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Extended reciprocal space observation of artificial spin ice with x-ray resonant magnetic scattering
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Soft x-ray resonant magnetic scattering is an element-sensitive technique that enables the characterization of the
magnetic properties of a wide variety of systems. Here we apply this technique to study lithographically produced
artificial spin ice, a particular class of magnetically frustrated systems comprising arrays of nanomagnets. Using
a CCD detector we can access a large fraction of the reciprocal space at once, allowing us to easily distinguish
the signatures of the magnetic ground-state ordering. Comparing the dichroic signal at the position of the Bragg
peaks with model calculations based on the kinematical theory of x-ray diffraction, we are able to determine the
number of reversed moments as a function of applied magnetic field for each of the two sublattices. This study
demonstrates the benefit of having direct access to a significant fraction of the reciprocal space, and opens the
way towards more sophisticated x-ray based experiments on artificial spin ice such as scattering of coherent x-ray
beams to explore the dynamics of thermally activated systems.
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I. INTRODUCTION

Artificial spin ice is a class of metamaterials produced
by electron beam lithography,1,2 which consists of dipolar-
coupled nanomagnets placed at the sites of a square or
kagome lattice. The configuration of the magnetic moments
mimics the spin arrangements of the magnetically frustrated
rare-earth pyrochlore paramagnets (spin ice).3 In the past
decade artificial spin ice has attracted an increasing amount
of interest due to a wide range of fascinating behavior arising
from the geometrical frustration.1,4–9 Experimentally, these
have been investigated primarily using real-space microscopy
techniques. For example, magnetic force microscopy and
Lorentz microscopy have been employed in pioneering studies
to observe the magnetically frustrated nature of artificial
spin ice1,4 and later the ground-state ordering in as-grown
samples.5,6 The presence of magnetic charges, referred to as
emergent magnetic monopoles, and their propagation have
been observed in artificial kagome ice using photoelectron
emission spectroscopy7 and in artificial square ice using
Lorentz microscopy.8 More recently, the nature of their motion
has been clarified by Zeissler et al. in a kagome ice using
scanning transmission x-ray microscopy.9

So far, ordering phenomena in artificial spin ice has been
investigated mostly on systems exhibiting static moments at
room temperature. Current research is moving, however, to-
wards thermally activated systems,10–12 which can be realized
by reducing the size of the nanomagnets. Experimentally, this
poses a problem, since the required sizes approach the limit of
the spatial resolution achievable with real-space microscopy
techniques that provide simultaneously the required time
resolution. It is in the context of these experimental limitations

that scattering techniques become of interest in order to
further push towards a higher combined spatial and temporal
resolution. It is this promise to follow dynamics in artificial
spin ice at faster time scales which is expected to compensate
for the less intuitive interpretation of the obtained experimental
data. We note that two-dimensional arrays of nanomagnets
with the nanomagnet dimensions of tens to hundreds of
nanometers are particularly well suited for x-ray scattering
experiments in terms of intensity and surface sensitivities.
This is particularly true for the soft x-ray energy range, which
covers the magnetically dichroic strong L2,3 absorption edges
of the transition metals. Indeed, following the discovery of
resonant magnetic x-ray scattering13–16 and x-ray magnetic
circular dichroism (XMCD),17–19 soft x-ray resonant magnetic
scattering (SXRMS) has proven to be a powerful technique
for the detailed investigation of a wide variety of magnetic
materials.20–23

Morgan et al.24 have performed a SXRMS study on an
artificial spin ice. Using a photodiode they recorded the
intensity of the specular reflection and off-specular Bragg
peaks of an artificial square ice while stepping through a
hysteresis loop. From the data obtained they could gain
insight into the magnetization reversal processes of the two
interacting magnetic sublattices. In the present work, we have
also applied SXRMS to investigate the magnetic behavior
of an artificial square ice but, in order to obtain a more
detailed insight into the field dependence of different Bragg
peaks, we used a two-dimensional CCD detector. This allowed
us to unambiguously identify Bragg peaks arising uniquely
from the magnetic long range order in the as-grown state of
the artificial square ice. To interpret the experimental data,
we have developed a simple code which is based on the
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kinematical theory of x-ray diffraction. By comparing the
simulated scattering patterns to the observed field dependence
of the magnetic contribution to the first order Bragg peaks, we
are able to quantify the fraction of nanomagnets with reversed
magnetization for each of the two sublattices.

