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Ultrafast demagnetization after laser irradiation in transition metals: Ab initio calculations of the
spin-flip electron-phonon scattering with reduced exchange splitting
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Despite intensive research, the underlying mechanisms for ultrafast demagnetization after laser irradiation
in transition metals are still not understood. We discuss the possible processes which have been suggested
in order to explain the ultrafast demagnetization within several hundreds of femtoseconds and argue that the
spin angular momentum has to go to the lattice in the end. Based on this argument, we consider spin-flip
electron-phonon scatterings. The demagnetization time τM and the demagnetization rate dM/dt due to spin-flip
electron-phonon scattering is calculated for fcc Ni and bcc Fe. Thereby, the electronic states and phononic
states are calculated ab initio. We find that the demagnetization rates for fcc Ni and bcc Fe are too small to
explain experimental demagnetization rates, which is in agreement with earlier publications. In addition, the
demagnetization rates for band structures with reduced exchange splitting are calculated, however, also these
demagnetization rates are too small. Finally, the phase space for scattering processes which is related to the
maximum possible demagnetization is estimated for band structures with ground-state exchange splitting and
with reduced exchange splitting. The maximum possible demagnetization is too small for bcc Fe and fcc Co but
not necessarily for fcc Ni. We suggest to include magnons and to consider independent combinations of spin-flip
electron-phonon and spin-flip electron-magnon scattering processes as a possible explanation for the ultrafast
demagnetization.
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I. INTRODUCTION

In 1996, Beaurepaire et al.1 showed for the first time
that a thin ferromagnetic Ni film demagnetizes within sev-
eral hundreds of femtoseconds (fs) after irradiation with a
short (60 fs) linearly polarized laser pulse. This was a real
milestone in the research of magnetization dynamics because
of the unprecedented very short time scale. Thereafter, a lot
of effort was made to investigate this so-called “ultrafast
demagnetization” both experimentally and theoretically. The
experimental results of Beaurepaire et al. were confirmed
in many other publications (for a review, see, e.g., Ref. 2).
Further experiments for Fe (Ref. 3) and for Co (Ref. 4)
demonstrated an ultrafast demagnetization on the same time
scale (several hundreds of fs). A lot of theoretical suggestions
have been made to explain the ultrafast demagnetization in Ni,
Fe, and Co, however, until now the underlying mechanisms
are not understood. The suggestions are discussed in the
following.

The expectation value 〈Se〉 of the electronic spin momentum
related to the spin angular momentum operator Ŝe and the
expectation value 〈Le〉 of the orbital angular momentum
related to the orbital momentum operator L̂e of the electrons
build the magnetization M:

M ∝ 〈Le〉 + g〈Se〉, (1)

where g ≈ 2 is the spin g factor. The expectation value 〈Le〉
of the orbital angular momentum is usually nearly completely
quenched in crystals of transition metals which are considered
in this paper (this does not hold for all ferromagnets, e.g., for
rare-earth metals). Hence, the magnetization is built by the
expectation value 〈Se〉 of the spin angular momentum in a
good approximation. When the magnetization M decreases
during the ultrafast demagnetization, also the expectation
value 〈Se〉 of the spin angular momentum has to decrease.

If angular momentum conservation holds, the fundamental
question is as follows: Where does angular momentum related
to the expectation value 〈Se〉 go to? In Ref. 5, it is discussed
extensively that the conditions for angular momentum conser-
vation are approximately fulfilled during the ultrafast demag-
netization experiment. The angular momentum conservation
reads as5–8

�〈J〉 = �〈Le〉 + �〈Se〉 + �〈Ll〉 + �〈Lph〉 = 0, (2)

where � denotes the difference and 〈J〉, 〈Ll〉, and 〈Lph〉 are
the expectation value of the total angular momentum, the
expectation value of the angular momentum of the lattice, and
the expectation value of the angular momentum of the laser
photons, respectively. In the following, several possibilities
for underlying mechanisms for ultrafast demagnetization are
discussed:

(1) Interaction with laser photons. Several authors9–12

suggested that the direct interaction with the laser photons
could be the reason for the ultrafast demagnetization due
to angular momentum transfer from 〈Lph〉 to 〈Se〉. However,
estimations showed6 that the photoquenching is only 10−4μB

per atom in Ni which is too small to explain the ultrafast
demagnetization (Ni has a ground-state magnetic moment of
0.64μB per atom). Also, recent experiments7,13 could not prove
a noticeable demagnetization effect by laser photons alone.

(2) Emission of photons. Emission of photons during ul-
trafast demagnetization was measured14,15 and it was found
that the emitted light is linearly polarized and in the THz
frequency range. As shown in Ref. 16, for a spherically
symmetric system the integral of the electromagnetic angular
momentum density of an electromagnetic wave taken over
the whole volume vanishes. For the geometries used in the
demagnetization experiments, however, the situation is not
spherically symmetric.It could also be that the emitted photons
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are reabsorbed again,5 and in a dichroic material this leads
to a preference of the direction of electron-photon spin-flip
processes, for instance, there may be more scattering processes
from spin up to spin down6 and this may contribute to
the demagnetization.5 Nevertheless, it is generally believed
that the demagnetization effect of emitted photons is rather
small.

(3) Electron-phonon interaction. An often discussed expla-
nation for ultrafast demagnetization is the spin-flip electron-
phonon scattering via the Elliott-Yafet mechanism17,18 which
leads to an angular momentum transfer from 〈Se〉 to 〈Ll〉.
Ab initio calculations for the demagnetization effect due to
spin-flip electron-phonon scattering were done for fcc Ni,
bcc Fe, and fcc Co,19–22 however, the demagnetization due
to spin-flip electron-phonon scattering was always too small
to explain the experimental demagnetization. It was claimed
in Ref. 20 that calculations with a rigid-band structure could
never explain experimental demagnetization rates and that
a calculation which takes into account the modification of
the exchange splitting (and hence a modification of the band
structure) arising from a change of the magnetization in time
due to demagnetization could possibly reproduce experimental
demagnetization rates. All calculations with electron-phonon
scattering (also the calculations in this paper) have in common
that linearly polarized phonon states are used which do not
have a well-defined angular momentum and the expectation
value of the angular momentum is zero,2,23 i.e., one does
not keep track of the angular momentum conservation in
the single electron-phonon-scattering process and assumes
implicitly that the lattice is a perfect sink for the angular
momentum. In principle, it is possible to use circularly or
elliptically polarized phonon states which have a well-defined
angular momentum23 (but which are not stationary) to keep
track of the angular momentum conservation.

