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Surface critical exponents at a discontinuous bulk transition
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Systems with a bulk first-order transition can display diverging correlation lengths close to a surface. This
surface induced disordering yields a special type of surface criticality. Using extensive numerical simulations we
study surface quantities in the two-dimensional Potts model with a large number of states q which undergoes
a discontinuous bulk transition. The surface critical exponents are thereby found to depend on the value of q,
which is in contrast to prior claims that these exponents should be universal and independent of q. It follows that
surface-induced disordering at first-order transitions is characterized by exponents that depend on the details of
the model.
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I. INTRODUCTION

The presence of a surface is well known to change locally
the critical properties at an equilibrium critical point.1–5 At the
so-called ordinary transition, where only the bulk correlation
length diverges, this breaking of spatial translation invariance
yields a surface universality class characterized by a set of
critical exponents that differ from the corresponding bulk
critical exponents. This change of local critical exponents due
to the presence of a surface is not restricted to equilibrium
phase transitions, but has recently also been revealed at
a dynamic phase transition.6 In addition, enhanced surface
couplings in three-dimensional systems may result in a variety
of surface phase transitions. Whereas at the special point
both the bulk and the surface are critical, at the so-called
surface transition only the surface orders whereas the bulk
remains disordered. Finally, at the extraordinary transition the
bulk orders in the presence of an ordered surface. Additional
phenomena, for example, critical wetting, are encountered
when external fields are applied.7

A special kind of surface critical phenomenon can be
encountered in situations where the bulk undergoes a first-
order phase transition.8–13 Due to surface-induced disordering
the surface order parameter may go continuously to zero when
one approaches the bulk transition temperature from below;
i.e., one has a first-order transition in the bulk but a second-
order transition at the surface. This surface critical behavior,
which is coupled to an interface delocalization phenomenon,
is characterized by a set of surface critical exponents. This
general scenario has been verified for a range of systems, for
example, an effective interface model,14 face-centered-cubic
Ising antiferromagnets,15,16 body-centered-cubic alloys,17,18

or two-dimensional Potts models undergoing a discontinuous
bulk phase transition.19,20

Related surface (or, more appropriately, interface) phenom-
ena are also encountered in nonequilibrium situations where
magnetic systems are sheared or magnetic blocks are moved
passed each other, thereby giving rise to magnetic friction.21–26

When the involved bulk systems have an equilibrium first-
order transition, as is the case for two-dimensional and
three-dimensional Potts systems with a large number of
states, nonequilibrium surface transitions of different types
(continuous, discontinuous, and tricritical) emerge.23,26

Early on, the values of the different local exponents at
surface-induced disordering were determined within Landau
theory.9–11 Surface exponents were also determined in an
effective interface model that incorporates fluctuations by
expanding around the mean-field solution.14 However, until
now only very few attempts have been made to compute for
specific systems the surface critical exponents at a discontin-
uous bulk transition. For instance, in numerical simulations of
both face-centered-cubic16 and body-centered-cubic18 alloys
nonuniversal exponents were observed at surface-induced
disordering. In a study20 of the two-dimensional Potts model,
which undergoes a first-order phase transition when the
number of states q is larger than 4, the surface exponents were
computed exactly in the q −→ ∞ limit. In addition, systems
with q = 7, 8, or 9 states were studied numerically for small
stripes with mixed boundary conditions using Density Matrix
Renormalization Group (DMRG). After the data obtained
for stripes with width less than 40 rows was extrapolated
to infinity, it was concluded that the corresponding surface
exponents were universal and identical to those of the q −→
∞ case.

In this paper we are revisiting surface-induced disordering
in the two-dimensional Potts model. Using extensive numer-
ical simulations, we study large systems with up to q = 100
states. Our numerical data for a variety of quantities and
boundary conditions show in a consistent way that the surface
exponents at the bulk first-order transition depend on the
number of states. Therefore, while the general scenario of
surface-induced disordering is correct, the phenomenon does
not yield universal surface exponents, but instead the values of
these exponents are nonuniversal and depend on microscopic
details like the number of states.

