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Thermally activated switching rate of a nanomagnet in the presence of spin torque

Tomohiro Taniguchi,1 Yasuhiro Utsumi,2 and Hiroshi Imamura1

1National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, Ibaraki 305-8568, Japan
2Faculty of Engineering, Mie University, Tsu, Mie 514-8507, Japan

(Received 10 July 2013; published 16 December 2013)

The current dependence of the spin torque switching rate in a thermally activated region of an in-plane
magnetized system was studied. The logarithm of the switching rate depended nonlinearly on current in the high-
current region, Ic � I < I ∗

c , where Ic and I ∗
c are critical currents distinguishing the stability of the magnetization.

We also found that the attempt frequency had a minimum around Ic, and that the attempt frequency at Ic was
three orders of magnitude smaller than that at zero current, contrary to the assumption in previous analyses of
experiments that it remains constant.
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I. INTRODUCTION

The escape problem of a Brownian particle from a
metastable state is ubiquitous in many fields of science, such
as the chemical reaction of molecules.1–7 Spin-torque-driven
magnetization switching8,9 in nanostructured ferromagnets in
the thermally activated region also belongs to this problem,
which has been extensively studied because of its potential
application to spintronics devices such as magnetic random
access memory (MRAM) and magnetic sensors. The observa-
tion of the magnetization switching provides us with important
information, such as the retention time of the MRAM. More
than a decade has passed since the first experimental and
theoretical works on spin torque switching in the thermally
activated region.10–16

Spin torque switching can be regarded as Brownian motion
in the presence of a nonconservative force, contrary to
switching by a magnetic field, which is a conservative force
defined as the gradient of a potential. The lack of a general
method to formulate the switching rate in the presence of the
nonconservative force is an unresolved problem in statistical
physics.17,18 Therefore, many assumptions have been made
in previous theories of spin torque switching.14–16 However,
recent works19–24 have revealed the limits of the applicability
of previous theories. For example, the switching rate has been
assumed to obey the Arrhenius law, ν = f e−�, with linear
scaling of the switching barrier, � = �0(1 − I/Ic), where f ,
�0, I , and Ic are the attempt frequency, the thermal stability,
the current, and the critical current of the precession around
the easy axis, respectively.14–16 However, the linear scaling
is valid only in the low-current region,24 while a relatively
large current has been applied in experiments10–12 to observe
the switching quickly. The use of the linear scaling leads to
an error of the estimation of the thermal stability.22 Another
issue is that the transition state theory previously adopted16

cannot estimate the switching rate under a low damping limit,25

while the Gilbert damping constant of materials typically used
in spintronics application is very low,26 i.e., α = 10−3–10−2.
These facts prompted us to revisit the theory of spin torque
switching in a thermally activated region.

In this paper, we study the spin torque switching rate of
an in-plane magnetized system using the mean first passage
time approach.2,3,25,27 The introduction of the effective energy
density enables us to calculate the switching rate even in

the presence of the nonconservative force. The switching
rate showed a nonlinear dependence on the current in the
high-current region (Ic � I < I ∗

c ) on a logarithmic scale,
where I ∗

c � 1.27Ic is the spin torque switching current at zero
temperature. The attempt frequency was strongly suppressed
around Ic contrary to the assumption in previous experimental
analysis that it remains constant.10–12 For example, the attempt
frequency at Ic was three orders of magnitude smaller than
that at zero current. The theoretical approach presented in
this paper is useful for the escape problem of a Brownian
particle under a nonconservative force when the magnitude
of the nonconservative force is much smaller than that of the
conservative force.

The paper is organized as follows. In Sec. II, the Fokker-
Planck equation for the magnetization dynamics in the energy
space is introduced based on the small damping assumption.
In Sec. III, the current dependence of the switching rate, as
well as that of the attempt frequency, is calculated by using
the mean first passage time approach. Section IV is devoted to
the conclusion.