(4) Electron-electron interaction. Electron-electron scatter-
ing is definitely very important since Coulomb interaction
is dominant and electron-electron scattering is a very fast
process.4 Without spin-orbit coupling, it is not possible
to change the expectation value 〈Se〉 of the spin angular
momentum by these scatterings. With spin-orbit coupling,
it is possible to change 〈Se〉, for example, via an angular
momentum flow from 〈Se〉 to 〈Le〉. Stamm et al.24,25 and
Boeglin et al.26 showed with x-ray magnetic circular dichroism
(XMCD) experiments that both 〈Se〉 and 〈Le〉 decrease during
the ultrafast demagnetization. Therefore, an increase of 〈Le〉
could only be possible within a time scale faster than the
temporal resolution of Refs. 24–26. Krauss et al.27 made
model calculations with electron-electron scattering in systems
with spin-orbit coupling and came to the conclusion that
electron-electron scattering could be the reason for ultrafast
demagnetization. Thereby, it is assumed that the electronic an-
gular momentum is very quickly transferred to the lattice 〈Ll〉.
Mueller et al.28 also made model calculations which included
both electron-electron and electron-phonon scattering. They
found out that the electron-electron scattering is essential for
the demagnetization (whereas the phonon cooling is essential
for the remagnetization). Thereby, it is also assumed that the
electronic angular momentum is very quickly transferred to the
lattice 〈Ll〉 (they also do not keep track of angular momentum
conservation).

(5) Electron-magnon interaction. In a system without spin-
orbit coupling it is not possible to change the spin angular
momentum 〈Se〉 via electron-magnon scattering. In a system
with spin-orbit coupling it is possible to reduce 〈Se〉 via
electron-magnon scattering. It was suggested in Ref. 3 that
angular momentum is transferred from 〈Se〉 to 〈Le〉 via
electron-magnon scattering and subsequently 〈Le〉 is quenched
by the crystal field. If this mechanism is relevant, the crystal
field quenching has to be faster than the temporal resolution
of Refs. 24–26.

(6) Electron-defect and electron-interface scattering. De-
magnetization experiments were done for different samples,29

namely, epitaxial thin films, polycrystalline films, and surfaces
of single crystals. The results for the demagnetization time
were always similar [about 200 fs (Ref. 29)] and it must
be concluded that the demagnetization time is an intrinsic
property which is nearly independent from electron-defect and
electron-interface scattering.

(7) Phonon-phonon interaction. In the Einstein–de Haas
effect,30 the sudden change of the magnetization of a para-
magnetic cylinder is compensated by a rotation of the cylinder
due to angular momentum conservation. The same effect was
discussed6 in the context of the ultrafast demagnetization
experiment by raising the question as to whether the reduction
of 〈Se〉 could result in a net rotation of the irradiated area of
the sample. A net rotation is a q = 0 mode where q is the
phonon wave vector. In order to end up in a q = 0 mode,
phonon-phonon interaction via anharmonicities is necessary.
It is argued in Ref. 5 that phonon-phonon interaction is too
slow for a 100-fs time scale and, therefore, the mechanism
of the Einstein–de Haas effect is not the reason for ultrafast
demagnetization, as also assumed in Ref. 6.

(8) Phonon-magnon interaction. Scattering processes of
phonons with magnons are much slower (on a 100-ps time
scale31) than electron-phonon scattering processes (on a
20-fs time scale, see Sec. IV) and it is generally believed
that phonon-magnon scattering is too slow for an ultrafast
demagnetization dynamics in fcc Ni and fcc Co,4 but possibly
it is relevant for the demagnetization in Gd (Refs. 32 and 33)
and Tb.33

(9) Superdiffusive spin transport. It was shown by Battiato
et al.34,35 that a demagnetization can also be explained without
any spin-flip channel but with a superdiffusive spin transport
where the majority electrons diffuse faster into the substrate
than the minority electrons. Very recent measurements13,36–38

support the notion that this mechanism can contribute to the
demagnetization, but it was also shown that this contribution
depends critically on the composition of the system39 and that
it is not the dominant effect in simple ferromagnetic films on
an insulating substrate.40

Altogether, it must be concluded that the angular momen-
tum has to go from the spin degrees of freedom to the lattice,
and in most publications it is assumed implicitly or explicitly
that the spin angular momentum 〈Se〉 flows to the lattice 〈Ll〉 in
the end. Therefore, we investigate electron-phonon scattering
in the following. It might be that there are other processes,
e.g., electron-electron scattering processes which are faster,
however, in this case the electron-phonon scattering is certainly
the “bottleneck” since finally the angular momentum has to go
to the lattice.
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In this paper, the spin-flip electron-phonon scattering is
investigated by ab initio calculations, i.e., we also assume
that the angular momentum is transferred from 〈Se〉 to 〈Ll〉
but we do not keep track of the angular momentum conser-
vation and consider the lattice as a perfect sink for angular
momentum. Similar calculations were published by Essert and
Schneider20,21 and Carva et al.19,22 In contrast to Refs. 20 and
21, we do not calculate the occupation distribution of electronic
states directly after the laser pulse irradiation, but it is our
main assumption that the electrons thermalize very quickly via
electron-electron scattering and that the thermalized electrons
are responsible for the demagnetization. This is in line with
an earlier publication.4 In contrast to Refs. 19 and 22, we
do not make supercell calculations but we use the rigid-ion
approximation for the scattering operator41 which in principle
allows us to calculate the scattering matrix element for any
phonon wave vector q (in Ref. 22, a comparison of the supercell
calculations with calculations in rigid-ion approximation is
made and they agree quite well). Furthermore, we go beyond
the four above-mentioned publications because we calculate
the demagnetization rates and the available phase space for
scattering (which is linked to the maximum possible demag-
netization) also for band structures with reduced magnetic
moment, i.e., reduced exchange splitting.

