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Multishell contribution to the Dzyaloshinskii-Moriya spiraling in MnSi-type crystals
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The transition from the microscopic Heisenberg model to the macroscopic elastic theory is carried out for MnSi-
type chiral magnetics with B20 crystal structure. Both exchange and Dzyaloshinskii-Moriya (DM) interactions
are taken into account for the first, second, and third magnetic neighbors. The particular components of the DM
vectors of bonds are found, which are responsible for (i) the global magnetic twist and (ii) the canting between
four different spin sublattices. A possible mechanism for effective reinforcement of the global magnetic twist is
suggested: it is demonstrated that the components of the DM vectors normal to corresponding interatomic bonds
become very important for the twisting power. The Ruderman-Kittel-Kasuya-Yosida (RKKY) theory is used for
model calculation of exchange parameters. It is found that just the interplay between the exchange parameters
of several magnetic shells rather than the signs of DM vectors can be responsible for the concentration-induced
reverse of the magnetic chirality recently observed in Mn1−xFexGe crystals.
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I. INTRODUCTION

Chiral spin textures are studied now very actively for
possible spin self-organization, unusual quantum transport
phenomena, and spintronic applications. A well established
mechanism of spin chirality is the spin-orbit Dzyaloshinskii-
Moriya (DM) interaction which is responsible for intricate
magnetic patterns in MnSi-type crystals. Even half a century
after the discovery of the strange magnetic properties of
MnSi,1,2 the magnetics of the B20 crystal structure still amaze
us with the variety and complexity of their magnetic phases
and electronic properties,3 contrasting with the simplicity of
the crystalline arrangement (only four magnetic atoms per
unit cell). Among the magnetic phases, both experimentally
observed and hypothetical, are simple and cone helices,4,5 the
Skyrmions and their lattices associated with the recently found
A phase,6–9 possible three-dimensional (3D) structures10–12

similar to the blue phases of liquid crystals, etc. This variety
is due to, first, the lack of inverse and mirror symmetries,
which gives rise to the chirality of the crystalline and spin
structures; second, the frustrations13,14 resulting from the
nontrivial topology of the trillium lattice, that introduces a
competition of various interactions between different pairs of
atoms.

Beginning from the discovery of the chiral magnetic
properties of MnSi in 19764,5 till the present day, the most used
approach to describe and predict twisted magnetic structures
remains the phenomenological theory based on the Ginsburg-
Landau free energy with an additional term first introduced by
Dzyaloshinskii.10,11,15–17 However, the approach, which uses
our knowledge of the system symmetry, is not able to say
anything about the values of coefficients in the free energy;
for instance, how they are connected with the real interactions
between atoms.

The microscopic theories, e.g., the model of classical
Heisenberg ferromagnetics with a spin-orbit term originally
developed by Moriya,18 have in their turn the shortcoming
that the number of variables, including the spins of all the
magnetic atoms, is infinite, and therefore they are difficult to
use for any analytical computations. Nevertheless, in spite of
some doubts about the validity of the Heisenberg model in the

itinerant magnetics, it is often used for digital simulations.12,19

For this model it is of great importance to know the parameters
of different interactions between pairs of spins: Jij for the
exchange coupling of the ith and j th atoms, and vectors
Dij for DM interactions. Those parameters can be obtained
in two ways: from comparison of theoretical results with an
experimental data and by means of ab intio calculations.

In our recent work,14 using a coarse-grained approximation,
the phenomenological constants J and D of the elastic
free energy have been connected with the corresponding
parameters of the microscopic theory. A surprising detail was
the recognition of intersublattice canting as a new microscopic
feature of the magnetic structures in MnSi-type crystals.
Figure 1 shows the difference between the twist and the
canting by example of a 1D spin chain. An experimental
confirmation of the canting could give us an argument for
applicability of the Heisenberg model to MnSi-type itiner-
ant ferromagnetics.20 Similar features could be observed in
dielectric chiral magnetics, such as in the recently studied
multiferroics Cu2OSeO3,21–23 BiFeO3

24 and in langasite-type
crystals.25

Though the theory with only nearest-neighbors interactions
is frequently used to simulate spin structures,12,14,19 it does
not always give an adequate physical description. Thus,
as we discuss in the next section, the nearest-neighbors
approximation needs abnormally strong spin-orbit interaction
in order to describe helical and Skyrmion states in some
B20 structures, e.g., in MnGe. Besides, very often the
coupling between second and next neighbors is comparable
or even more considerable than that of the nearest neighbors.
Thus, for example, in the weak ferromagnetic α-Fe2O3, the
antiferromagnetic exchange interactions and DM interactions
are expected to be the most strong for third and fourth
neighbors (see ab initio calculations in Ref. 26); this is
also supported by the experimental data for the Heisenberg
exchange parameters.27