II. FOKKER-PLANCK EQUATION IN ENERGY SPACE

Figure 1(a) schematically shows an in-plane magnetized
system, where the x and z axes are normal to the film
plane and parallel to the in-plane easy axis, respectively.
The unit vectors pointing in the magnetization directions
of the free and the pinned layers are denoted as m =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ) and np = ez, respectively. Here,
we assume that the magnetization dynamics is well described
by the macrospin model. The macrospin assumption is, at
least for the grand state, guaranteed by the spin torque
diode experiment28 in which the oscillation frequency of
the free layer magnetization agrees with the ferromagnetic
resonance frequency derived by the macrospin model. The
positive current is defined as the electron flow from the free
layer to the pinned layer. The energy density of the in-plane
magnetized system is

E = −MHK

2
(m · ez)

2 + 4πM2

2
(m · ex)2 , (1)

where M , HK, and −4πM are the magnetization, the uniaxial
anisotropy field along the z axis, and the demagnetization field
along the x axis, respectively. The magnetic field is defined
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FIG. 1. (Color online) (a) A schematic view of the in-plane magnetized system. The unit vectors pointing in the magnetization directions
of the free and the pinned layers are denoted as m and np, respectively. The x axis is normal to the film plane and the z axis is parallel to
the in-plane easy axis. (b) A schematic view of the constant energy curves. Two low-energy regions are separated by a saddle point. The area
outside of regions 1 and 2 (black lines) corresponds to the high-energy region.

as H = −∂E/(∂Mm). Figure 1(b) schematically shows the
constant energy curves of E in (θ,ϕ) space. The in-plane mag-
netized system has two low-energy regions around the energy
minima at m = ±ez corresponding to E = −MHK/2 ≡ EK.
These two low-energy regions are separated by the saddle
point m = ±ey at which the energy density Es = 0. We named
the low-energy region, EK � E � Es, around m = +ez (−ez)
region 1 (2). The area outside regions 1 and 2 corresponds
to the high-energy region. The magnetization dynamics is
described by the Landau-Lifshitz-Gilbert equation with the
random torque,

dm
dt

= −γ m × H − γHsm × (np × m)

− γ m × h + αm × dm
dt

, (2)

where γ and α are the gyromagnetic ratio and the Gilbert
damping constant, respectively. The spin torque strength, Hs =
�ηI/(2eMV ), consists of the current I , the spin polarization
η, and the volume of the free layer. The components of the ran-
dom field, hk (k = x,y,z), satisfy the fluctuation-dissipation
theorem,29 〈hi(t)hj (t ′)〉 = (2D/γ 2)δij δ(t − t ′), where the dif-
fusion coefficient D = αγ kBT/(MV ) consists of the Boltz-
mann constant kB and the temperature T .

During the switching between regions 1 and 2, the mag-
netization precesses on the constant energy curve around
the easy axis. The precession period is determined by the
anisotropy fields, HK and 4πM , and is typically on the order
of 1 ns.28 On the other hand, the switching time is determined
by the damping, the spin torque, and the random field, and
is on the order of 1 μs–1 ms, depending on the current
magnitude.11 Such a long time scale of the switching is
due to the fact that the correlation function of the random
torque, which induces the switching, is proportional to the
small parameter α.26 Therefore, the precession period on the
constant energy curve is much shorter than the switching time.
Also, because of the large demagnetization field due to the
thin film geometry, as soon as the energy exceeds the saddle
points energy, the magnetization moves from region 1 (2) to
2 (1) by the precession around the demagnetization field, and
relaxes to region 2 (1). Therefore, the dominant contribution

to the switching rate is the time climbing the potential well of
region 1 or 2. Thus, we average the magnetization dynamics
on the constant energy curve in regions 1 and 2, and we neglect
the high-energy region. The averaged dynamics is described
by the Fokker-Planck equation in the energy space,30 which
can be derived from Eq. (2) and is given by

∂P
∂t

+ ∂J

∂E
= 0, (3)

where P = P(E,t |E′,t ′) is the transition probability function
of the magnetization direction from the state (E′,t ′) to (E,t).
The probability current is

J = −αMMα

γ τ

dE

dE
P − D

(
M

γ

)2

Mα

∂

∂E

P
τ

. (4)