This paper is organized as follows: In Sec. II, the electron-
phonon-scattering matrix element in rigid-ion approxima-
tion, Fermi’s golden rule, and the Boltzmann rate equations
are presented which are used for the equations for the
demagnetization time τM and for the demagnetization rate
dM/dt . The implementation with the linear-muffin-tin-orbital
method is explained in Sec. III. In Sec. IV, the results for a
ground-state exchange splitting and for exchange splittings
according to reduced magnetic moments are shown. The
phase-space estimation which is linked to the maximum
possible demagnetization is explained in Sec. V and results
are shown. Finally, the results are discussed and conclusions
are drawn in Sec. VI.

II. FORMALISM

A. Fermi’s golden rule

In a system with spin-orbit coupling, the electronic states
are always spin mixed,

�jk = [ajk(r)|χ↑〉 + bjk(r)|χ↓〉] · exp(ikr), (3)

where ajk(r) and bjk(r) are lattice-periodic functions (j
denotes the band index, k is the wave vector) and |χ↑〉 and
|χ↓〉 are the two spinor eigenfunctions. Thereby, the wave
function is denoted as “dominant spin up” or “dominant spin
down” if p

↑
jk = 〈�jk|χ↑〉〈χ↑|�jk〉 is larger than or less than

p
↓
jk = 〈�jk|χ↓〉〈χ↓|�jk〉. In the following, we denote the

dominant spin character by s = ↑,↓.
The transition rate Wλ

jks,j ′k′s ′ for a transition from a state

�s
jk with energy εs

jk to a state �s ′
j ′k′ with energy εs ′

j ′k′ (j,j ′

denote the band indices, k,k′ are the wave vectors, and s,s ′
denote the dominant spin character) via spin-flip scattering
of electrons at linearly polarized phonons is given in Fermi’s

golden rule:18

Wλ
jks,j ′k′s ′ = 2π

h̄

∣∣Mλ
jks,j ′k′s ′

∣∣2 h̄

2N M ωqλ

× {
bqλ δ

[
εs ′
j ′k′ − (

εs
jk + h̄ωqλ

)]
+ (b−qλ + 1) δ

[
εs ′
j ′k′ − (

εs
jk − h̄ω−qλ

)]}
. (4)

The phonon with wave vector q has frequencies ωqλ and
polarization vectors nqλ where λ denotes the three po-
larizations. Thereby, momentum conservation is demanded
k + q = k′ + G where G is a reciprocal lattice vector. bqλ =
[exp(h̄ωqλ/kBTp) − 1]−1 is the Bose distribution function
where kB is Boltzmann’s constant and Tp is the phonon
temperature. N is the number of atoms and M is the
atomic mass. Absorption of phonons and both induced and
spontaneous emission of phonons are included in Eq. (4).
Mλ

jks,j ′k′s ′ is the transition matrix element which reads as

Mλ
jks,j ′k′s ′ = 〈

�s ′
j ′k′

∣∣Wqλ

∣∣�s
jk

〉
(5)

and Wqλ is defined by18

Wqλ =
N∑

n=1

exp(iqR0,n)
(
nqλ ∇Rn

)
×

[ (
V ↑(r; {Rn}) 0

0 V ↓(r; {Rn})
)

+
∑

i

h̄

4m2
ec

2
(∇rV

α(r; {Rn}) × p̂)i σ̂ i

]∣∣∣∣
Rn=R0,n

,

(6)

which includes a distortion of the lattice potential (first term,
Elliott part) and a distortion of the spin-orbit coupling (second
term, Yafet part). V α(r; {Rn}) denotes the effective potential of
the spin-density-functional theory that an electron at position r
feels (α = ↑,↓). This potential depends on the set of positions
of lattice atoms {Rn}. The position of the nth lattice atom Rn

is given by Rn = R0,n + δRn where R0,n is the equilibrium
position and δRn is the displacement. me and c denote the
electron mass and the speed of light, respectively. p̂ is the
momentum operator and σ̂

i
the ith Pauli matrix.

It is possible to subdivide the equilibrium potential
V α

0 (r; {R0,n}) into equilibrium atomic potentials vα
0,n(r − R0,n)

(defined in an atomic sphere and zero outside) around the
equilibrium position of the lattice atoms R0,n:

V α
0 (r; {R0,n}) =

N∑
n=1

vα
0,n(r − R0,n). (7)

In the rigid-ion approximation,41 it is assumed that the atomic
potentials are displaced rigidly without deformation:

V α(r; {Rn}) ≈
N∑

n=1

vα
0,n(r − Rn). (8)

This is a good approximation for transition metals,22,42 at least
for not too small q. However, the rigid-ion approximation
neglects the screening of the electron-phonon interaction
which modifies the matrix element for q → 0 (see Refs. 43
and 44). It is straightforward to show that Wqλ in the rigid-ion
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approximation reads as

Wqλ =
N∑

n=1

− exp(iqR0,n) (nqλ ∇r)

×
[(

v
↑
0,n(r − R0,n) 0

0 v
↓
0,n(r − R0,n)

)

+
∑

i

h̄

4m2
ec

2

[∇rv
α
0,n(r − R0,n) × p̂

]
i
σ̂

i

]
. (9)

Local coordinates can be defined: rn ≡ r − R0,n. If the atomic
potentials are spherically symmetric vα

0,n(rn) = vα
0,n(rn),

Eq. (9) can be rewritten as

Wqλ =
N∑

n=1

− exp(iqR0,n)
(
nqλ ∇rn

) [(
v

↑
0,n(rn) 0

0 v
↓
0,n(rn)

)

+
∑

i

h̄

4m2
ec

2rn

∂vα
0,n

∂rn

(L̂n)i σ̂
i

]
, (10)

where L̂n = rn × p̂ is the angular momentum operator.

