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Magnon spectrum in the domain ferromagnetic state of antisite-disordered double perovskites
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In their ideal structure, double perovskites such as Sr2FeMoO6 have alternating Fe and Mo along each cubic
axis, and a homogeneous ferromagnetic metallic ground state. Imperfect annealing leads to the formation
of structural domains. The moments on mislocated Fe atoms that adjoin each other across the domain
boundary have an antiferromagnetic coupling between them. This leads to a peculiar magnetic state, with
ferromagnetic domains coupled antiferromagnetically. At a short distance the system exhibits ferromagnetic
correlation while at large length scales the net moment is strongly suppressed due to interdomain cancellation.
We provide a detailed description of the spin-wave excitations of this complex magnetic state, obtained
within a 1/S expansion, for a progressively higher degree of mislocation, i.e., antisite disorder. At a given
wave vector the magnons propagate at multiple energies, related, crudely, to “domain confined” modes with
which they have a large overlap. We provide a qualitative understanding of the trend observed with growing
antisite disorder, and contrast these results to the much broader spectrum that one obtains for uncorrelated
antisites.
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I. INTRODUCTION

Double perovskite (DP) materials with the general formula
A2BB ′O6 have generated a great deal of interest1 both in terms
of their basic physics as well as the possibility of technological
applications. Here, B and B ′ are the electronically active ions,
typically 3d, 4d, or 5d elements, while A is either a rare earth or
an alkaline earth. The B ions are usually magnetic, e.g., Fe, Co,
Ni, Cr, or Mn, while B ′ is typically nonmagnetic, e.g., Mo or W.
In particular, Sr2FeMoO6 (SFMO) shows high ferromagnetic
Tc ∼ 420 K, large electron spin polarization (half metallicity),
and significant low-field magnetoresistance.2,3

In the structurally ordered materials the magnetic ordering
arises from a combination of strong coupling on the B site
between the large S core spin and the valence electron
(preferring one electron spin polarization on site) and de-
localization of the electrons on the B-O-B ′ network. This
effective “double exchange” mechanism operates in SFMO,
where the ferromagnetic (FM) coupling between the S = 5/2
localized magnetic moments (Fe3+ ion, 3d5 state) arises from
the delocalization of electrons over the Mo-O-Fe network.
The B (Fe) ions order ferromagnetically while the conduction
electrons that mediate the exchange are aligned opposite to the
Fe moments, leading to a saturation magnetization of 4μB per
formula unit in ordered SFMO. The physics in real materials,
however, is complicated by the presence of antisite disorder
(ASD) whereby some B ions occupy the positions of B ′ ions
and vice versa.

There is clear evidence now that B-B ′ mislocations are
not random but spatially correlated.4,5 While ASD suppresses
long-range structural order, electron microscopy4 and x-ray
absorption fine structure (XAFS)5 reveal that a high degree
of short-range order survives. In fact, the system breaks up
into locally ordered regions, phase slipped with respect to
one another. The antiphase boundary consists of two similar
atoms (B-B or B ′-B ′) sitting next to each other, while within a
domain the B and B ′ alternate in all directions. The structural
disorder has a direct magnetic impact. If two Fe ions adjoin

each other, the filled shell d5 configuration leads to a large
antiferromagnetic (AFM) superexchange coupling between
them, which makes two neighboring FM domains antiparallel.
The result is a pattern of structural domains, with each domain
internally ferromagnetic while adjoining domains are AFM
with respect to each other. This naturally leads to a suppression
of the bulk magnetization with growing ASD.

Domain structure has been inferred in the low doping man-
ganites as well, due to competing FM and AFM interactions.
Inelastic neutron scattering in those materials suggests the
presence of FM domains in a predominantly AFM matrix,
and allows a rough estimate of the domain size.6,7 We aim to
provide a similar framework for interpreting the magnetic state
and domain structure in the DP from spin-wave (SW) data.