We use the approximation 1 + α2 � 1 because the present
theory is based on the small damping assumption. The effective
energy density for region i is defined as

Ei(E) =
∫ E

Es

dE′
[

1 − Ms(E′)
αMα(E′)

]
, (5)

where the lower boundary of the integral, Es, is chosen to make
the effective energy density continuous at the boundary of
regions 1 and 2. The precession period on the constant energy
curve, τ = ∮

dt , and the functions Mα = γ 2
∮

dt[H2 − (m ·
H)2] and Ms = γ 2Hs

∮
dt[np · H − (m · np)(m · H)], which

are proportional to the energy dissipation due to the damping
and the work done by spin torque on the constant energy curve,
respectively, are given by

τ = 4

γ
√

HK(4πM − 2E/M)
K

(√
4πM(HK + 2E/M)

HK(4πM − 2E/M)

)
,

(6)

Mα = 4γ

√
4πM − 2E/M

HK

[
2E

M
K

(√
4πM(HK + 2E/M)

HK(4πM − 2E/M)

)

+HKE
(√

4πM(HK + 2E/M)

HK(4πM − 2E/M)

)]
, (7)
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Ms = ±2πγHs(HK + 2E/M)√
HK(HK + 4πM)

, (8)

where K(k) and E(k) are the first and second kind of complete
elliptic integrals, respectively. The double sign in Eq. (8) means
the upper (+) for region 1 and the lower (−) for region 2. This
difference of the sign of Ms represents the fact that the spin
torque for I > 0 destabilizes the magnetization in region 1
while it stabilizes the magnetization in region 2.

Equation (4) indicates that, after averaging the magnetiza-
tion dynamics on the constant energy curve, the switching can
be regarded as the Brownian motion on the effective energy
density in which the equation of motion with the determinis-
tic force is (1/τ )

∮
dt(dE/dt) = −[αMMα/(γ τ )](dEi/dE).

The thermally activated region is defined by −dE /dE < 0.
We note that

lim
E→EK

dEi

dE
= 1 ∓ I

Ic
, (9)

lim
E→Es

dEi

dE
= 1 ∓ I

I ∗
c

, (10)

respectively, where Ic = [2αeMV/(�η)](HK + 2πM) and
I ∗

c = [4αeMV/(π�η)]
√

4πM(HK + 4πM) � 1.27Ic.24,31

The physical meanings of Ic and I ∗
c are that, for region 1,

the state m = ez is destabilized by the current I > Ic

while the magnetization switches without the thermal
fluctuation for I > I ∗

c . Therefore, in terms of the current, the
thermally activated region is defined by I < I ∗

c . It should also
be noted that the steady-state solution of Eq. (3) in the region
i is the Boltzmann distribution with the effective energy
density, i.e., P/τ ∝ e−Ei (E)V/(kBT ).

Figure 2 shows the typical dependences of E1 on E for
I � Ic and Ic < I � I ∗

c , where the values of the parameters24

are M = 1000 emu/cm3, HK = 200 Oe, V = π × 80 × 35 ×
2.5 nm3, η = 0.8, γ = 1.764 × 107 rad/(Oe s), and α = 0.01,
respectively. We denote the energy density corresponding to
the local minimum of the effective energy density as E∗, which
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FIG. 2. (Color online) Schematic views of the effective energy
density of region 1 (EK � E � Es) in the energy space for I = 0.2Ic.
Both E and E1 are normalized by |EK| = MHK/2. The inset shows
E1 for I = 0.2(I ∗

c − Ic) + Ic. The dotted line is E2.

for region 1 is located at

E∗(region 1) =
{

EK (I � Ic)

solution of dE1/dE = 0 (Ic < I < I ∗
c ).

(11)

The minimum of E2 is always located at E∗ = EK.

