.522J1,

J3 = − sin 2πZo

2 sin π (Xo + 2Zo)
J1

= −a31J1 ≈ −(−6.932)J1 ≈ 6.932J1. (A8)

From the first equation of (A7),

J2 cos πXo + J3 cos π (Xo + 2Zo)

= −0.6104J2 − 0.9982J3 > 0. (A9)

From (A8) we see that all exchange integrals have the same
sign, and from (A9) we obtain that all of them are negative
(antiferromagnetic interactions) and, as a consequence, the
origin of the incommensurability appears to be the frustrated
topology that forms triangular paths as shown in Fig. 10.

The stability condition for the observed k is granted for
negative Ji’s satisfying Eqs. (A8), as one can verify by
substituting the values in the remaining equations of (A7).
The values of α, β, and γ for k = (Xo, 0, Zo) satisfying (A8)
can be written as

α = −0.6104J2 − 0.9982J3 = a2 + a3,

β = −1.996 44J3 = 2a3,

γ = 2J1 cos 2πZo + 4J3 cos π (Xo + 2Zo)

= −0.5095J1 − 3.992 88J3 = a1 + 4a3. (A10)

For λ2 we have a positive value because the square-root term
is positive, and both α, γ > 0. For λ3, after some algebra, we
have the equivalent following condition:

a1a2 + a1a3 + 4a2a3 > 0.

One can see that this is verified because all ai are positive for
negative Ji’s [see Eq. (A10)].
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