Our main results are the following: (i) We compute the
dynamical magnetic structure factor within a 1/S expansion
of an effective Heisenberg model chosen to fit the electronic
model results. (ii) The magnon data is reminiscent of the
clean limit even at maximum ASD (50%), where the bulk
magnetization vanishes due to interdomain cancellation. (iii)
We suggest a rough method for inferring the domain size from
the magnon data and check its consistency with the ASD
configurations used. (iv) We demonstrate that uncorrelated
ASD leads to a much greater scattering of magnons and a much
broader lineshape. This suggests that, in addition to XAFS and
microscopy, neutron scattering would be a sensitive probe of
the nature of disorder in these materials.

The paper is organized as follows: In Sec. II we discuss the
generation of the structural motif, the solution of the electronic
problem, and the estimation of exchanges for an effective
Heisenberg model. In Sec. III we recapitulate the spin-wave
formulation for noncollinear phases and present the magnon
spectrum obtained for the different disordered configurations.
In Sec. IV we discuss the results, attempting to analyze the
magnon spectrum for correlated antisites in terms of confined
spin-wave modes, and contrasting the result to magnons in
an “uncorrelated” antisite background. Section V contains our
concluding remarks.

214428-11098-0121/2013/88(21)/214428(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.214428


DAS, SINGH, AND MAJUMDAR PHYSICAL REVIEW B 88, 214428 (2013)

II. EFFECTIVE MAGNETIC MODEL

A. Structural motif

Given the similar location of the B and B ′ ions (at
the center of the octahedra) the tendency towards defect
formation is more pronounced in the double perovskites. This
tendency of mislocation interplays with the inherent B-B ′
ordering tendency and creates a spatially correlated pattern
of antisites4,5 rather than random mislocation. To model this
situation we have used a simple lattice-gas model.8 On proper
annealing it will go to a long-range ordered B,B ′,B,B ′ . . .
pattern. We frustrate this by using a short annealing time
to mimic the situation in the real materials. We encode the
atomic positions by defining a binary variable ηi , such that
ηi = 1 when a site has a B ion, and 0 when it has a B ′ ion.
Thus for an ordered case we will get η’s as 1,0,1,0,1,0, . . .

along each cubic axis. The B-B ′ patterns that emerge on short
annealing are characterized by the structural order parameter
S = 1 − 2x, where x is the fraction of B (or B ′) atoms that
are on the wrong sublattice. We have chosen four disordered
families with increasing disorder for our study. Each member
of the disordered family is being generated at a given annealing
temperature for a fixed annealing time, starting with different
initial random B-B ′ configurations. One structural motif each
for these families is shown in the first column of Fig. 1,
with progressively increasing disorder (from top to bottom)
on a 40 × 40 lattice. We plot g(ri) = (ηi − 1

2 )eiπ(xi+yi ) as an
indicator of structural order. For a perfectly ordered structure
g(ri) is constant. We denote these different realizations of
antisite-disordered configurations as C1, C2, C3, and C4,
and the corresponding structural order parameter has values
S = 0.98, 0.86, 0.59, and 0.17, respectively, from top to bottom
in the first column. We solve the electronic-magnetic problem
on these structural motifs.

B. Electronic Hamiltonian

To study the magnetic order we use the electronic-magnetic
Hamiltonian that has the usual couplings of the ordered
double perovskite, and an additional AFM coupling when two
magnetic B ions are nearest neighbor (NN). The Hamiltonian
for the microscopic model is

H = Hloc{η} + Hkin{η} + Hmag{η}. (1)

Hloc{η} = εB

∑
i,σ ηif

†
iσ fiσ + εB ′

∑
i,σ (1 − ηi)m

†
iσmiσ is the

on-site term, where εB and εB ′ are level energies at the B and
B ′ sites, respectively. Here, f is the electron operator referring
to the magnetic B site and m is that of the nonmagnetic B ′ site.
Hkin{η} =−t1

∑
〈ij〉,σ ηiηjf

†
iσ fjσ − t2

∑
〈ij〉,σ (1 − ηi)(1 − ηj )

m
†
iσmjσ − t3

∑
〈ij〉,σ (ηi + ηj − 2ηiηj )(f †

iσmjσ + H.c.) repre-
sents the NN hopping term. For simplicity we set all the NN
hopping amplitudes to be the same t1 = t2 = t3 = t . The mag-
netic interaction term Hmag{η} = J