It also could happen that only with the interactions between
non-nearest neighbors can one describe an experimentally
observed phenomenon. For example, if in a 1D spin chain
with ferromagnetic coupling between the nearest neighbors
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FIG. 1. (Color online) (a) The 1D twisted magnetic structure;
the spins rotate in the plane perpendicular to the propagation vector.
(b) The canting in the absence of a twist; the lattice is divided into
two sublattices (blue- and sand-colored arrows) with the spins tilted
by a constant angle. (c) The canting and the twist; the canting of
the sublattices leads to the combination of two helices with the same
propagation vector and a constant phase shift.

(J1 > 0) one turns on the antiferromagnetic interaction with
the second neighbors (J2 < 0), then for |J2| > J1/4 a spiral
magnetic structure appears owing to spontaneous breaking of
the inverse symmetry. Such approach can explain the phase
transition appearing at ∼28 K and inducing ferroelectricity
in the multiferroic Tb(Dy)MnO3 crystal.28,29 The approach
works also in the MnSi-type itinerant magnetics. Just the
competition between ferromagnetic coupling of the nearest
spins (J1 > 0) and antiferromagnetic coupling of the second
and third neighbors (J2 ≈ J3 < 0) was utilized to explain the
observed alignment of magnetic helices along crystallographic
directions 〈110〉 in MnSi at high pressure.30

In this paper, we suggest a possible mechanism for effective
reinforcement of the twist terms in the chiral spin structures
of the B20 magnetics, taking into account the interactions
with non-nearest neighbors. The reinforcement is caused by
an interplay between the exchange coupling with the second
and third neighbors and the canting from DM interactions. In
Secs. II–VI the transition from the Heisenberg microscopic
model to the continuous phenomenological one is performed,
and the spin-orbit terms in the phenomenological energy
are found up to contributions of the order of (D/J )2. In
Sec. VII the possibility of an extra twist induced by the
canting is demonstrated. In Sec. VIII the exchange interaction
parameters are estimated within the Ruderman-Kittel-Kasuya-
Yosida (RKKY) theory. In Sec. IX the possibility of an
experimental proof of the canting existence is discussed. The
possible applications of the theory are suggested in Sec. X.

II. DZYALOSHINSKII-MORIYA INTERACTION
IN MICROSCOPICAL AND

PHENOMENOLOGICAL APPROACHES

Both phenomenological and microscopical theories de-
scribing twisted MnSi-type magnetics contain terms in-
duced by chirality of the system and associated with the
Dzyaloshinskii-Moriya interaction of the spin-orbit nature. In

the Heisenberg model, the extra term being associated with an
individual bond, e.g., connecting magnetic atoms 1 and 2, can
be expressed as

D12 · [s1 × s2], (1)

where s1 and s2 are the classical spins of the atoms, D12 is
the DM vector of the bond 1-2. In principle, there could
be magnetic moments at Si atoms31 but this effect will be
neglected below. Let us briefly describe the properties of the
DM vector.18 (i) As is obvious from Eq. (1), the sign of the
DM vector depends on which atom of the bond we consider
as the first. Indeed, because the cross product changes its
sign when s1 and s2 are rearranged, then D21 = −D12. (ii)
The structure changes its chirality under inversion, whereas
the energy remains unchanged, which means that D12 is a
pseudovector, because [s1 × s2] is a pseudovector as well.
(iii) The DM vector of a bond possesses the local symmetry
of the bond. Thus, in MnSi the DM vectors are of their most
general form; i.e., they have three independent components,
because the Mn-Mn bonds in the B20 structure do not possess
any internal symmetry element. (iv) The DM vectors vary
from bond to bond; the DM vectors of the equivalent bonds
have the same length but may be of different orientation (just
the case of MnSi). In particular, if two bonds are connected
by the rotation symmetry transformation of the space group
P 213 of the crystal, then their DM vectors are connected by
the corresponding rotation of the point group 23.

In phenomenological theory, the chiral interaction is in-
duced by the extra term

DM · [∇ × M] (2)

in the expression for the magnetic energy density. Here M
is a continuous field of the magnetic moment, and D is a
pseudoscalar constant of the interaction.