III. MEAN FIRST PASSAGE TIME APPROACH
TO SWITCHING RATE

The mean first passage time,2,3,27 which characterizes how
long the magnetization stays in the energy range E∗ � E � Es

of the region i, is defined as

Ti(E) =
∫ ∞

0
dt

∫ Es

E∗
dE1P(E1,t |E,0). (12)

The equation to determine the mean first passage time is
obtained from the adjoint of Eq. (3), and is given by

αMMα

γ τ

dEi

dE

dTi

dE
− D

(
M

γ

)2 1

τ

d

dE
Mα

dTi

dE
= 1. (13)

We use the reflecting and the absorbing boundary
conditions2,3,27 at E = E∗ and E = Es, respectively: that is,
dTi(E∗)/dE = 0 and Ti(Es) = 0. Then, the mean first passage
time is given by

Ti(E) = γV

αMkBT

∫ Es

E

dE1

∫ E1

E∗
dE2

τ (E2)

Mα(E1)

× exp

{
[Ei(E1) − Ei(E2)]V

kBT

}
. (14)

The switching rate from region i to region j is

νij = dEj (Es)/dE

dEi(Es)/dE + dEj (Es)/dE

1

Ti(E∗)
. (15)

Here, we assume that once the magnetization reaches the
saddle point, the probability of it moving to regions i or j

is proportional to the gradient of the effective energy, i.e.,
the deterministic force acting on a Brownian particle.32 For
a conservative system,2 Eq. (15) is 1/(2Ti). The switching
probability P and the switching current distribution dP/dI

measured in the experiments can be calculated from Eq. (15).
For example, for I > 0, the switching probability from m = ez

to m = −ez is P � 1 − e− ∫ t

0 ν12(t ′)dt ′ . It should be noted that
limI→I ∗

c
T1(E∗) = 0 because region 1 is no longer stable due to

the spin torque; thus, the magnetization immediately switches
to region 2. For the same reason, limI→I ∗

c
ν21 = 0.

Equations (14) and (15) indicate that the switching rate
cannot be expressed as the Arrhenius law, in general. However,
it is convenient to introduce the switching barrier and the
attempt frequency as

�i = [Ei(Es) − Ei(E∗)]V

kBT
, (16)

fij = νij e
�i . (17)

The current dependence of the switching barrier was
extensively studied in Ref. 24. In the low-current region,
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I < Ic, corresponding to the high barrier limit,
�i 
 1,33 the exponential terms in Eq. (14) are dominated
by E1 = Es and E2 = EK, respectively. Using the Taylor
expansion of Ei , Ti can be approximated as

Ti(EK) � γ kBT τ (EK)e�i

αMV Mα(Es)[dEi(EK)/dE][dEi(Es)/dE]
,

(18)

where Mα(Es) = 4γ
√

HK4πM and τ (EK) =
2π/[γ

√
HK(HK + 4πM)]. Then, the switching rate obeys the

Arrhenius law as follows:

νij = αMV Mα(Es)

2γ kBT τ (EK)

(
1 ∓ I

Ic

)[
1 −

(
I

I ∗
c

)2]

× exp

[
−�0

(
1 ∓ I

Ĩc

)]
, (19)

where �0 = MHKV/(2kBT ) is the thermal stability. The
term (1 ∓ I/Ic) of Eq. (19) arises from dE1(EK)/dE in
Eq. (18) while the term [1 − (I/I ∗

c )2] of Eq. (19) arises from
dEi(Es)/dE in Eqs. (15) and (18), respectively. The current Ĩc
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FIG. 3. (Color online) (a) Dependence of the switching rate νij

on the current I . The values are normalized by those at I = 0, while
the current is normalized by I ∗

c . The dots represent the analytical
solutions derived in the region I < Ic. The dashed line represents the
position of Ic (Ic/I

∗
c � 0.81). (b) An enlarged view of the switching

rate in the high-current region, Ic < I < I ∗
c .

is defined as I/Ĩc = ∫ Es

EK
(dE/|EK|)Ms/(αMα), which satis-

fies Ic < Ĩc < I ∗
c . Although the linear scaling of the switching

barrier appears in this low-current region, the scaling current is
not the switching current, as argued in Refs. 14–16. This means
that the previous analyses of the experiments underestimate the
real value of the switching current.10,11,14,15,34 Equation (19)
can be directly reproduced by applying Brown’s approach29 to
Eq. (3), as shown in the Appendix.