II. EXPERIMENTAL METHODS

A. Sample preparation

The artificial square ice samples were fabricated using
electron-beam lithography.7 A 70 nm thick polymethyl-
methacrylate (PMMA) layer is spin coated on a Si(100)
substrate and patterned using an electron beam writer. After
development a 20 nm thick Permalloy (Ni80Fe20) layer is
deposited by thermal evaporation and capped with a 5 nm
thick aluminium layer to prevent oxidation. Unwanted metal
and resist are then removed by lift-off. The nanomagnet
length and width are 230 nm and 80 nm, respectively, and
the lattice parameter is a = 310 nm. The scanning electron
microscopy image in Fig. 1(a) shows a representative region
of the 2 × 2 mm2 array.

B. Soft x-ray magnetic scattering

The SXRMS measurements were performed at the SEX-
TANTS beamline of Synchrotron SOLEIL using the RESOXS
diffractometer,25,26 which is equipped with two pairs of elec-
tromagnets to apply magnetic fields of up to 0.2 T in arbitrary
directions parallel to the sample surface. To obtain high
sensitivity to the in-plane magnetization of the nanomagnet
array, a reflection geometry with an incident angle of θ = 8◦
was used [Fig. 1(b)]. The diffraction patterns were acquired
with a Princeton charge-coupled device (CCD) camera. In
this geometry the CCD detector’s 2048 × 2048 pixels, each
with a size of 13.5 × 13.5 μm2, cover a momentum transfer
range of about �qx = ±2 × 10−1 nm−1 and �qz = ±1 nm−1.
Alignment of the CCD detector was performed in two steps.
First, the position of the specular reflection was determined
using a photodiode, and then the center of the CCD detector
was placed at that position with a beam stop protecting the
detector against damage from the intense specular beam. While
pure charge scattering is obtained for off-resonant photon
energies, additional magnetic scattering contrast is observed
by tuning the photon energy to the magnetically dichroic Fe
L3 absorption edge (706.8 eV). The dichroic contrast of a
Bragg peak can then be extracted by calculating the difference
between the intensities recorded with right (Iright) and left (Ileft)
circularly polarized x rays:

Idic = Iright − Ileft. (1)

For each polarization state, the intensity of the scattered beam,
in the elastic regime, is related to the magnitude squared of the
total atomic scattering factor:27

I (q) ∝
∣∣∣∣
∑

j

fj (q,E) exp(iq · rj )

∣∣∣∣
2

, (2)

where fj (q,E) is the scattering factor of an atom located at po-
sition rj , E the incident photon energy, and q is the momentum
transfer defined as q = k′ − k, with k and k′ the wave vector of
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FIG. 1. (Color online) (a) SEM picture of part of the 2 × 2 mm2

array of artificial square ice built from Permalloy nanomagnets
of 230 nm × 80 nm × 20 nm (length × width × thickness). Inset:
Illustration of the cylindrical approximation used to analytically
represent the individual nanomagnets. The cylinders have height h

and elliptical cross section with semiaxes a and b. (b) Experimental
scattering setup. The sample surface is parallel to the x-y plane, with
the direction of the incident x-ray beam and applied magnetic field,
H , along y. The angle of incidence is θ = 8◦.

the incident and scattered beam, respectively. In the following
analysis the q dependence of the atomic scattering factor can
be neglected, since only small momentum transfer values can
be reached in the soft x-ray photon energy range.

For off-resonant photon energies, the atomic scattering
factor is given by the Thomson scattering factor f0, which
takes the value of the total number of electrons (Z) in the limit
of negligible momentum transfer. It provides only structural
information with no magnetic contribution. For photon ener-
gies close to an absorption edge, resonant scattering processes
become relevant, and to a first approximation fj (E) can be
expressed as15,16

fj (E) ≈ [Z + fc(E)](ε̂′∗ · ε̂) − ifm(E)(ε̂′∗ × ε̂) · m̂j , (3)

where ε̂ and ε̂′ are the polarization vectors of the incident and
scattered photons, respectively, and m̂j is the unit vector of
the magnetic moment at the j th site. The first resonant term
[fc(E)] is the resonant modification of the charge scattering
term, while the second term [fm(E)] depends linearly on
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the magnetization vector and yields the sensitivity to the
local magnetization. Due to the linear dependence on the
magnetization vector, the simplest way to extract the magnetic
contribution to the recorded scattering pattern is to determine
the difference in intensity for left and right circular polarization
of the incoming beam (Iright − Ileft).