Because both the theories describe the same matter, there
should be a relationship between them. In particular, the
terms (1) and (2) of the different approaches should be
somehow connected. Indeed, it was shown in Ref. 14 that
in the nearest-neighbors approximation the constant D of the
phenomenological theory is proportional to the component
(Dx − 2Dy − Dz) of the DM vector of the bond (−2x, 1

2 ,
1
2 − 2x) between neighboring manganese atoms.

However, there is a problem here. According to differ-
ent spin-orbit calculation schemes,26,29,32–35 the DM vector
associated with a bond should be perpendicular or almost
perpendicular to the bond. In the present case it means that
the component (Dx − 2Dy − Dz), which lies almost along
the bond, constitutes only a small part of the DM vector
length. Taking into account that having the relativistic nature
spin-orbit DM interaction serves as a small additive to the
ferromagnetic exchange coupling, we can conclude that the
twist observed in the MnSi-type crystals, particularly in MnGe,
seems to be abnormally strong. A possible solution of this
problem is that the nearest-neighbors approximation is not
sufficient and hereinafter we develop this idea in detail.

In the following sections we will show, how to perform
transformation from the microscopic Heisenberg model to the
macroscopic elastic theory.
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III. FROM THE HEISENBERG MODEL TO
A CONTINUOUS APPROXIMATION

In the classical Heisenberg model of magnetics with an
extra interaction of the Dzyaloshinskii-Moriya type, the energy
of the system is expressed as a sum of pair interactions between
magnetic atoms and the interaction of individual atoms with
an external magnetic field H:

E =
∑
cells

⎛
⎝∑

n,{ij}

{
−J̃nsi · sj + Dn,ij · [si × sj ]

− (Dn,ij · si)(Dn,ij · sj )

2Jn

}
− gμBH ·

4∑
i=1

si

)
. (3)

Here the external summation is over all the unit cells of the
crystal, n enumerates magnetic shells, the sum {ij} is over
all the bonds of the shell n, the sum over i is taken over all
magnetic atoms in the unit cell; J̃n = Jn − (D2

n/4Jn), Jn is the
exchange coupling interaction parameter of the nth shell, Dn,ij

is the DM vector of the bond ij of the nth shell, si are classical
spins of magnetic atoms, |s| = 1, and gμB is the effective
magnetic moment of the atom. Here we designate as a shell
the set of equivalent bonds, i.e., those having the same length
and connecting to each other by the symmetry transformations
of the crystal space group. Thus, the nth magnetic shell unites
the nth magnetic coordination spheres of all four manganese
atoms in the unit cell. The terms of the order of D2

n are usually
ignored but sometimes they can be important.36,37

The MnSi-type crystal has B20 structure (P 213 space
group) with four magnetic (Mn) atoms occupying crystallo-
graphically equivalent 4a positions within a unit cell, r1 =
(x,x,x), r2 = ( 1

2 − x,1 − x, 1
2 + x), r3 = (1 − x, 1

2 + x, 1
2 −

x), r4 = ( 1
2 + x, 1

2 − x,1 − x).38 The shortest bonds between

the magnetic atoms have length
√

1
2 − 2x + 8x2. The next

environment consists of two close magnetic shells with radii√
3
2 − 6x + 8x2 and

√
1
2 + 2x + 8x2. The parameter x defines

which of them is closer to the initial atom. When x > 1
8

(x ≈ 0.138 in the case of MnSi), then the shell with radius√
3
2 − 6x + 8x2 is closer, so we will refer to it as the second

one. When x = 1
8 , the second and third neighbors are at the

same distance so that the manganese sublattice gains the space
group P 4332,39 connecting the second and third shells by
a symmetry transformation. This could establish a linkage
between the DM vectors of the shells, but the silicon sublattice
(having in its turn the space group P 4132, when xSi = 7

8 )
breaks the symmetry and the DM vectors of the shells are
different even in this case. If x < 1

8 , then the third neighbors
become closer than the second ones.

Figure 2 shows the first three magnetic shells in MnSi. Ev-
ery shell holds 12 different directed bonds between manganese
atoms, which can be divided into four equilateral triangles.
Besides, each triangle is perpendicular to the corresponding
threefold axis passing through its center. Every manganese
atom serves as a common vertex to three such triangles, thus
justifying the name of the “trillium” lattice. Hence, every atom
has six neighbors in each of its magnetic coordination spheres.