B. Discussion of Fermi’s golden rule

Fermi’s golden rule is derived in a time-dependent
perturbation theory of first order. The higher orders are small
if the perturbation time tp is short and if the perturbation
strength is weak. However, in order to replace the sin x/x

function (appearing in the derivation of Fermi’s golden rule)
by the δ distribution, it is assumed that the perturbation time
tp is long enough. A rough criterion is that the full width
at half maximum 2πh̄/tp of the sin x/x function is much
smaller than the maximum energy width �ε between the final
and the initial states

2πh̄

tp
� �ε. (11)

The maximum energy width between initial and final states
is about 40 meV for electron-phonon scattering. Therefore,
the perturbation time has to fulfill the criterion tp  100 fs.
Furthermore, Fermi’s golden rule has a Markov character, i.e.,
the processes do not depend on preceding processes which also
does not hold on a fs time scale. Therefore, the use of Fermi’s
golden rule is in principle not allowed on a fs time scale,
instead quantum-kinetic calculations are necessary. However,
there is a publication45 which shows for laser-irradiated
semiconductors that the difference between a quantum-kinetic
calculation and a calculation with Boltzmann rate equations
(which are Markovian) using Fermi’s golden rule is small
for averaged quantities already after some fs, whereas
the results for spectrally resolved quantities are different.
Hence, it is reasonable to assume that our main quantities,
the demagnetization time τM and the demagnetization rate
dM/dt , which are related to the electronic spin moments

averaged over all electronic energies, are correct despite using
Fermi’s golden rule and Boltzmann rate equations.

C. Demagnetization rate

Within Boltzmann’s theory, the time-dependent total tran-
sition rate Ws,s ′

(t) from spin character s to spin character s ′
reads as18,46

Ws,s ′
(t) = 1

�2
BZ

∑
j,j ′,λ

∫
BZ

d3k

∫
BZ

d3k′ft

(
εs
jk

)[
1 − ft

(
εs ′
j ′k′

)]
×Wλ

jks,j ′k′s ′ , (12)

where �BZ is the Brillouin zone (BZ) volume and ft is the
time-dependent Fermi distribution function

ft

(
εs
jk

) ≡
[

exp

(
εs
jk − εs

F(t)

kBTe(t)

)
+ 1

]−1

(13)

with the time-dependent chemical potential εs
F(t) and the time-

dependent electron temperature Te(t).
The demagnetization rate dM/dt (more precisely, rate of

the magnetic moment change per atom) is given by
dM

dt
= 1

�2
BZ

∑
j,j ′,λ

∫
BZ

d3k

∫
BZ

d3k′ mjk↑,j ′k′↓

× {
ft (ε

↑
jk)[1 − ft (ε

↓
j ′k′)]Wλ

jk↑,j ′k′↓

− ft (ε
↓
j ′k′)[1 − ft (ε

↑
jk)]Wλ

j ′k′↓,jk↑
}
. (14)

mjk↑,j ′k′↓ keeps track of the spin magnetic moment change
for every spin-flip transition. For pure spin states, mjk↑,j ′k′↓
equals 2μB but for spin-mixed states (in systems with spin-
orbit coupling) it is less than 2μB.

D. Demagnetization time

Yafet considered a situation in which a paramagnet is in a
magnetic field and at some time the magnetic field is switched
off. Thereafter, the paramagnet relaxes to its equilibrium and
a relaxation time can be defined.18

The ultrafast demagnetization experiment is totally differ-
ent, but nevertheless it was shown that a demagnetization time
τM can be defined46 for ferromagnets in analogy to Yafet’s
definition of the relaxation time if the following conditions
hold:

(1) Most states have an almost pure spin character, i.e., the
spin mixing is rather small.

(2) The system is near the equilibrium situation.
(3) The decrease of magnetization is exponential.
The first condition is approximately fulfilled for transition

metals.47,48 The second condition is fulfilled if only thermal-
ized electrons contribute to the demagnetization (in accordance
with Ref. 4) and in addition if the electron temperature is
near 300 K. The third condition is in accordance with the
measurements.4

According to Ref. 46, the demagnetization time reads as

1

τM

= 1

�2
BZ

∑
j,j ′,λ

∫
BZ

d3k

∫
BZ

d3k′
{
Wλ

jk↑,j ′k′↓

[
f0(ε↑

jk) η(ε↓
j ′k′)

Z̃↓(
ε0

F

) + [1 − f0(ε↓
j ′k′)] η(ε↑

jk)

Z̃↑(
ε0

F

) ]

+Wλ
j ′k′↓,jk↑

[
f0(ε↓

j ′k′) η(ε↑
jk)

Z̃↑(
ε0

F

) + [1 − f0(ε↑
jk)] η(ε↓

j ′k′)

Z̃↓(
ε0

F

) ]}
. (15)
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The Fermi distribution function in equilibrium is

f0(ε) ≡
[

exp

(
ε − ε0

F

kBT0

)
+ 1

]−1

, (16)

where ε0
F is the equilibrium chemical potential and T0 is the

equilibrium temperature. η(ε) is the derivative of the Fermi
distribution function

η(ε) ≡ −∂f0(ε)

∂ε
(17)

and Z̃s(ε0
F) is defined by

Z̃s
(
ε0

F

) ≡
∫ +∞

−∞
dε Zs(ε) η(ε), (18)

where Zs(ε) is the spin-resolved density of states.
The main difference between the demagnetization time τM

and the demagnetization rate dM/dt is that only equilibrium
quantities enter Eq. (15) for the demagnetization time and that
nonequilibrium quantities enter Eq. (14) for the demagneti-
zation rate. The nonequilibrium quantities are the chemical
potentials εs

F(t) and the electron temperature Te(t).