In the following, we will refer to Bragg peaks with
h2 + l2 = 1 as first order Bragg peaks and with h2 + l2 = 2
as second order Bragg peaks, with h and l being their Miller
indices in reciprocal space.

III. RESULTS AND DISCUSSION

A. Ordering in as-grown artificial square ice

SXRMS patterns recorded on an artificial square ice in the
as-grown state are shown in Fig. 2. As illustrated in Fig. 2(a),
the nanomagnet array is oriented such that the incident beam is
parallel to the diagonal of the square lattice, which yields equal
sensitivity to the magnetization of both sets of nanomagnets
indicated in white and gray (apart from a slight misalignment;
see below). Note that this was not the case in the study of
Morgan et al. in Ref. 24, who chose to have one of the sets of
nanomagnets oriented parallel to the incident beam.

The pattern recorded for an off-resonant photon energy
(690 eV) is shown in Fig. 2(b), which results from pure charge
scattering of the nanomagnets, since there is no magnetic
contribution to the nonresonant atomic form factors. In order
to understand the position of the Bragg peaks, one needs to
consider the structure of the artificial square ice illustrated
in Fig. 2(a). The unit cell contains two sets of nanomagnets
with different orientations (indicated in white and gray) and
the array is reproduced with the help of the two indicated
lattice vectors of equal length a. Correspondingly, the Bragg
peaks form a square lattice with periodicity 2π/a. The first
order peaks of this lattice are connected by the dashed lines in
Fig. 2(b). Note that these lines do not form a square, but rather
resemble a compressed parallelogram due to the distortion
intrinsic to the reflection geometry. Furthermore, the Bragg
peaks are situated on arcs, which is a consequence of the
projection of the Ewald sphere on the flat detector plane.
Finally, we note that the arcs are slightly tilted due to an
imperfect alignment of sample and CCD detector with respect
to the incident and scattered beam.

By tuning the photon energy to the Fe L3 edge (706.8 eV),
the scattering process also becomes sensitive to the magneti-
zation of the nanomagnets and we obtain the SXRMS pattern
shown in Fig. 2(d). Comparing this with the pattern in Fig. 2(b),
one finds that additional Bragg peaks are present at resonance
(highlighted in red). These additional Bragg peaks are of pure
magnetic origin and are located in-between the positions of
the already observed nonresonant Bragg peaks. The magnetic
Bragg peaks are a signature of long range ground-state
ordering of the moments of the nanomagnets as previously
observed in comparable as-grown samples.5,6 As illustrated
in Fig. 2(c), this ground state consists of an antiferromagnetic
ordering of the magnetic moments, which forms alternating
rows of nanomagnets with opposite magnetization directions.
The unit cell of this magnetic ground state, indicated in
Fig. 2(c), contains four nanomagnets (while there are two in
the structural unit cell). The orthogonal lattice vectors are of
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FIG. 2. (Color online) Scattering from as-grown artificial square
ice. (a) Schematic of the sample geometry. The dashed box indicates
the structural unit cell, containing two nanomagnets with different
orientations. The corresponding two sublattices S1 and S2 are
highlighted in gray and white, respectively. The red arrows represent
the lattice vectors and the red dots indicate the square lattice, which
has periodicity a. (b) Experimental scattering pattern recorded off
resonance (690 eV), containing structural information only. The first
order Bragg peaks are indicated with a dashed box. The position of the
specular reflection, which has been suppressed using a beam stop, is
indicated with a dashed ellipse. (c) Schematic of the magnetic ground
state, consisting of alternating rows of nanomagnets (highlighted in
gray and white) with magnetic moments pointing towards opposite
directions. The magnetic unit cell is indicated with the dashed box. (d)
Experimental scattering pattern recorded at the Fe L3 edge (706.8 eV),
including both structural and magnetic information. The Bragg peaks
highlighted in red are of pure magnetic origin and are a signature of
long range ground-state ordering of the nanomagnet moments. The
dashed box indicates the same first order Bragg peaks as in (b). (e)
Schematic of a state at remanence following saturation. (f) Scattering
pattern recorded at the Fe L3 edge (706.8 eV) at remanence (zero
field) after applying a magnetic field of 0.1 T.

equal length a
√

2 and rotated by 45◦ with respect to the ones
of the structural lattice. The magnetic Bragg peaks thus have
a periodicity of 2π/(a

√
2) and are placed exactly halfway

between two structural ones.