Our paper is organized in the following way. We introduce
the model and the quantities of interest in the next section,
before briefly reviewing in Sec. III some of the general results
obtained for surface-induced disordering, as far as they are
relevant for our study. In Sec. IV we present our numerical
results and obtain the values of different surface exponents.
As we show, the different quantities yield a consistent picture
indicating that the surface exponents at the first-order transition
in the two-dimensional Potts model depend on the number of
states and are therefore not universal. Finally, in Sec. IV we
discuss our results and conclude.
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II. MODEL AND QUANTITIES

In the following we study the ordering of the two-
dimensional Potts model in the presence of a surface, char-
acterized by the Hamiltonian

H = −Jb

∑
bulk

δ(sx,y − sx ′,y ′ ) − Js

∑
surface

δ(sx,ys
− sx ′,ys

), (1)

where δ(· · · ) is the Kronecker δ, with δ(x) = 1 if x = 0 and
δ(x) = 0 otherwise. In this Hamiltonian the first term describes
the interaction between nearest-neighbor Potts spins where at
least one of them does not belong to the surface, whereas the
second term is the interaction between nearest-neighbor spins
that are both located at the surface row ys . The ferromagnetic
bulk and surface coupling constants are given by Jb > 0 and
Js > 0. Throughout this study we only consider the case Js =
Jb = J . Temperatures are measured in units such that J/kB =
1, where kB is the Boltzmann constant.

Our focus is on cases where the bulk transition is of first
order.27 For that reason we consider at every lattice site (x,y) a
Potts spin sx,y that can take on q values, sx,y = 1, . . . ,q, with
q > 4. We thereby probe a wide range of q values, namely,
q = 5, 9, 16, and 100.

We consider systems composed of L × M spins, where
the values of L and M used in our study are discussed
below. We always consider periodic boundary conditions in
the x direction. Most of our quantities are obtained for free
boundaries in the y direction, yielding systems with two
surfaces located at y = 1 and y = M . In order to make
a connection with the data discussed in Ref. 20, we also
investigate some systems with symmetry-breaking boundary
conditions where the spins along one of the surfaces are at a
fixed common value.

Due to the presence of surfaces, local quantities depend
on the row index y (Refs. 1–5). Our quantities of interest
include the local magnetization, m(y), the surface excess
magnetization, ms , and the spin-spin correlations along and
perpendicular to the surface, Css(x) and Csb(y), respectively,
where the index s (b) indicates a surface (bulk) spin.

The magnetization of row y is given by

m(y) = (qNm(y)/L − 1)/(q − 1), (2)

where Nm(y) is the average number of majority spins in that
row: Nm(y) = max(N1(y), . . . ,Nq(y)), with Nk(y) being the
average number of spins in state k in row y. The surface
magnetization m1 is given by m1 = m(1) (which equals
m(M) in the case of free boundary conditions). From the
magnetization profile we can derive the so-called surface
excess magnetization associated with the surface located at
y = 1:

ms =
∑
y=1

[mb − m(y)], (3)

where mb is the bulk magnetization. When approach-
ing the q-dependent bulk transition temperature Tc(q) =
1/ ln(1 + √

q) from below, both the surface magnetiza-
tion and the surface excess magnetization are displaying
close to Tc(q) an algebraic behavior as a function of

temperature:9,11

m1 ∼ [(Tc(q) − T )/Tc(q)]β1 , (4)

ms ∼ [(Tc(q) − T )/Tc(q)]βs , (5)

with the critical exponents β1 and βs , respectively.
Surface induced disordering is an anisotropic critical

phenomenon, governed by two different correlation length
exponents ν‖ and ν⊥ for correlations parallel and perpendicular
to the surface.10 The corresponding temperature-dependent
correlation lengths ξ‖ and ξ⊥ can be obtained from the
surface-surface and surface-bulk correlators:

Css(x) = q

q − 1

〈
δ(s1,1 − sx,1) − 1

q

〉
− m2

1

∼ exp(−x/ξ‖), (6)

Csb(y) = q

q − 1

〈
δ(s1,1 − s1,y) − 1

q

〉
− m1m(y)

∼ exp(−y/ξ⊥), (7)

with

ξ‖ ∼ [(Tc(q) − T )/Tc(q)]−ν‖ , (8)

ξ⊥ ∼ [(Tc(q) − T )/Tc(q)]−ν⊥ , (9)

close to Tc(q).
Our aim in the following is to obtain values for the critical

exponents β1, βs , ν‖, and ν⊥ as a function of the number of
states q. In order to do so we combine two complementary
approaches. In the first approach we determine our quantities
as a function of temperature and calculate from these data
effective exponents that yield the critical exponents in the limit
T −→ Tc(q) (Refs. 5 and 28). For example, for the surface
magnetization m1 we obtain the effective surface exponent via
the logarithmic derivative