∑
i,α,β ηiSi · f

†
iα �σαβfiβ +

J̃AF
∑

〈ij〉 ηiηj Si · Sj consists of the electron-spin coupling J

on B sites, and AFM superexchange coupling J̃AF between
two NN magnetic B sites. Si is the classical core spin on
the B site at ri with |Si | = 1. We take J/t � 1 with J > 0
and J̃AF|S|2/t = 0.08, based on the TN scale in SrFeO3.
We have ignored orbital degeneracy, Coulomb effects, etc.,

FIG. 1. (Color online) The first column contains the structural
motif for four disordered families (C1–C4) with progressively
increasing disorder (S = 0.98, 0.86, 0.59, and 0.17) from top to
bottom. We plot g(ri) = (ηi − 1

2 )eiπ (xi+yi ). The second column shows
the ground state spin overlap factor, hi = S0 · Si , where S0 is the
lower-left-corner spin in the lattice. In the third column, we have
shown the corresponding NN bond configurations. Here, red, blue,
and green represent B-B, B ′-B ′, and B-B ′ bonds, respectively. The
lattice size is 40 × 40 (Ref. 9).

to focus on the essential magnetic model on the disordered
structure. We will use a two-dimensional (2D) model because
it already captures the qualitative physics while allowing ease
of visualization and access a large system size. The formulation
readily carries over to three dimensions as well.

We have used a real space exact diagonalization
based Monte Carlo method involving a traveling cluster
approximation10 to anneal the spin-fermion system towards
its ground state in the disordered background.9

Annealing the electron-spin system down to low tempera-
ture on a given structural motif leads to the magnetic ground
states shown in the middle column of Fig. 1. We plot the spin
overlap factor, hi = S0 · Si , where S0 is the lower-left-corner
spin in the lattice. The comparison of the first and second
columns in Fig. 1 indicates that the structural and magnetic
domains coincide with each other. The third column of Fig. 1
shows the NN structural patterns. We have three possibilities,
B-B, B ′-B ′, and B-B ′, represented by the colors red, blue, and
green, respectively, in the plot.
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C. Effective Heisenberg Hamiltonian

Doing a SW analysis for domain ferromagnetic DP materi-
als using the full electronic-magnetic Hamiltonian [Eq. (1)] is
difficult. Further, in a clean SFMO system the SW excitations
are well described by the Heisenberg model with NN and
next nearest neighbor (NNN) interactions and the quantum
corrections of order 1/S2 to the magnon spectrum are small.11

So we assume that the spin dynamics can be described by an
effective Heisenberg model

Heff =
∑
{ij}

Jij Si · Sj , (2)

where {} represents the set of NN and NNN sites. Jij is the
effective coupling (FM/AFM) between the local moments
at the ri and rj sites. In our 2D ASD configurations JF

operates between two local moments when they are at the
NNN position and JAF is active when the moments are at
the NN position (a B-O-B arrangement). We have estimated
the effective couplings JF and JAF as follows. For getting
the FM coupling (JF) we have considered the ordered double
perovskite structure. We calculated the order parameter, i.e.,
the magnetic structure factor D(k) at k = (0,0), as a function
of temperature for the full electronic Hamiltonian [Eq. (1)]
using Monte Carlo simulation. We then repeated the same
procedure for the NNN FM Heisenberg Hamiltonian, defined
on only the magnetic sites of the double perovskite. We
find that for JF/t = −0.04, the two results match very
well.

In order to get the AFM coupling we considered the
ordered perovskite where both the B and B ′ sites carry a
magnetic moment (mimicking SrFeO3), and computed its
AFM structure factor peak k = (π,π ). This model involves
both electronic kinetic energy and Fe-Fe superexchange. We
find that the result can be modeled via a Heisenberg model with
JAF/t = 0.065.

Using the couplings inferred from these limiting cases,
JF/t = −0.04 and JAF/t = 0.065, we studied the bond-
disordered Heisenberg model for the antisite-disordered DP
magnets. We compared the FM structure factor peak D(k)
at k = (0,0) obtained from the disordered Heisenberg model
with that from the full electronic Hamiltonian [Eq. (1)]. The
Heisenberg result for the FM structure factor D(0,0) as a
function of temperature matches very well (Fig. 2) with the
electronic Hamiltonian result for all ASD configurations. This
gives us confidence in the usefulness of the Heisenberg model
for spin dynamics.