B. Magnetization reversal

We apply a magnetic field along the diagonal of the square
ice (y axis in our setup; see Fig. 1), i.e., at an angle of
±45◦ with respect to the long axis of the nanomagnets,
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which will cause the magnetic moments to rotate away
from the nanomagnet easy axis. Therefore, we performed all
scattering measurements at remanence in order to ensure that
the moments are oriented parallel to the nanomagnet long
axis, which facilitates interpretation of the data. Saturating
the sample’s magnetization along the y axis (Hext > 800 Oe)
destroys the magnetic configuration of the as-grown state and,
on the removal of the field, the magnetization direction of all
nanomagnets remains oriented towards the direction of the
previously applied external field as illustrated in Fig. 2(e). The
magnetic and structural unit cells are now identical and
the scattering pattern exhibits only Bragg peaks at the
positions corresponding to the structural lattice as demon-
strated by the on-resonance recorded pattern shown in
Fig. 2(f).

In order to extract the magnetic contribution to each Bragg
peak, we record scattering patterns with left and right circularly
polarized light and then compute the dichroic contrast as
defined in Eq. (1). The dichroic contrast characterizing the
remanent state after magnetic saturation along the y axis is
shown in Fig. 3(a). Since all magnetic moments point towards
the beam propagation direction, the observed dichroic contrast
corresponds to its largest positive value, with all peaks in
blue. Accordingly, the lowest negative value is observed after
saturation along the negative y direction, so that all peaks
would appear red (not shown).

Applying a reverse magnetic field following saturation
leads to changes in the dichroic scattering pattern, with
particularly strong changes occurring for applied field values
around the coercive field where the magnetization reversal
takes place. As already observed in Ref. 24, the dichroic
contrast does not change equally for all Bragg peaks, but
can differ from peak to peak. It is via these differences that
a detailed insight can be obtained in the reversal process. We
demonstrate this in Fig. 3 by showing the hysteretic behavior of
the dichroic intensity of four Bragg peaks [see Figs. 3(a), 3(c)
and 3(d)]: the two first order peaks P1 = (10) and P2 = (01)
and the two second order peaks P3 = (11̄) and P4 = (1̄1),
respectively. The hysteresis curves of the first order peaks
[Fig. 3(c)] reveal a small difference in their respective coercive
fields of HP1 = 475 Oe and HP2 = 455 Oe. The behavior of the
two second order peaks P3 and P4 [see Fig. 3(d)] are identical
within the experimental uncertainty with a coercive field value
of HP3 = HP4 = 468 Oe close to the average of the coercive
fields of two first order peaks.

The observation of different coercive fields for the first order
peaks (P1 and P2) can be understood by assuming a slight
misalignment between the sample axis and the direction of the
applied magnetic field with φ1 > φ2 as illustrated in Fig. 3(b).
Such a misalignment will increase the field effectively applied
along the long axis of the nanomagnets for the sublattice S2

(in white), while for the case of the sublattice S1 (in gray) it is
decreased. Consequently, the magnetic moments on sublattice
S2 will tend to switch at lower external field values than
the moments on S1, so giving the small difference in the
apparent coercive field. From the coercive field values we
can estimate the angle of misalignment, which is smaller than
1.5◦. The observation of different coercive fields for the two
sublattices, as determined from the first order Bragg peaks (P1

and P2), is in line with the absence of such a difference in
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FIG. 3. (Color online) XMCD contrast at different Bragg peaks
at remanence as a function of applied field. (a) Scattering pattern with
the peaks considered, labeled P1 to P4 (SP indicates the specular
reflection). (b) Schematic of the sample misalignment with respect
to the applied field direction. The angle between the field direction
and the nanomagnet long axis is bigger in the sublattice S1 (indicated
with ϕ1) than in S2 (indicated with ϕ2). (c) XMCD contrast at the
first order peaks P1 and P2. The two loops have different coercive
fields, HP1 = 475 Oe and HP2 = 455 Oe, respectively. (d) XMCD
contrast at the second order peaks P3 and P4. Here, the two curves
are identical within the experimental error and the coercive field is
HP3 = HP4 = 468 Oe.

the hysteresis curves of the two second order Bragg peaks (P3

and P4), which sample both sublattices equally. Consequently,
the field dependence of the dichroic contrast for P3 and
P4 is directly proportional to the total magnetization of the
array.
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C. Determination of the nanomagnet contributions to the
remanent magnetization

The dichroic contrast of the Bragg peaks gives statistical
information about the different configurations of the magnetic
moments and, in this section, we show how one can derive
separately the remanent magnetization Mr,1 and Mr,2 of the
two sublattices S1 and S2 from the intensities of the Bragg
peaks P1 to P4 shown in Fig. 3(a). The procedure consists
of numerically computing the scattering patterns from test
configurations of the nanomagnet moments, characterized by
values of Mr,1 and Mr,2, followed by a comparison of the
simulations with the experimental data and varying Mr,1 and
Mr,2 until the best agreement is reached. This first requires
the determination of the form factor of the nanomagnets and,
once this is known, the total remanent magnetization Mr is
computed from the second order scattering peaks. Finally, the
contributions to Mr from each sublattice are derived from the
different dichroic intensities of the first order peaks.