β1,eff(t) = d ln m1

d ln t
, (10)

with the reduced temperature t = (Tc(q) − T )/Tc(q). We then
have

β1 = lim
t−→0

β1,eff(t). (11)

For this approach only data not affected by finite-size effects
should be used, which requires the comparison of systems
of different sizes. For that reason we study large ranges
of L and M , ranging from L = 80 to L = 1280 and from
M = 40 to M = 320. In the second approach we try to
use finite-size effects to our advantage. Following Ref. 20,
we consider the surface magnetization at the exactly known
bulk transition temperature Tc(q), using symmetry-breaking
boundary conditions. For a system with L = ∞ and width M ,
the surface magnetization should then depend algebraically on
the scaling dimension x1 = β1/ν⊥, i.e., m1 ∼ M−x1 . In order
to mimic a stripe of infinite length we study systems with L up
to L = 64 000. As a drawback, only stripes with rather small
widths M can be simulated. Still, comparing our estimates
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for the scaling dimension with the independently determined
values of β1 and ν⊥ using temperature-dependent quantities
provides us with an important check whether our different
data sets are consistent.

III. SCALING IN THE PRESENCE OF
SURFACE-INDUCED DISORDERING

When the bulk undergoes a continuous phase transition,
as is, for example, the case for the Ising model, then the
surface critical exponents and the relationship between these
exponents can be derived from the scaling form of the singular
part of the surface free energy.1–3 As shown in Ref. 10 a
similar phenomenology holds in the case of surface-induced
disordering. Indeed, as a function of the two scaling fields t

(the reduced temperature) and h1 (a surface field), the singular
part of the surface free energy may be written as10

fs = |t |2−αs �(|t |−�1h1), (12)

with the two independent surface exponents αs and �1. All
surface critical exponents can then be expressed through
these two independent exponents. Specifically for some of
the exponents at the center of our study one obtains the
following:10

β1 = 2 − αs − �1, (13)

βs = 1 − αs, (14)

(d − 1)ν‖ = 2 − αs. (15)

Combining Eqs. (14) and (15) yields for two-dimensional
systems with d = 2 the relationship

ν‖ = 1 + βs, (16)

which provides an additional check for the consistency of our
data.

IV. RESULTS

Due to the surface-induced disordering, bulk and surfaces
behave remarkably differently when approaching the first-
order bulk transition temperature: whereas the bulk magne-
tization displays a discontinuous jump at that temperature,
the surface magnetization vanishes continuously. This is
illustrated in Fig. 1 for two different numbers of states q

through the magnetization profiles close to a surface of systems
composed of 640 × 320 spins.

Data like those shown in Fig. 1 allow us to obtain the
temperature dependence of both the surface magnetization
and the surface excess magnetization (3). From the logarith-
mic derivative with respect to the reduced temperature t =
(Tc(q) − T )/Tc(q), see Eq. (10), we obtain effective exponents
that in the limit t −→ 0 yield the values of the critical
exponents. The result of this procedure is shown in Fig. 2
for (a) the surface magnetization and (b) the surface excess
magnetization. As explained in Sec. II, the use of temperature-
dependent effective exponents is only meaningful when data
for the semi-infinite system are studied. For that reason we very
carefully analyzed finite-size effects by comparing data for a
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FIG. 1. (Color online) Layer magnetization density as a function
of layer index y for (a) q = 9 states and (b) q = 100 states. The
layer y = 1 is the surface layer. Approaching the bulk transition
temperature from below, the surface magnetization decreases contin-
uously, whereas deep inside the bulk the local magnetization displays
a discontinuous jump. The highest temperature included is just above
the corresponding bulk transition temperature. The data have been
obtained for a system composed of 640 × 320 spins. Error bars, which
result from averaging over typically ten independent runs, are of the
order of the thickness of the lines.

range of different system sizes. Only data that were identical
for at least two different system sizes have been retained. The
curves shown in Fig. 2 for the different values of q are therefore
free of any finite-size effects. We first note that the effective
exponents do not display a plateau but instead keep changing
as a function of the reduced temperature. This is similar to
what one observes in situations where the bulk undergoes
a second-order phase transition.28 Extrapolating the data to
t = 0, we obtain the values for the critical exponents listed in
Table I. We note that the exponent βs of the surface excess
magnetization is negative, in agreement with a diverging
disordered region at the bulk transition temperature.