III. SPIN DYNAMICS

A. Spin-wave excitations

In this section we use the spin rotation technique12 to
evaluate the SW modes and dynamical structure factor at zero
temperature. The effective Heisenberg model [Eq. (2)] can be
cast in a form useful for SW analysis by defining a local frame
at each site so that the spins point along the +z direction in the
ground state. We can use S̄i = UiSi , where S̄i points along its
local z axis in the classical limit. The unitary rotation matrix

0 0.05 0.1

T/t

0

0.2

0.4

0.6

0.8

1

M
2

S=0.98
S=0.86
S=0.59
S=0.17

FIG. 2. (Color online) Comparison between the evolution of the
spin-structure factor D(k) at k = (0,0) with temperature for the spin
configurations of various disordered families (from top to bottom) C1,
C2, C3, and C4 obtained from the full electronic Hamiltonian with
J̃AFS

2/t = 0.08 and the effective Heisenberg model with JF/t =
−0.04 and JAF/t = 0.065. The lattice size is 40 × 40.

Ui for site ri is given by

Ui =

∣∣∣∣∣∣∣
cos(θi) cos(ψi) cos(θi) sin(ψi) − sin(θi)

− sin(ψi) cos(ψi) 0

sin(θi) cos(ψi) sin(θi) sin(ψi) cos(θi)

∣∣∣∣∣∣∣ , (3)

where θ and ψ are the Euler rotation angles. Now one can
write the generalized Hamiltonian

Heff =
∑
{ij}

Jij S̄i · Fij S̄j , (4)

where Fij = UiU
−1
j is the overall rotation from one reference

frame to another and its elements F
αβ

ij can be obtained from
Eq. (3).

Applying the approximate Holstein-Primakoff (HP) trans-
formation in the large S limit the spin operators in the local
reference frame become S̄+

i = √
2S bi , S̄−

i = √
2S b

†
i , and

S̄z
i = S − b

†
i bi , where bi and b

†
i are the boson (magnon)

annihilation and creation operators, respectively. Retaining
only the quadratic terms in b and b†, which describe the
dynamics of the noninteracting magnons and neglect magnon
interaction terms of order 1/S, the generalized Hamiltonian
[Eq. (4)] reduces to

H =
∑
{ij}

[
Jij

(
G1

ij b
†
i bj + G2

ij bibj + H.c.
)

+ fij (b†i bi + b
†
j bj )

]
, (5)

where Jij = SJij /2, fij = −SJijF
zz
ij , and the rotation co-

efficients G
1
2 = (Fxx

ij ± F
yy

ij ) − i(Fxy

ij ∓ F
yx

ij ). The Hamilto-
nian (5) is diagonalized by the Bogoliubov transformation

bi =
∑

n

(
ui

ncn + vi∗
n c†n

)
, (6)

where c† and c are the quasiparticle operators. u and v, which
satisfy

∑
n(ui

nu
j∗
n − vi∗

n v
j
n) = δij , ensuring the bosonic charac-

ter of the quasiparticles are obtained from the Bogoliubov–de
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Gennes (BdG) equation(
Aij B∗

ij

Bij A∗
ij

) (
u

j
n

v
j
n

)
= ωn

(
δij 0

0 −δij

) (
u

j
n

v
j
n

)
, (7)

where Aij = 2Jij (G1
ij + G1∗

ji ) + εiδij , Bij = 2Jij (G2
ij + G2

ji),
and εi = 2

∑
j (fij + fji). Now the spin-spin correlation

function can be evaluated using the magnon energies and
wave functions obtained from Eq. (7), where the excitation
eigenvalues ωn � 0.

B. Dynamical structure factor

A neutron scattering experiment measures the spin-spin
correlation function in Fourier and frequency space D(k,ω)
to describe the spin dynamics of the magnetic systems on
an atomic scale. From Si = U−1

i S̄i one can express Sα
i =∑

μ U
μα∗
i S̄

μ

i , where α and μ represent the x, y, and z com-
ponents. Now applying the approximate HP transformation to
the rotated spins, one can write

S
β

i = p
β

i bi + q
β

i b
†
i + r

β

i (S − b
†
i bi), (8)

where β = +, −, and z, and p, q, and r are the rotation
coefficients (given in the Appendix).