In order to numerically simulate the SXRMS pattern of
our square ice arrays, the starting point is Eq. (2), which we
evaluate following the approach presented in Ref. 28. While
this approach was originally developed for scattering in the
plane of incidence, we have adapted it to the present case of
scattering in the full qx,qz space. Since we are interested in
the scattering from nanomagnets rather than from individual
atoms, we replace in Eq. (2) the atomic form factor fj (E) with
the form factor of the nanomagnets Fn(q), which accounts for
the scattering response of the entire nanomagnet. By summing
over the nanomagnets, we obtain for the scattering intensity

I (E,q) ∝
∣∣∣∣
∑

n

Fn(E,q) exp(iq · rn)

∣∣∣∣
2

. (4)

Here the index n refers to the nth nanomagnet, with center
position rn. Assuming the nanomagnets to be homogeneous
Permalloy particles, the form factor is given by

Fn(E,q) = f (E)
∫

Vn

eiq·rd3r, (5)

where f (E) is the atomic form factor as defined in Eq. (3). For
the Fe L3 edge at 706.8 eV, we use the values fc = 10.554 +
i59.388 and fm = −10.895 − i12.361, which we determined
using the method of Sève, Tonnerre, and Raoux.29

To evaluate the integral in Eq. (5), we approximate the shape
of the nanomagnets with a cylinder of height h and elliptical
cross section with semiaxes a and b as sketched in the inset of
Fig. 1(a). We can then write the set of form factors Fn(q) as30

Fn(q) = 2j0(q · hn/2)
j1(ξn)

ξn

, (6)

with

ξn =
√

(q · an)2 + (q · bn)2, (7)

where j0 and j1 are spherical Bessel functions. As indicated
in Fig. 2(a), the structural unit cell contains two structurally
identical nanomagnets, but with different orientations. Their
respective form factors F1(q) and F2(q) are defined by the

following sets of vectors describing their spatial orientation:

a1 = 230 nm

2

(
1√
2
,

1√
2
,0

)
,

b1 = 80 nm

2

(
− 1√

2
,

1√
2
,0

)
, (8)

h1 = 1 nm (0,0,1) ,

a2 = 230 nm

2

(
− 1√

2
,

1√
2
,0

)
,

b2 = 80 nm

2

(
1√
2
,

1√
2
,0

)
, (9)

h2 = 1 nm (0,0,1).

We have set the relevant thickness of the nanomagnets
to 1 nm in order to take into account that, due to the low
penetration depth of soft x rays at small grazing angles, the
scattering signal originates within the context of the kinematic
scattering approximation from the first few atomic surface
layers only. We finally note that for simplicity we did not
try to reproduce the curvature of the scattering patterns that
arises from projection of the Ewald sphere on the plane of the
detector, and the nonparallel alignment of sample and detector
with respect to the scattering plane.

In order to compare experimental and numerical scattering
patterns, the dichroic contrast measured (or simulated) at
remanence after applying a specific field H has been nor-
malized to the one measured (or simulated) at remanence
following saturation, i.e., for each Bragg peak we considered
the normalized dichroic contrast Idic(H ) ≡ Idic(H )/Idic(Hsat),
which varies between +1 and −1. Since the dichroic contrast
of the second order peaks (either P3 or P4) is proportional
to the total remanent magnetization Mr , Idic at these peaks
directly gives Mr normalized to the saturation value, Idic =
Mr/Msat ≡ Mr . We therefore determineMr from the average
of Idic at peaks P3 and P4. Mr takes the value of +1 (−1)
when all moments are oriented towards the positive (negative)
y direction.