FIG. 2. (Color online) The unit cell and magnetic shells in MnSi.
(a) The unit cell of the B20 structure (in two projections). The
manganese atoms, belonging to four different magnetic sublattices,
are shown as colored spheres: 1–magenta, 2–yellow, 3–violet,
4–green. Beige spheres are the silicon atoms (not shown in the
next figures). (b)–(d) First, second, and third magnetic shells,
correspondingly. The colored arrows designate directed bonds
(12 different bonds in each shell). Shown are the neighbors of
the first manganese atom (six in each shell) and atomic triangles
perpendicular to the threefold axis [111].

Let (D1x,D1y,D1z) be the coordinates of the vector D1,13

corresponding to the bond b1,13 = (−2x, 1
2 , 1

2 − 2x) directed
from r1 to r3 − (1,0,0), (D2x,D2y,D2z) be the coordinates
of the vector D2,13 corresponding to the bond b2,13 = (1 −
2x, 1

2 , 1
2 − 2x) directed from r1 to r3, and (D3x,D3y,D3z) be

the coordinates of the vector D3,13 corresponding to the bond
b3,13 = (−2x, 1

2 , − 1
2 − 2x) directed from r1 to r3 − (1,0,1).

We specify directions for all twelve bonds of a shell in a
way that all directed distances bij between neighboring atoms
connect to each other by the symmetry transformations of the
point group 23, so corresponding DM vectors are connected
by the same transformations. In the MnSi-type crystals there
is only one type of magnetic bond directed from a central atom
of type t to an atom of type t ′ �= t at a given shell (n = 1,2,3).
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We can take advantage from this fact and introduce for each
pair ij (i,j = 1,2,3,4, i �= j ) a local triad

(τ i − τ j ) ⊥ (τ i + τ j ) ⊥ [τ i × τ j ], (4)

and then use it as a basis for vectors bij and Dij . Here τ i is
a vector directed along the threefold axis passing through the
position ri :

τ 1 = (1,1,1), τ 2 = (−1,−1,1),
(5)

τ 3 = (−1,1,−1), τ 4 = (1,−1,−1).

Then the bond vector and the DM vector of an arbitrary bond
in three first magnetic shells can be written as

b1,ij = (−8x + 1)(τ i − τ j )/8 + (τ i + τ j )/4 + [τ i × τ j ]/8,

(6a)

b2,ij = (−8x + 3)(τ i − τ j )/8 + (τ i + τ j )/4 − [τ i × τ j ]/8,

(6b)

b3,ij = (−8x − 1)(τ i − τ j )/8 + (τ i + τ j )/4 − [τ i × τ j ]/8,

(6c)

Dn,ij = Dn+
4

(τ i − τ j ) + Dny

2
(τ i + τ j ) − Dn−

4
[τ i × τ j ],

(7)

with Dn± = Dnx ± Dnz; here Dn,ji �= −Dn,ij because the
indices ij and ji designate two different bonds.

Notice that the energy (3) does not depend on the parameter
x, so it can be chosen arbitrarily, making a convenient
transition to the continuous approximation [Fig. 3(b)]. Indeed,
to provide the transition the continuous unimodular vector
functions will be defined, ŝ1, ŝ2, ŝ3, ŝ4, which coincide in
special points with the spin values in corresponding atomic
positions. If the parameter x is equal to its experimental value,

FIG. 3. (Color online) (a) The ambiguity of the transition from
discrete to continuous model: two different smooth functions having
equal values in a discrete set of points. (b) The gain from the arbitrary
choice of the parameter x. The initial curve (orange) is plotted with
the use of the function values given in the discrete set of points with
the coordinates x and x̄ within the cells of a 1D crystal. When the
points are shifted to the center of the cells without a change of function
values, the view of the curve changes (blue).

e.g., x = 0.138 in MnSi, then we should take the functions in
the real atomic positions in order to obtain the real spins. In
the case of an arbitrary choice of x we should take the function
values in the points shifted from the real atomic positions.

It is convenient to choose the parameter x from the condition∑
n,{ij}

J̃n(τ i − τ j ) ⊗ bn,ij = 0, (8)

where ⊗ means the direct product of two vectors. Notice that
this 3 × 3 tensor is proportional to the unit one due to the
averaging over the symmetry elements of the point group 23
[see Appendix, Eq. (A2)].

Thus, for example, in the nearest-neighbors approximation
the condition gives x = 1

8 , which is shown in Ref. 14 to be
necessary in order to obtain smooth spin functions.