Putting Eq. (6) in Eq. (8) the space-time spin-spin correla-
tion function can be written as

Sα
i (t)Sβ

j (0) =
∑
mn

[
A

αβ
mn
ij

c†m(t)cn(0) + B
αβ
mn
ij

cm(t)c†n(0)
]
, (9)

where the coefficients A and B are expressed in the Appendix.
In Fourier and frequency space,

Dαβ(k,ω) = 1

N

∫
dteiωt

∑
ij

eik·(ri−rj )
〈
Sα

i (t)Sβ

j (0)
〉
. (10)

The general expression for inelastic magnetic scattering is13

D(k,ω) =
∑
αβ

(
δαβ − kαkβ

k2

)
Dαβ(k,ω).

This general expression, arising from correlators of the
form 〈Sα

i (t)Sβ

j (0)〉, where the (α,β) can be x,y,z, simplifies
considerably in our case. (i) For a model as ours, Eq. (2),
where S tot

z is a constant of motion, mixed correlators of the
form 〈SxSy〉, etc., vanish13. This would leave only the “diag-
onal” correlators, 〈Sx(t)Sx(0)〉, 〈Sy(t)Sy(0)〉, and 〈Sz(t)Sz(0)〉.
(ii) Among these, the zz correlation does not contribute13 to
inelastic scattering within linear SW theory.

As a result the relevant spin-spin correlation function, for
us, becomes

D(k,ω) = 1

2
[D+,−(k,ω) + D−,+(k,ω)]

=
∑

l

W l
kδ(ω − ωl), (11)

where the coefficient of the delta function

Wl
k = 1

N

∑
ij

Bl
ij e

ik·(ri−rj )
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ω
k
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(0, 0) (π, −π) (π, 0)
k
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ω
k

C2 (correlated)

(0, 0) (π, −π) (π, 0)
k
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ω
k

C3 (correlated)

(0, 0) (π, −π) (π, 0)
k
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0.2
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0.4

ω
k

C4 (correlated)

FIG. 3. (Color online) Spin-wave spectra along the main symme-
try directions of the Brillouin zone for spin configurations C1, C2, C3,
and C4 (x = 0.01, 0.07, 0.21, and 0.41, respectively, shown in Fig. 1).
With increasing ASD from C1 to C4 the spectrum becomes broader
for a fixed value of momentum k. Here JF = −0.04, JAF = 0.065,
and the lattice size is 40 × 40.

is the SW weight with Bl
ij = 1

2 (B+−
ll
ij

+ B−+
ll
ij

) + Bzz
ll
ij

. Wl
k is

observed as the intensity of the magnon spectrum in the neutron
scattering experiment.

IV. RESULTS AND DISCUSSION

We start by presenting the results for magnons in the
configurations C1–C4 shown in Fig. 1 and then move to an
analysis of the linewidth, the estimation of domain size, and
the contrast with the uncorrelated disordered case.

A. Antiferromagnetically coupled domains

Figure 3 shows the magnon spectra of C1–C4 obtained
from the Heisenberg model with the FM and AFM couplings
discussed earlier, where the circles with different sizes are
proportional to the intensities of the corresponding magnon
modes. In a model with only FM couplings, i.e., no disorder,
we would have obtained only the red curve, ω0

k, for propagating
magnons. The striking feature in all these panels is how closely
the mean energy of the magnons follows ω0

k despite the large
degree of mislocation in C2 and C3 and maximal disorder
(x ∼ 0.4) in C4 (refer to the spatial plots in Fig. 1). The
broadening, although noticeable in C4, does not obscure the
basic dispersion.