During magnetization reversal, the total magnetization is
related to the number of nanomagnets N− that have reversed
their magnetic moments on application of a reverse magnetic
field following saturation, so that Mr = (N+ − N−)/N =
1 − 2N−/N , where N+ is the number of nanomagnets that
have not reversed their magnetic moments and N = N+ + N−
is the total number of nanomagnets. N− (and N+) can therefore
be calculated from Mr and the normalized dichroic intensity
at the first order peaks (P1 and P2) is now determined by the
distribution of N− nanomagnets between the two sublattices S1

and S2, i.e., by the values of N−
1 and N−

2 , with N− = N−
1 +

N−
2 . We therefore generate trial configurations varying N−

1
and N−

2 , and numerically compute the corresponding dichroic
scattering patterns, comparing them to the experimental data
until the best agreement for the asymmetry of dichroic intensity
at P1 and P2 is obtained.

The validity of our method has been tested at different
applied fields along the hysteresis loop. The numerical
simulations reproduce quantitatively the dichroic intensity
of the first and second order Bragg peaks, and we were also
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FIG. 4. (Color online) Comparison between experimental and
numerical dichroic scattering patterns. Figures (a) and (c) have
been measured at applied magnetic fields of 480 Oe and −472 Oe,
respectively. The corresponding calculated best-fit patterns are shown
in (b) and (d).

able to obtain qualitative agreement for the higher scattering
order reflections. Two examples are shown in Fig. 4. Here we
show two experimentally recorded dichroic patterns [panels
(a) and (c)] with the best fits obtained by simulation [panels
(b) and (d)]. In Fig. 4(a) the dichroic pattern was measured at
remanence after application of a magnetic field of H = +480
Oe along the +y direction (following saturation in the positive
field direction). To obtain the most representative simulation
shown in Fig. 4(b), 81% of the moments were reversed on
sublattice S1, and 72% on sublattice S2. The corresponding
numbers for the simulation shown in Fig. 4(d) are 73% and
20% for S1 and S2, respectively, which aim at reproducing the
dichroic contrast shown in Fig. 4(c) recorded at remanence
after applying an external field of H = −472 Oe (following
saturation in the positive field direction).

When comparing the experiments and simulations of Fig. 4
in more detail, the differences in the dichroic intensities
become more significant at the higher order peaks, even if
the sign of the computed dichroic intensity is still correct
for most of the observed peaks. This is not surprising given
the simplicity of our model, and we can identify several
causes. First, the higher scattering orders probe shorter length
scales and are therefore more sensitive to the details of the
shape of the nanomagnets. This includes not only deviations
from the assumed cylindrical shape, but also small variations
in size, shape, and microstructure between the nanomagnets
themselves. Secondly, we note that our approach neglects the
effects related to the refractive index, which give a modulation
of the scattered intensity as a function of the direction of
the reflected beam. This modulation is small close to the
specular beam, but can be significant for higher order reflec-
tions. Nevertheless, for the determination of Mr,1 and Mr,2,

a perfect agreement between simulations and experiments
is not necessary, and the “qualitative” agreement at high
scattering orders supports the validity of our model despite its
simplicity.

IV. CONCLUSIONS

We have investigated with soft x-ray resonant magnetic
scattering the magnetic configurations of an artificial square
ice, both in its as-grown state and following the application
of external magnetic fields. A two dimensional CCD detector
allowed us to obtain in detail a large fraction of the sample’s
reciprocal space and unambiguously identify the positions of
the Bragg peaks. The presence of long range magnetic ordering
in the as grown sample was confirmed by the observation of
pure magnetic scattering peaks only visible under resonance
conditions, indicating a magnetic unit cell larger than the
structural one. This magnetic ground state is lost after applying
an external magnetic field. During magnetization reversal,
we observed a different field dependence of the dichroic
intensity in different first order Bragg peaks. We were able to
reproduce this asymmetry with numerical simulations of the
scattering patterns. This allowed us to determine separately
the contribution to the total magnetization of the nanomagnets
belonging to each one of the two sublattices of artificial
square ice. Despite the simple approximations in the model
underlying our simulations, we are able to reproduce the
most important features of the magnetic dichroism in the
experimental scattering patterns. This provides an important
step forward, and will facilitate the interpretation of the
scattering patterns of more complex spin ice systems such
as the artificial kagome spin ice.7,31

We have demonstrated that significant insight into the
magnetic configurations of artificial spin ice can be obtained
by soft x-ray resonant magnetic scattering, which opens the
way to more sophisticated experiments such as coherent
x-ray scattering. X-ray photon correlation spectroscopy, for
example, holds the promise of giving access to smaller length
scales and shorter time scales than those accessible by real-
space microscopy and will therefore play an important role in
the further investigation of dynamics occurring in thermally
activated artificial spin ice systems.
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