III. AB INITIO METHODS AND IMPLEMENTATION

The electronic states are calculated ab initio with the
relativistic version49 of the linear-muffin-tin-orbital (LMTO)
method50 in local-spin-density approximation51,52 (LSDA) and
in atomic-sphere approximation (ASA).50 The crystal wave
functions are expanded in atomic functions �R0,nlmα and their
energy derivatives �̇R0,nlmα (l, m, α are the angular momentum
quantum number, the magnetic quantum number, and the spin
quantum number, respectively):

�s
jk(r) =

√
1

N

N∑
n=1

exp(ikR0,n)

×
[∑

lmα

c
jks

lmα�R0,nlmα(r) + d
jks

lmα�̇R0,nlmα(r)

]
,

(19)

where c
jks

lmα and d
jks

lmα are the expansion coefficients. The crystal
wave function �s

jk, the atomic function �R0,nlmα , and its energy
derivative �̇R0,nlmα are four-vectors with large component and
small component.49

The matrix elements in Eq. (5) have a simple form in ASA:

Mλ
jks,j ′k′s ′

= 1

N

N∑
n,n′=1

exp[i(kR0,n − k′R0,n′ )]

×
∑
lmα

l′m′α′

{(
c
j ′k′s ′
l′m′α′

)∗
c
jks

lmα

〈
�R0,n′ l′m′α′

∣∣Wqλ

∣∣�R0,nlmα

〉

+ (
c
j ′k′s ′
l′m′α′

)∗
d

jks

lmα

〈
�R0,n′ l′m′α′

∣∣Wqλ

∣∣�̇R0,nlmα

〉
+ (

d
j ′k′s ′
l′m′α′

)∗
c
jks

lmα

〈
�̇R0,n′ l′m′α′

∣∣Wqλ

∣∣�R0,nlmα

〉
+ (

d
j ′k′s ′
l′m′α′

)∗
d

jks

lmα

〈
�̇R0,n′ l′m′α′

∣∣Wqλ

∣∣�̇R0,nlmα

〉}
(20)

and momentum conservation k + q = k′ + G automatically
arises when Eq. (20) is evaluated. The potential vα

0,n(rn) and
the spin-orbit coupling

∑
i h̄/(4m2

ec
2rn) ∂vα

0,n/∂rn (L̂n)i σ̂
i

included in Wqλ has to be replaced by the corresponding
relativistic LMTO expressions.49 We calculate the matrix
element Mλ

jks,j ′k′s ′ including the large and small components
without any approximation.

The phonon frequencies ωqλ and polarization vectors
nqλ are obtained from a force-constant model.53 Thereby,
the force constants are calculated ab initio with the pseu-
dopotential method using QUANTUM ESPRESSO,54 Vanderbilt
ultrasoft pseudopotentials,55 and the generalized gradient
approximation.56 All ab initio quantities are calculated for
zero temperature and it is assumed that they are still correct
for higher temperatures.

The nonequilibrium quantities εs
F(t) and Te(t) can not

be calculated ab initio. The electron temperature Te(t) is
considered as a parameter and one can obtain reasonable values
from experimental publications1,4,57,58 which are between 400
and 1000 K. The chemical potentials ε

↑,↓
F can be determined

with two conditions for the time ts where the thermalization via
electron-electron scattering is finished. As already explained
above, it is our main assumption that thermalized electrons
make the main contribution to the demagnetization, in accor-
dance with Ref. 4. Therefore, at time ts , the magnetization
is still the equilibrium magnetization M0 (first condition).
Without superdiffusive spin transport, number conservation
holds for any time t , N0 = N↑(t) + N↓(t), where N0 is the
total number of valence electrons in equilibrium and N↑,↓ is
the number of spin-up and -down electrons, respectively,

N↑,↓(t) =
∫ +∞

−∞
dε Z↑,↓(ε) ft (ε

↑,↓). (21)

The number conservation holds especially for time ts (second
condition). Both conditions

N0 = N↑(ts) + N↓(ts), M0 = μB [N↑(ts) − N↓(ts)] (22)

enable the determination of the chemical potentials ε
↑,↓
F (ts).

We also want to calculate the demagnetization rate for times
t∗ (t∗ > ts) where the magnetization has already reduced to
M∗ = M(t∗) and M∗ is considered as a given parameter. The
two conditions in order to calculate ε

↑,↓
F (t∗) read as

N0 = N↑(t∗) + N↓(t∗), M∗ = μB [N↑(t∗) − N↓(t∗)]. (23)

In order to evaluate the δ function on a discrete k-point
grid it is necessary to smear the δ function. The δ function
is represented by its Gaussian identity with the smearing
parameter σ :

δσ (ε) ≡ 1√
πσ 2

exp

(
− ε2

σ 2

)
. (24)

Different smearing parameters σ have to be tested.
One can show that only states with energies which are not

too far away from the Fermi energy are relevant for the cal-
culation of the demagnetization time and the demagnetization
rate. We use this fact and choose the relevant energy range
around the Fermi energy appropriately.
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IV. RESULTS

The calculations are made for different k-point grids and
for different smearing parameters σ . We checked carefully for
convergence keeping the product σ · N1 constant (N1 is the
number of k points in one direction). The largest k-point grid
which we considered has 50 × 50 × 50 k points in the first
Brillouin zone. It turns out that the convergence is very good
already for a 30 × 30 × 30 k-point grid and that the results
do not depend a lot on the smearing parameter for reasonable
values in the mRy range.

For the phonon temperature Tp [entering the Bose dis-
tribution function in Eq. (4)], room temperature is chosen,
Tp = 300 K, since the phonon heating is quite slow on a ps
time scale.59 Room temperature is considered as equilibrium
temperature T0 in Eq. (15), T0 = 300 K, since most experi-
ments are made at room temperature.

A. For ground-state exchange splitting

We calculate the demagnetization time τM according to
Eq. (15) for fcc Ni and bcc Fe. It turns out that τM is about
16 fs for fcc Ni and about 22 fs for bcc Fe. Actually, the
demagnetization time is less than the experimental demagne-
tization time (about 100 or 200 fs) and, therefore, spin-flip
electron-phonon scattering is indeed fast enough to explain
a demagnetization dynamics on the 100-fs time scale. This
is astonishing because it was expected by many people that
electron-phonon scattering processes can change observables
in time only on a time scale which is larger than the oscillation
time of one phonon period which is typically 1 ps.