Figure 4 quantifies the mean energy and broadening by
computing

ω̄k =
∫

D(k,ω)ωdω and

[�ωk]2 =
[ ∫

D(k,ω)ω2dω

]
− ω̄2

k,

respectively. We have shown these two quantities for the C2–
C4 structures in Fig. 4. The ω̄k have been vertically shifted for
clarity and the �ωk are superposed as error bars on these. It is
clear that even in the most disordered sample (C4), where the
mislocation x ∼ 0.4, the broadening is only a small fraction of
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()0,0( π,−π)
k

0.1

0.2
ω

k

S=0.86
S=0.59
S=0.17

FIG. 4. (Color online) Mean spin-wave energy ω̄k (dots) and the
spin-wave width �ωk (bars) for the correlated antisite configurations
C2–C4 with coupled domains. The curves are vertically shifted for
clarity.

the magnon energy. This will be an indicator when we discuss
spin waves in an uncorrelated disordered background.

B. Broadening: Impact of domain size

There are two ingredients responsible for the spectra that
one observes in Fig. 3: (i) The domain structure and (ii) the
AFM coupling across the domains. To deconvolve these effects
and have a strategy for inferring domain size from the neutron-
scattering data, we studied a situation where we set JAF = 0 in
the Heisenberg model defined on the structures C1–C4. In that
case we will have decoupled ferromagnetic domains without
any antiparallel spin orientation between them. We think this
is an interesting scheme to explore since the AFM bonds are
limited to the domain boundaries and is not equal to the number
of mislocated sites.

Figure 5 shows the overall magnon spectra for this case,
using the same convention as in Fig. 3, while Fig. 6 quantifies
the mean energy and broadening in this “decoupled domain”
case. The absence of JAF does not seem to make a significant

(0, 0) (π, −π) (π, 0)
k

0.1

0.2

0.3

0.4

ω
k

C1

(0, 0) (π, −π) (π, 0)
k

0.1

0.2

0.3

0.4

ω
k

C2

(0, 0) (π, −π) (π, 0)
k

0.1

0.2

0.3

0.4

ω
k

C3

(0, 0) (π, −π) (π, 0)
k

0.1

0.2

0.3

0.4

ω k

C4

FIG. 5. (Color online) Spin-wave spectra along the main symme-
try directions of the Brillouin zone for spin configurations C1–C4
(Fig. 1) with x = 0.01, 0.07, 0.21, and 0.41, respectively. Increasing
the fractional weakly coupled domain boundary spins from C1 to
C4 enhances the spin-wave softening near the zone boundary along
[π,0] and the spectrum also becomes broader for a given k. Here
JF = −0.04, JAF = 0, and the lattice size is 40 × 40.

(0,0) (π,−π)
k

0.1

0.2

ω
k

S=0.86
S=0.59
S=0.17

FIG. 6. (Color online) Mean spin-wave energy ω̄k (dots) and the
spin-wave width �ωk (bars) for the correlated antisite configurations
C2–C4 with decoupled domains (JAF = 0). The curves are vertically
shifted for clarity.

difference to the spectrum, as a comparison of Figs. 4 and 6
reveals. This correspondence, valid even in C4, suggests
the following: (i) Most of the spectral features arise from
the domain structure, and the associated confinement of
spin waves, rather than the AFM coupling, and (ii) we can
proceed with a much simpler modeling of the spectrum and
estimation of domain size without invoking the complicated
BdG formulation that AFM coupling requires.

Essentially, much can be learned from tight binding models
defined on appropriate structures, as does happen for FM
states, without having to invoke the “pairing” terms that arise
for AFM coupling. A modeling of the full dispersion will
require the AFM terms as well, but the inference about the
presence of domains, and an estimate of their size, need not.
We proceed with this next.

To estimate the typical domain size we need a few
assumptions: (i) The total degree of mislocation x should
be known, based on the bulk magnetization measurement.
(ii) If the overall system size in L × L [or equivalent in
a three-dimensional model], the number of mislocated sites

(0,0) (π,−π) (π,0)
k

-2

0

2

4

ω
k

10x10

(0,0) (π,−π) (π,0)
k

-2

0

2

4

ω
k

4x4

FIG. 7. Modeling of configuration C2 in terms of a domain of
size 10 × 10 (left) and of seven domains of size 4 × 4 (right). The
corresponding mean energy and broadening are shown below.
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would be xL2. (iii) If the domain size is Ld , then the number
of domains within the L × L area is Nd ∼ xL2/L2

d . In reality
domains need not have one single size, as C2–C4 indicate, but
we need the assumption to make some headway. (iv) We need
to locate these Nd domains randomly, in a nonoverlapping
manner, within the L × L system, and average the spectrum
obtained over different realizations of domain location.