Equation (19) becomes zero in the zero-dissipation limit
(α → 0) because the correlation function of the thermal
field, which induces the switching, is proportional to α

according to the fluctuation-dissipation theorem. However, the
switching rate based on the transition state theory16 given
by νij = exp[−�0(1 ∓ I/Ic)]/τ (EK) remains finite in the
zero-dissipation limit. This problem has already been pointed
out in the case of the magnetic field switching.25 The terms
except for 1/τ (EK) in Eq. (19) can be regarded as correction
terms to the transition state theory used in Ref. 16.

Figure 3(a) shows the dependence of the switching rate
νij on the current numerically obtained from Eq. (14), where
νij are normalized by the values at I = 0. The values
of the parameters are those used in Fig. 2 with T = 300 K.
The analytical solution, Eq. (19), for I < Ic is shown by
dots, and it shows good agreement with the numerical result.
The switching rate in the high-current region, Ic < I < I ∗

c , is
shown in Fig. 3(b). One of the main results in this paper is
the nonlinear dependence of νij in the relatively high-current
region on the logarithmic scale, while the linear dependence
has been widely used in previous works14,15 by assuming the
linear scaling of the switching barrier and the constant attempt
frequency.

The current dependence of the attempt frequency, fij , is
shown in Fig. 4. The attempt frequency, f12, decreases with in-
creasing current for I � Ic, while it increases for Ic � I < I ∗

c .
The discontinuity of the slope of f12 around Ic arises for
the following reason. According to Eqs. (15) and (18), the
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FIG. 4. (Color online) Dependence of the attempt frequency, fij ,
on the current. The values are normalized by those at I = 0, while
the current is normalized by I ∗

c . The dots represent the analytical
solutions obtained from Eq. (19). The dashed line represents the
position of Ic (Ic/I

∗
c � 0.81). The inset shows the linear plots of f12

and f21 around Ic.
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attempt frequency for I < Ic is approximately proportional
to the gradient of E1 at its minimum, dE1(EK)/dE, which
decreases with increasing current. Here, dE1(EK)/dE arises
from the Taylor expansion of E1 in Eq. (14). On the other
hand, dE1/dE for Ic � I < I ∗

c is zero at the minimum of E1

as shown by Eq. (11). Then, f12 is approximately proportional
to the curvature of E1 at its minimum, d2E1(E∗)/dE2, which
increases with increasing the current. Thus, the attempt
frequency shows a minimum around Ic. The attempt frequency
in Fig. 4 depends strongly on the current. For example, the
attempt frequency at Ic is three orders of magnitude smaller
than that at zero current. Contrary to this result, the attempt
frequency has been generally assumed to be constant in
previous experimental analyses.10–15

IV. CONCLUSION

In summary, the spin torque switching rate of an in-plane
magnetized system was studied. The current dependence of
the switching rate was obtained numerically, and an analytical
formula in the low-current region was derived. The logarithm
of the switching rate depends nonlinearly on the current in the
high-current region. The switching barrier depends linearly
on the current in the low-current region, which guarantees
the validity of the previous theories,14–16 although the scaling
current Ĩc is not identical to the switching current. The attempt
frequency has a minimum around the critical current Ic, and
exhibits a strong current dependence while it has been assumed
to be constant in previous experimental analyses.
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APPENDIX: BROWN’S APPROACH TO EQ. (19)

The switching rate in the high barrier limit, Eq. (19), can
be obtained by using Brown’s approach.29 Toward that end, it
is convenient to use W = MP/(γ τ ) instead of P . In terms of
W , Eqs. (3) and (4) can be expressed as

γ τ

M

∂W

∂t
+ ∂J

∂E
= 0, (A1)

J = −αkBT

V
Mαe−E V/(kBT ) ∂

∂E
eE V/(kBT )W. (A2)

To guarantee �i 
 1, we assume that I < Ic, i.e., E∗ = EK.
Then, �i is given by � = �0(1 ∓ I/Ĩc). In the high barrier
limit, the probability functions near the minima of E are
approximately the Boltzmann distribution functions, while a
tiny constant flow of the probability current crosses over the
saddle point. The probability functions of regions 1 and 2
around EK are expressed as