With the demagnetization time at hand, it is possible
to estimate the material-dependent proportionality factor p

appearing in the Elliott-Yafet equation2,47,60

1

τM

= pb2 1

τ
, (25)

where b2 = 〈min(p↑
jk,p

↓
jk)〉 is the spin-mixing factor and 〈. . .〉

denotes the average over all states on the Fermi surface [b2 =
0.025 for fcc Ni,47 b2 = 0.024 for bcc Fe (Ref. 47)]. τ is
the Drude relaxation time which is about 2.4 fs for pure bcc
Fe at 273 K.61 This yields a proportionality factor p ≈ 4.5
which is perfectly in the range 1 < p < 10 given by Beuneu
and Monod for metals.60 The spin-flip probability asf = pb2 is
about 0.11.

The demagnetization time does not say anything about the
strength of demagnetization, it just says that any change of
the magnetic moment occurs on such a short time scale. The
information about the strength of demagnetization is contained
in the demagnetization rate. The demagnetization rate dM/dt

is calculated at time ts for different electron temperatures
Te(ts) from 300 K up to 2000 K and the results are shown in
Fig. 1 for the ground-state magnetic moment [Fig. 1(a) 0.64μB

for fcc Ni and Fig. 1(b) 2.2μB for bcc Fe]. We consider the
electron temperature Te(ts) as an open parameter. As written
above, electron temperatures up to 1000 K are reasonable and
electron temperatures of 1500 or 2000 K are probably too
large. The demagnetization rate dM/dt(ts) is almost zero for
all electron temperatures in bcc Fe. Also, in fcc Ni dM/dt(ts)
is almost zero for electron temperatures up to 1000 K, whereas
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FIG. 1. (Color online) Calculated demagnetization rate
dM/dt(ts) (black line, squares) at time ts as a function of the electron
temperature Te(ts) for the ground-state exchange splitting according
to the ground-state magnetic moment: (a) 0.64 μB for fcc Ni.
(b) 2.2 μB for bcc Fe. The demagnetization rate is split into
the Elliott part dME/dt(ts) (red line, circles) and the Yafet part
dMY/dt(ts) (green line, triangles).

dM/dt(ts) equals about 0.12μB/100 fs for 1500 K and about
0.22μB/100 fs for 2000 K. Experimental demagnetization
rates are about 0.2μB/100 fs for fcc Ni.4

We also split the results for the demagnetization rate
dM/dt(ts) into an Elliott part dME/dt(ts) and a Yafet part
dMY/dt(ts). The Elliott part considers only the modification
of the effective potential due to the lattice distortion [first
summand in Eq. (10)] and the Yafet part considers only
the distortion-induced modification of the spin-orbit coupling
[second summand in Eq. (10)]. The results are shown in
Fig. 1. Whereas the sum of the Elliott part and the Yafet
part of the matrix element yields the total matrix element,
the sum of the Elliott part and the Yafet part of the de-
magnetization rate does not yield the total demagnetization
rate dME/dt(ts) + dMY/dt(ts) �= dM/dt(ts). We find that the
Elliott part and the Yafet part make similar contributions
to the total demagnetization rate which is in line with
earlier publications62–64 on the spin relaxation of conduction
electrons in Si, e.g., when switching off an external magnetic
field.
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B. For exchange splittings according to reduced magnetic
moments

It was suggested in Ref. 20 that a calculation with a
band structure that changes during the demagnetization
process (“dynamic band structure”) could possibly enhance
the demagnetization. The interaction of the electrons with
photons and the electron-phonon scattering processes lead to
a modification of the occupation numbers for single-electron
states corresponding to the present band structure. One of
the resulting effects is that the overlap of electronic wave
functions changes, e.g., by excitations of 3d electrons to s or p

states, and this may modify the exchange interactions. We will
take into account only the effects on the exchange interactions
resulting from a change of the total magnetic moment of the
system. As discussed in point 1 of Sec. I, the magnetic moment
directly after the excitation with the laser beam is more or
less the magnetic moment of the ground state. Therefore, in
our treatment the exchange interactions are not modified by
the laser pulse itself. However, during the demagnetization
the magnetic moment changes. Therefore, we also calculate
the demagnetization rate dM/dt(t∗) for band structures with
reduced magnetic moment, i.e., reduced exchange splitting.
We do this by a constrained density functional theory65 by
fixing the magnetic moment resulting from the solution of the
Kohn-Sham equations by applying a Lagrangian field (which
is determined self-consistently) to the value M(t∗). t∗ is the
time at which the magnetic moment per atom is reduced to the
value used for the calculation. We do not determine t∗ but we
consider the value M(t∗) as a parameter, and we use the values
0.5μB, 0.4μB, and 0.3μB per atom for fcc Ni and 1.6μB and
1.1μB per atom for bcc Fe. For Fermi’s golden rule, we then
insert the electronic states which we get from the constrained
band-structure calculation. The calculations are made for
electron temperatures Te(t∗) from 300 K up to 1000 K, and it
does not make sense to consider higher electron temperatures
since the electron temperature has already cooled down at time
t∗. The results are shown in Fig. 2. Indeed, the demagnetization
rates in Fig. 2 are greater than the demagnetization rates in
Fig. 1 for the same electron temperature. However, for bcc
Fe and for all electron temperatures, the demagnetization
rates dM/dt(t∗) are much smaller than experimental
demagnetization rates. The same holds for fcc Ni except
for Te(t∗) = 1000 K where the demagnetization rates are
about 0.15μB/100 fs for a magnetic moment of 0.5μB, about
0.13μB/100 fs for a magnetic moment of 0.4μB, and about
0.09μB/100 fs for a magnetic moment of 0.3μB.

V. PHASE-SPACE ESTIMATION

In addition, we estimate the phase space for scattering
(similar as in Ref. 20) which is linked to the maximum possible
demagnetization for fcc Ni, bcc Fe, and fcc Co. Thereby, it
is again assumed that thermalized electron distributions are
mainly responsible for the demagnetization (see above).