As our systems are rather large, we manage to obtain data
not affected by finite-size effects up to very close to the phase
transition point. Extrapolating the data to the phase transition
point itself using different functions yields slightly different
values for the critical exponents. Our error bars in Table I
are conservative and take these differences in the extrapolated
values into account.

The results shown in Fig. 2 and Table I indicate that the
surface exponents depend on the number of states q and that
their values approach the exactly known value for q −→ ∞
(Ref. 20) when q increases. This scenario is different from
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FIG. 2. (Color online) (a) Effective exponent of the surface mag-
netization and (b) effective exponent of the surface excess magne-
tization as a function of the reduced temperature [Tc(q) − T ]/Tc(q)
for systems with different numbers of states q. Here, Tc(q) is the
bulk transition temperature for the model with q states. The inset in
panel (b) shows a blow-up close to the transition temperature. The
values of the exponents obtained from extrapolating to the transition
temperature are given in Table I. Only data not affected by finite-size
effects are shown. Error bars are of the order of the symbol sizes in
the main figures.

that discussed in Ref. 20 where it was claimed that the
surface critical exponents are independent of q and identical
to the q −→ ∞ case. As we discuss in the following, our
data show in a consistent way that the Potts surface critical
exponents at a first-order bulk transition are indeed not
universal.

In order to capture the expected anisotropy of the crit-
ical surface we study the surface-surface and surface-bulk
correlations [see Eqs. (6) and (7)]. As shown in Fig. 3 for
the example of q = 9 states these spatial correlations, after
some short-distance regime, rapidly display an exponential

TABLE I. Surface critical exponents for two-dimensional Potts
models with q states that have a first-order bulk transition.

q β1 βs ν‖ ν⊥

5 0.64(2) −0.63(3) 0.42(3) 0.56(5)
9 0.79(1) −0.54(2) 0.53(4) 0.46(2)
16 0.90(2) −0.46(3) 0.55(3) 0.43(2)
100 0.95(2) −0.40(2) 0.59(2) 0.38(2)
∞20 1 2/3 1/3
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FIG. 3. (Color online) (a) Surface-surface and (b) surface-bulk
correlation for the q = 9 case and different temperatures below the
bulk transition temperature. Both quantities display an exponential
decay characterized by a typical temperature-dependent length (see
Fig. 4). The data have been obtained for a system with 640 × 320
spins after averaging over at least 50 independent runs. Error bars are
smaller than the size of the symbols.

dependence on the distance. The corresponding correlation
lengths, see Eqs. (6)–(9), increase with temperature, as shown
in Fig. 4 for the q = 9 and q = 100 cases. This figure also
reveals that we are indeed dealing with strongly anisotropic

-5 -4 -3 -2
ln((Tc(q)-T)/Tc(q))

-1

0

1

2

ln
 ξ

FIG. 4. (Color online) Temperature-dependent correlation
lengths as obtained from the spatial correlation functions (see Fig. 3
for examples). The black (red) lines are for the q = 9 (q = 100)
system, with solid (open) symbols indicating the correlation length
parallel (perpendicular) to the surface. On approaching the bulk
transition temperature the correlation lengths display an algebraic
behavior. The values of the correlation length exponents obtained
from the slopes in this figure are collected in Table I.
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critical systems, governed by direction-dependent correlation
length critical exponents; see Table I for our estimates for these
exponents.

Table I provides strong indications that the surface critical
exponents at the first-order phase transition depend on the
number of states. Further support comes from the fact that
we have the possibility to do some consistency checks. We
first notice from Eq. (16) that the values of ν‖ and βs should
differ by one: ν‖ − βs = 1. From our estimates in Table I we
obtain the following values for this difference: 1.05 ± 0.06
for q = 5, 1.07 ± 0.06 for q = 9, 1.01 ± 0.06 for q = 16, and
0.99 ± 0.04 for q = 100. Therefore the difference between
these two exponents is marginally compatible with 1 for the
smaller values of q and in full agreement with the scaling
relation (16) for the larger values of q.