Wi(E) = Wi(EK) exp

{
− [Ei(E) − Ei(EK)]V

kBT

}
, (A3)

where i = 1,2, Wi(EK) = Wi(Es) exp{[Ei(Es) −
Ei(EK)]V/(kBT )}, and Wi(Es) is the probability function
at the saddle point satisfying W1(Es) = W2(Es). Since the
probability functions show sharp peaks around EK, and
rapidly decrease by approaching Es, the integrals of the
probability functions,

ni = γ

M

∫ Ei

EK

dE Wi(E)τ (E), (A4)

are independent of the upper boundaries, Ei , which
are arbitrary points located in regions 1 and 2 close
to Es. Equation (A4) can be expressed as ni =
Wi(EK) exp[Ei(EK)V/(kBT )]Ii , where Ii are given by

Ii = γ

M

∫ E1

EK

dE exp

[
−Ei(E)V

kBT

]
τ (E). (A5)

The exponential term in Eq. (A5) rapidly decreases from E =
EK to E = Es. Thus, by using the Taylor expansion of Ei

around E = EK and using the fact that λ∗
E = −dEi/dE �= 0

for I < Ic, Ii can be approximated to

Ii � γ kBT τ (EK)

MV [dEi(EK)/dE]
e−Ei (EK)V/(kBT ). (A6)

The double sign means the upper for region 1 and the lower
for region 2.

Next, we consider the flow of the probability current from
region 1 to region 2 crossing the saddle point. Equation (A2)
can be rewritten as

JV

αkBT Mα

eE (E)V/(kBT ) = − ∂

∂E
eE (E)V/(kBT )W. (A7)

By assuming the divergenceless current,29 the integral of
Eq. (A7) over [E1,Es] is given by

JV

αkBT

∫ Es

E1

dE
eE1(E)V/(kBT )

Mα

= W1(E1)eE1(E1)V/(kBT ) − W1(Es)e
E1(Es)V/(kBT ). (A8)

We also integrate Eq. (A7) over [E2,Es] by changing the sign
of the probability current J . Then, we obtain the following
equation;

JV

αkBT
Iα = W1(E1)eE1(E1)V/(kBT ) − W2(E2)eE2(E2)V/(kBT ),

(A9)

where the right-hand side is identical to (n1/I1) − (n2/I2). On
the other hand, Iα is given by

Iα =
∫ Es

E1

dE
eE1(E)V/(kBT )

Mα

+
∫ Es

E2

dE
eE2(E)V/(kBT )

Mα

� kBT

Mα(Es)V

[
eE1(Es)V/(kBT )

dE1(Es)/dE
+ eE2(Es)V/(kBT )

dE2(Es)/dE

]
. (A10)

The probability current satisfies dn1/dt = −dn2/dt =
−J . Thus, we obtain the following rate equation between
regions 1 and 2:

dn1

dt
= −dn2

dt
= −n1ν12 + n2ν21, (A11)
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where the switching rate from region i to region j is νij =
αkBT/(IiIαV ). By using Eqs. (9), (10), (A6), and (A10), the
explicit form of the switching rate is given by

νij = αMV Mα(Es)

2γ kBT τ (EK)

(
1 ∓ I

Ic

)[
1 −

(
I

I ∗
c

)2]
e−�i , (A12)

where the double sign means the upper for (i,j ) = (1,2) and
the lower for (2,1). Equation (A12) is identical to Eq. (19).
The solutions of Eq. (A11) for constant current in time
with the initial condition n1(t = 0) = 1 and n2(t = 0) = 0 are

given by

n1 = ν21

ν12 + ν21
+ ν12

ν12 + ν21
e−(ν12+ν21)t , (A13)

n2 = ν12

ν12 + ν21
− ν12

ν12 + ν21
e−(ν12+ν21)t . (A14)

For the positive current, ν12 
 ν21, and therefore n1 � e−ν12t

and n2 = 1 − e−ν12t , where n2 corresponds to the switching
probability measured in the experiments.
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