The maximum possible demagnetization �M (more pre-
cisely, the maximum possible decrease of magnetic moment
per atom) is achieved if all minority electrons do not flip
their spins while all excited majority electrons �N↑ flip
their spin (excited with respect to the equilibrium situation at
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FIG. 2. (Color online) Calculated demagnetization rate
dM/dt(t∗) at time t∗ as a function of the electron temperature
Te(t∗) for different reduced exchange splittings according to reduced
magnetic moments: (a) 0.5 μB (black line, squares), 0.4 μB (red
line, circles) and 0.3 μB (green line, triangles) for fcc Ni. (b) 1.6 μB

(black line, squares) and 1.1 μB (red line, circles) for bcc Fe. t∗ is the
time at which the magnetic moment per atom is reduced to the value
used for the calculation.

T0 = 300 K) and all excited minority holes �Nh↓ are filled by
minority electrons which were majority electrons but flipped
their spins. Since every spin-flip changes the magnetization
by about 2μB, the maximum possible demagnetization is
�M = 2μB(�N↑ + �Nh↓) per atom. The number of excited
majority electrons �N↑ and the number of excited minority
holes �Nh↓ at time ts is given by

�N↑(ts) =
∫ +∞

ε
↑
i

dε Z↑(ε)
[
fts (ε

↑) − f0(ε)
]
,

(26)

�Nh↓(ts) =
∫ ε

↓
i

−∞
dε Z↓(ε)

[
f0(ε) − fts (ε

↓)
]
,

where ε
↑
i is the intersection point of the functions f0(ε) and

fts (ε
↑) and ε

↓
i is the intersection point of the functions f0(ε)

and fts (ε
↓). The calculation of �N↑ and �Nh↓ at time t∗

is analogous. This phase-space estimation is of course not
restricted to electron-phonon scattering processes. It is in
principle valid for any spin-flip scattering process involving
small energies (such as phonon energies).
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FIG. 3. (Color online) Calculated maximum possible demagneti-
zation �M as function of the electron temperature Te(t∗) up to 2000 K
for the ground-state exchange splitting according to the ground-state
magnetic moment and up to 1000 K for reduced exchange splittings
according to reduced magnetic moments. (a) fcc Ni: 0.64 μB (black
line, squares), 0.5 μB (red line, circles) and 0.3 μB (green line, trian-
gles). (b) bcc Fe: 2.2 μB (black line, squares), 1.6 μB (red line, circles)
and 1.1 μB (green line, triangles). (c) fcc Co: 1.6 μB (black line,
squares), 1.2 μB (red line, circles) and 0.8 μB (green line, triangles).

Figure 3 shows the results for the phase-space estimation
for electron temperatures up to 2000 K for the ground-state
magnetic moment [Fig. 3(a), fcc Ni: 0.64μB; Fig. 3(b), bcc Fe:
2.2μB; Fig. 3(c), fcc Co: 1.6μB] at time ts and up to 1000 K
for different reduced magnetic moments at time t∗. One can

see clearly that the maximum possible demagnetization �M =
2μB(�N↑ + �Nh↓) becomes larger if the magnetic moment is
reduced. For the ground-state magnetic moment, the maximum
possible demagnetization �M is much too small to explain an
experimental demagnetization of 50% (about 0.32μB for fcc
Ni, about 1.1μB for bcc Fe, and about 0.8μB for fcc Co) or even
more, except for fcc Ni and an electron temperature of 2000
K. The maximum possible demagnetization �M is also quite
small for bcc Fe and fcc Co with reduced magnetic moments
and could not explain an almost total demagnetization which
can be observed.4 This is not true for fcc Ni with reduced
magnetic moments and an electron temperature of 1000 K.

To conclude, the phase space is too small for bcc Fe and
fcc Co to explain an experimental demagnetization of 50%
(about 1.1μB for bcc Fe and about 0.8μB for fcc Co) or even
more (down to an almost total demagnetization), but it is not
necessarily too small for fcc Ni. However, one has to keep in
mind that most processes do not undergo spin flip and that �M

is an absolute maximum. Therefore, it seems to be likely that
the phase space is too small also for fcc Ni. Altogether, our
result that the calculated demagnetization rate is smaller than
the experimental rate (see Sec. IV) can be expected by these
phase-space estimations for the case of bcc Fe and fcc Co,
whereas for fcc Ni, explicit ab initio calculations are required.

VI. DISCUSSION AND CONCLUSIONS

In summary, the ab initio calculations of the demagne-
tization rates in Sec. IV could not reproduce experimental
demagnetization rates for bcc Fe, neither for a band structure
with ground-state magnetic moment nor for band structures
with reduced magnetic moment. The same holds for fcc Ni
except for very large electron temperatures (Te = 2000 K
for a band structure with ground-state magnetic moment,
Te = 1000 K for band structures with reduced magnetic
moment), which are probably unrealistically large. We also
come to similar conclusions in Sec. V: The maximum possible
demagnetization is definitely too small for bcc Fe and fcc Co to
explain an experimental demagnetization of about 50% (about
1.1μB for bcc Fe and of about 0.8μB for fcc Co) and even more
(down to an almost total demagnetization), both for a band
structure with ground-state magnetic moment and for band
structures with reduced magnetic moment. This is not true for
fcc Ni and large (probably unrealistic) electron temperatures.

Therefore, we conclude that the spin-flip electron-phonon
scattering alone can not be the reason for the ultrafast
demagnetization, i.e., we come to similar conclusions as in
Refs. 19–22. However, we argued in Sec. I that the spin
angular momentum has to go to the lattice in the end. The
question arises as to how these two statements fit together. To
answer this question, we discuss in the following a very recent
publication:66

It is shown in Ref. 66 that not only the longitudinal reduc-
tion, i.e., the length reduction of the magnetic moments must
be considered (as we do in this paper), but also the transverse
reduction, i.e., the disorder of the magnetic moments must be
taken into account. It is demonstrated in model calculations
that spin-flip electron-phonon scattering in a Stoner model
can never reproduce ultrafast demagnetization, whereas the
ultrafast demagnetization can be obtained in a model where
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electron spin flips and atomic spin flips are respected. We want
to give this model a microscopic interpretation in the following.