For n = 1,2,3 using Eqs. (A4) we find from Eq. (8)

xexch = J̃1 + 3J̃2 − J̃3

8(J̃1 + J̃2 + J̃3)
, (9)

where the index “exch” means that xexch is not a real coordinate,
but some physical parameter expressed through the exchange
interaction constants. In untwisted spin structures, the canting
is determined wholly by the DM interactions. In twisted states,
an extra canting arises induced by a disagreement of phases
of the helices connected with different magnetic sublattices.
The physical meaning of the “exchange” coordinates is that
the shift of the atoms to the new positions removes the canting
appearing due to the spiralling.

The bond ij of the nth shell connects the function values
ŝi(r) and ŝj (r + bn,ij ). Using continuity of the functions ŝ we
can write

ŝj (r + bn,ij ) = Bn,ij ŝj (r), (10)

where

Bn,ij ≡ exp(bn,ij · ∇) = 1 + (bn,ij · ∇) + 1
2 (bn,ij · ∇)2 + · · ·

(11)

is the operator representing the Taylor series expansion, and
pass from the summation over the unit cells to the integration
over the crystal volume (in the chosen units, the lattice
parameter a = 1 and the unit cell volume is equal to 1):

E = ∫
V
Edr, (12)

E =
∑
n,{ij}

{−J̃nŝi · Bn,ij ŝj + Dn,ij · [ŝi × Bn,ij ŝj ]

− (Dn,ij · ŝi)(Dn,ij · Bn,ij ŝj )/(2Jn)} − gμBH ·
4∑

i=1

ŝi .

(13)

IV. MAGNETIC MOMENT DENSITY, CALCULUS
OF VARIATIONS, AND PERTURBATION THEORY

In the phenomenological theory, the magnetic moment
density M is used as an order parameter and considered
an experimentally observed physical quantity. Nevertheless,
when we try to express a smooth continuous function M
through a discrete distribution of spins of the magnetic atoms,
an ambiguity arises from the fact that we can determine the

214402-4



MULTISHELL CONTRIBUTION TO THE . . . PHYSICAL REVIEW B 88, 214402 (2013)

weight function in different ways when averaging the spins
on a local volume. In the present case the ambiguity has the
result that the smooth functions ŝi having specified values in
a discrete set of points can be defined in an infinite number of
ways [Fig. 3(a)]. We will avoid the problem, supposing that
the functions ŝi are defined in the most convenient way.

It would be natural to define the magnetization as

M = 4gμBm, (14)

m = 1

4

4∑
i=1

ŝi . (15)

In analogy with Eq. (15) we introduce the canting tensor

uσα = 1

4

4∑
i=1

τiσ siα, α,σ = x,y,z, (16)

so that

ŝiα = mα + τiσ uσα. (17)

Hereinafter the summation on repeated greek indices is
implied. Four conditions |ŝi | = 1,i = 1,2,3,4, can be rewritten
using the invariants

I0 ≡ 1

4

4∑
i=1

ŝ2
i = m2 + uσαuσα = 1, (18)

Iσ ≡ 1

4

4∑
i=1

τiσ ŝ2
i = 2mαuσα + |εσβγ |uβαuγα = 0. (19)

In order to express the energy as a functional of the magnetic
moment m, the energy should be minimized by the canting
tensor components using calculus of variations. The variation
of the energy is

δẼ =
∫

V

δẼ dr =
∫

V

δuσα	σαdr, (20)

where the integrand now includes the Lagrange terms:

Ẽ = E + λ0I0 + λxIx + λyIy + λzIz. (21)

Taking into account Eq. (17),

	σα =
∑
n,{ij}

{−J̃n

[
τiσBn,ij + τjσB−1

n,ij

]
mα

− J̃n

[
τiσ τjρBn,ij + τjσ τiρB−1

n,ij

]
uρα

− εαβγ Dn,ijβ

[
τiσBn,ij − τjσB−1

n,ij

]
mγ

− εαβγ Dn,ijβ

[
τiσ τjρBn,ij − τjσ τiρB−1

n,ij

]
uργ

− (1/2Jn)Dn,ijαDn,ijβ

[
τiσBn,ij + τjσB−1

n,ij

]
mβ

− (1/2Jn)Dn,ijαDn,ijβ

[
τiσ τjρBn,ij + τjσ τiρB−1

n,ij

]
uρβ

}
+ 2λ0uσα + 2λσmα + 2|εσβγ |λβuγα. (22)

Here

B−1
n,ij = exp(−bn,ij · ∇) (23)

and the evident equation was used, which corresponds to the
integration in infinite volume,∫

f (r)Bg(r)dr =
∫

g(r)B−1f (r)dr. (24)

The minimum of the energy is determined from the
condition δẼ = 0 with arbitrary functions δuσα , so the problem
is reduced to the system of nine equations

	σα = 0, σ,α = x,y,z, (25)

with the extra conditions (18) and (19) determining the
functions λ0(r), λx(r), λy(r), and λz(r).