For a second consistency check we can try to exploit finite-
size effects in order to obtain an estimate of the ratio x =
β1/ν⊥. We thereby follow Ref. 20 and consider at the bulk
transition temperature Tc(q) systems with mixed boundary
conditions where at one edge we keep all the spins at a common
value, whereas the other edge is a free edge. For the q = 7,
8, and 9 cases Iglói and Carlon20 used the DMRG method
in order to calculate the surface magnetization as a function
of the width M of the system and obtained estimates for the
scaling dimension x = β1/ν⊥ for the ∞ × M system, with M

going up to 40. In our Monte Carlo simulations we can only
simulate finite L. Going up to L = 64 000 sites, we carefully
monitor finite-size effects in that direction. Figure 5(a) shows
the resulting data for the surface magnetization as a function
of the stripe width M for L = 64 000.

We can obtain an effective exponent xeff from these data
through the following logarithmic derivative:

xeff(M) = −d ln m1

d ln M
. (17)

Comparing effective exponents for different values of L,
only those data not affected by finite-size effects have been
included in Fig. 5(b). We also include as stars the data
obtained in Ref. 20 for the q = 9 case using DMRG (see
Table IV in that paper). We note that for q = 100 we are
only able to achieve data representative for L = ∞ for small
values of M . This figure shows as bars on the y axis the
estimates for the scaling dimension x that result when using
the values for β1 and ν⊥ given in Table I. The consistency of
these estimates with the effective exponents lends additional
support to a q dependence of the surface critical exponents at
surface-induced disordering.

V. DISCUSSION AND CONCLUSION

Systems undergoing discontinuous bulk transitions may
exhibit diverging correlation lengths at surfaces due to surface
induced disordering. While a variety of theoretical studies
have verified this general scenario, only very few attempts
have been made to determine directly surface critical expo-
nents through numerical simulations. The results have been
somewhat contradictory. Whereas DMRG results for stripes
of the Potts system20 seemed to indicate a high degree of
universality, with surface exponents that do not depend on
the number of states q, simulations of face-centered-cubic16
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FIG. 5. (Color online) (a) Surface magnetization at the bulk
transition temperature for stripes of width M where at one of the
surfaces we impose fixed boundary conditions. The different curves
correspond to different numbers of states q. The length of the system
is L = 64 000. (b) Effective scaling dimension obtained from the data
shown in panel (a). Only data not affected by finite-size effects are
displayed. The bars on the y axis indicate the values obtained from
Table I when assuming the scaling relation x = β1/ν⊥. The stars are
the data given in Table IV of Ref. 20 for the q = 9 case using DMRG.

and body-centered-cubic18 alloys found nonuniversal surface
exponents.

In this work we have revisited the two-dimensional q-
state Potts model through extensive numerical simulations.
Focusing on systems with q = 5, 9, 16, and 100 states, we
measured the time-dependent magnetization profiles as well
as surface-surface and surface-bulk correlation functions. The
extracted values of surface critical exponents indicate that the
exponents are not universal but depend on the number of states
q (see Table I). We verified that our data fulfill a scaling relation
connecting the exponent of the surface excess magnetization
with the correlation length exponent for correlations parallel
to the surface. In addition, data obtained at the bulk transition
temperature for systems with mixed boundary conditions are
found to yield effective scaling dimensions that are compatible
with the exponents obtained from the temperature-dependent
quantities. It is this consistency of our data that provides a
strong indication that the values of surface critical exponents
at the first-order transition of the two-dimensional Potts model
depend on the number of states q.

Still, a word of caution is in order, as it is notoriously
difficult to make definitive statements for critical systems
based solely on numerical results. Thus it is possible that within
the accuracy of our numerical data the effective exponents
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satisfy scaling laws due to the form of the (unknown)
corrections to scaling while at the same time the extrapolation
of the effective exponents yields inaccurate values for the
critical exponents. This type of behavior has been seen, for
example, in the interfacial adsorption of q-state Potts models
where the interface critical exponents are universal,29 whereas
this universality is difficult to see in simulations due to subtle
finite-size effects.30

Our results, together with those obtained in Refs. 16
and 18 for the three-dimensional alloys, indicate that the

local critical exponents at surface-induced disordering are not
yet completely understood. New insights could come from
field-theoretical treatments along lines similar to those used
to study surface criticality at a continuous phase transition.2

We hope that our work will lead to future studies in that
direction.
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