If a disorder of the magnetic moments is important for
ultrafast demagnetization, one has to include magnons. We
discuss now several processes where magnons are involved:

(1) As discussed in Sec. I, electron-magnon scattering alone
can not change the spin angular momentum 〈Se〉 without
spin-orbit coupling. With spin-orbit coupling it is possible
that angular momentum is transferred from 〈Se〉 to 〈Le〉 and
thereafter 〈Le〉 could be very quickly quenched by the crystal
field (faster than the temporal resolution of Refs. 24–26). In our
opinion, crystal-field quenching is linked to electron-phonon
scattering.

(2) Phonon-magnon scattering could also be a process
where magnons are involved. For the relevance of phonon-
magnon processes, see point 8 of Sec. I.

(3) In principle, also three-particle processes are possible,
i.e., electron-phonon-magnon scattering processes, but they
are definitely unlikely.

(4) It could also be that a combination of individual two-
particle processes, i.e., spin-flip electron-phonon scattering
and spin-flip electron-magnon scattering processes occur on
a 100-fs time scale. Since angular momentum conservation is
demanded for electron-magnon scattering without spin-orbit
coupling (however, also with spin-orbit coupling angular
momentum conservation is in a very good approximation
fulfilled), only spin-down electrons can emit a magnon and flip
their spin, ↓→↑ +magnon, whereas only spin-up electrons
can absorb a magnon and flip their spin, ↑ +magnon →↓.
Angular momentum conservation is not demanded for single
electron-phonon scattering since linearly polarized phonons
do not have a well-defined angular momentum (see Sec. I).
Therefore, both spin-up and -down electrons can absorb or emit
phonons. A combined spin-flip electron-phonon scattering and
spin-flip electron-magnon scattering process where a magnon
is emitted reads as

↑ +phonon → ↓
↓ → ↑ +magnon (27)

or, alternatively,
↑ → ↓ +phonon,

↓ → ↑ +magnon. (28)

Thereby, the electron-phonon scattering is important for
the transfer of angular momentum from the spin system
to the lattice. The electron-magnon scattering is important
for the disorder of the magnetic moments, which obviously
leads to a demagnetization. Electron-phonon scattering pro-
cesses are fast enough for a dynamics on a 100-fs time scale
(see Sec. IV), and there are also hints that electron-magnon
scattering processes are fast enough (see Refs. 3 and 67). It
could be that the rate of electron-phonon scattering processes is
as large as the rate of electron-magnon scattering processes. If
the rates are different, then the slower process could determine
the demagnetization dynamics. Investigations on this line are
under way in our group (see also Ref. 68).

This list is certainly not complete. There are probably even
more possible processes where magnons are involved. The
fourth mechanism in the list (combined spin-flip electron-
phonon and electron-magnon scattering processes) is certainly

the most likely mechanism of all and it is probably fast enough
for a dynamics on the 100-fs time scale.

We want to note that it might also be that a combi-
nation of spin-flip electron-electron scattering and spin-flip
electron-phonon scattering processes could be relevant for
the demagnetization as already suggested in Refs. 27 and 28
for simple model calculations (see Sec. I). Krauss et al.27

mention that the phase space for electron-electron scattering
is much larger than the phase space for electron-phonon
scattering since the phonon energy is very small (maximum:
40 meV). Electron-electron scattering is faster than electron-
phonon scattering4 and, hence, many more electron-electron
scattering processes take place which transfer the angular
momentum from 〈Se〉 to 〈Le〉 in systems with spin-orbit
coupling. Thereafter, the electron-phonon scattering processes
could transfer the angular momentum to the lattice 〈Ll〉. The
electron-phonon scattering could be the “bottleneck” which
determines the speed of the demagnetization dynamics.

To conclude, the demagnetization time τM for fcc Ni and
bcc Fe is even shorter than the experimental demagnetization
time of about 100 fs, which shows that electron-phonon
scattering is in principle fast enough for a dynamics on the
100-fs time scale. However, it was not possible to explain
the strength of ultrafast demagnetization dM/dt for fcc Ni,
bcc Fe, and fcc Co with spin-flip electron-phonon scattering
alone, neither for a band structure with ground-state magnetic
moment (which is in agreement with earlier publications19–22)
nor for band structures with reduced magnetic moments,
i.e., reduced exchange splittings, except for fcc Ni and
large (probably unrealistic) electron temperatures. We come
to similar conclusions as in Ref. 66: In order to explain
the ultrafast demagnetization, one should include magnons
which lead to a disorder of the magnetic moments and lead
obviously to a demagnetization. Since the angular momentum
has to be transferred to the lattice (see Sec. I), also phonons
must be included. We discuss that three-particle processes
are unlikely and that phonon-magnon scattering is too slow.
Finally, we suggest combinations of single two-scattering
processes, namely, combined spin-flip electron-phonon and
spin-flip electron-magnon scattering processes as a possible
explanation of the ultrafast demagnetization dynamics. These
combined processes are probably fast enough for a dynamics
on the 100-fs time scale, can transfer the angular momentum
to the lattice, and lead to a disorder of the magnetic moments.
Furthermore, we admit that combined spin-flip electron-
electron and spin-flip electron-phonon scattering processes
might also be important since the phase space is considerably
enlarged if electron-electron scattering is included. We suggest
to test the results of the model calculations of Mueller et al.28

on this mechanism by corresponding ab initio calculations.
Note added. Recently, Mueller et al.69 published a paper on

the effect of the dynamic exchange splitting during the ultrafast
demagnetization.
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65P. H. Dederichs, S. Blügel, R. Zeller, and H. Akai, Phys. Rev. Lett.
53, 2512 (1984).

66A. J. Schellekens and B. Koopmans, Phys. Rev. Lett. 110, 217204
(2013).

67A. B. Schmidt, M. Pickel, M. Donath, P. Buczek, A. Ernst, V. P.
Zhukov, P. M. Echenique, L. M. Sandratskii, E. V. Chulkov, and
M. Weinelt, Phys. Rev. Lett. 105, 197401 (2010).

68M. Haag, C. Illg, and M. Fähnle, Phys. Rev. B 87, 214427
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