This scheme, carried out for various Ld , can be compared
to the full D(k,ω) data to get a feel for the appropriate Ld . We
show the result in Fig. 7 for such a tight binding exploration
for the C2 configuration, modeled in terms of different domain
distributions that respect the same overall mislocation.

When we compare the ratio of mean broadening to
bandwidth obtained at different values of Ld (and so Nd ) with
that for the real data (Fig. 4), it turns out that Ld = 10 provides
a best estimate. It also reasonably describes the broadening at
stronger disorder, C3 and C4, where of course Nd is larger. An
analytic feel for these results can be obtained by considering
the modes of a square size Ld × Ld under open boundary
conditions.
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FIG. 8. (Color online) The top set of panels corresponds to
mislocation x = 0.07 (C2) where we compare the magnon spectrum
for an uncorrelated disordered case (above) with a correlated
disordered case (below). The left panels refer to the structural pattern,
the middle to the magnetic ground state, and the right to the magnon
response. The bottom set of panels corresponds to x = 0.21 (C3),
and the same indicators as for the top panels. Notice the remarkably
broader lineshape for the uncorrelated disordered case where it is
difficult to make much of a correspondence with the clean dispersion.

C. Contrast with uncorrelated antisites

In modeling the antisite disorder much of the earlier work in
the field assumed the defect locations to be random. We have
followed the experimentally motivated path which suggests
that the mislocated sites themselves form an ordered structure
separated from the parent (or majority) by an antiphase bound-
ary. The sources of scattering are the boundaries between these
domains rather than random point defects. Since much of
double perovskite modeling has assumed the random antisite
situation it is worth exploring the differences in the magnon
spectrum between correlated and uncorrelated antisites.

We have already seen the results for correlated disorder for
different degrees of mislocation x. We generated uncorrelated
antisite configurations with the same x by starting with ordered
configurations and randomly exchanging B and B ′ until the
desired degree of disorder is reached. These configurations
naturally do not have any structural domains. Annealing
the full electronic Hamiltonian on these configurations, call
them C1 (random), C2 (random), . . . , etc., down to low T ,
leads to the magnetic ground states. The ground states are
disordered ferromagnets but without any domain pattern. We
computed the magnon lineshape in these configurations, and,
for illustration, show the results for C2 (random) and C3
(random) above and below, respectively, with their correlated
counterparts C2 and C3 (Fig. 8).

There is a striking increase in the magnon linewidth (or
�ωk) in the uncorrelated case. There is an almost ninefold
increase in the magnon linewidth in C2 and sixfold in C3 of
the uncorrelated disordered case with respect to the correlated
disordered case.

V. CONCLUSIONS

We have studied the dynamical magnetic structure factor
of a double perovskite system, taking into account the basic
ferromagnetic ordering tendency and the defect induced local
antiferromagnetic correlations. We used structural motifs
that correspond to correlated disorder, obtained from an
annealing process using a Monte Carlo method. The magnon
excitations are calculated for an effective Heisenberg model
within a 1/S expansion using the spin-rotation technique,
with the ferromagnetic and antiferromagnetic couplings of
the Heisenberg model obtained by a fit to Tc scales of the
full electronic Hamiltonian. Our results on magnon energy
and broadening reveal the following: (i) Even at very large
disorder, the existence of a domainlike structure ensures
that the response has a strong similarity to the clean case.
(ii) Most of the spectral features arise from the domain
confinement of magnon modes and we suggest a scheme
for inferring the domain size from the spin-wave damping,
so that experimenters can make an estimate of domain size
without access to spatial information. (iii) The assumption
about random antisites, which is widely used in modeling these
materials, leads to a gross overestimate of magnon damping. In
summary, dynamical neutron scattering can be a direct probe of
the unusual ferromagnetic state in these materials and confirms
the presence of antisite domains and yields information on
their size. This would be vital in resolving the puzzle between
“local order” and “global disorder” that seems pervasive in
these materials.
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APPENDIX

The rotation coefficients are
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The structure factor coefficients are
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