The general solution of the problem is too difficult, if
possible, but we can use perturbation theory with a small
parameter,

D/J � 1, (26)

that is the ratio of typical absolute values of spin-orbit (D) and
exchange (J ) interactions. We assume that this parameter also
describes the typical order of magnitude of spatial derivatives
and the spin components responsible for the canting:

|∇| ∼ |uσα| ∼ D/J. (27)

Another quantity that can be connected with the small value of
canting is

√
1 − m2. In a weak magnetic field, when a spiral

structure still exists,
√

1 − m2 ∼ D/J . But if the field is very
strong (gμBH 
 8J ),20 it induces a ferromagnetic alignment,
and

√
1 − m2 ∼ D/(gμBH ) � D/J . In that case we can take

the greater value of two parameters, D/J , as a constitutive one.
In the next section, we will use the consecutive approxima-

tions in order to find a solution of the system (25).

V. CANTING IN THE FIRST APPROXIMATION

Assuming λ(0)
α = 0, α = x,y,z, the zeroth-order equations

on D/J appear as∑
n,{ij}

J̃n(τiσ + τjσ )mα = 0 (28)

and become trivial after the summation on bonds; see Eq. (A1).
The first-order equations on D/J are∑

n,{ij}

{−J̃n(τiσ − τjσ )bn,ijμ∇μmα − J̃n(τiσ τjρ + τjσ τiρ)u(1)
ρα

− εαβγ Dn,ijβ(τiσ − τjσ )mγ

} + 2λ
(0)
0 u(1)

σα + 2λ(1)
σ mα = 0,

(29)

where the upper index (p) means that the corresponding term
is of the order of (D/J )p. The first summand in curly brackets
gives zero in accordance with Eq. (8); the two others can be
calculated using Eqs. (A3f) and (A5). Then,

2
[
λ

(0)
0 + 4(J̃1 + J̃2 + J̃3)

]
u(1)

σα

+ 8(D1+ + D2+ + D3+)εσαγ mγ + 2λ(1)
σ mα = 0. (30)

The normalization conditions are

u(1)
σαu(1)

σα = uσαuσα = 1 − m2, (31)

mαu(1)
σα = 0, (32)

where the first equation is of the second order on D/J .
Multiplication of Eq. (30) by mα and summation on α with

use of Eq. (32) give

λ(1)
σ = 0, (33)
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therefore

u(1)
σα = −4(D1+ + D2+ + D3+)εσαγ mγ

λ
(0)
0 + 4(J̃1 + J̃2 + J̃3)

. (34)

The substitution of Eq. (34) into Eq. (31) gives

λ
(0)
0 + 4(J̃1 + J̃2 + J̃3) = 4

√
2|D1+ + D2+ + D3+|m√

1 − m2
, (35)

and, finally,

u(1)
σα = − sgn(D1+ + D2+ + D3+)

√
1 − m2

√
2m

εσαγ mγ , (36)

where the sign of the right parts of Eqs. (35) and (36) is chosen
from the condition of the minimum of the canting energy.

The substitution of Eq. (36) into Eq. (17) gives

ŝi = m + κ[τ i × m], (37)

with

κ = sgn(D1+ + D2+ + D3+)

√
1 − m2

√
2m

. (38)

From Eqs. (30), (34), and (36) we conclude that the com-
bination D1+ + D2+ + D3+ of the DM vectors components is
responsible for the canting.

VI. ENERGY DENSITY

The contributions to the energy density from the magnetic
moment m and its derivatives are

E (0)
m = −

∑
n,{ij}

J̃nmαmα = −12(J̃1 + J̃2 + J̃3)m2, (39)

E (1)
m =

∑
n,{ij}

{−J̃nmα(bn,ij · ∇)mα + εαβγ Dn,ijαmβmγ } = 0,

(40)

E (2)
m =

∑
n,{ij}

{
−1

2
J̃nmα(bn,ij · ∇)2mα

+ εαβγ Dn,ijαmβ(bn,ij · ∇)mγ

− (2Jn)−1Dn,ijαDn,ijβmαmβ

}
. (41)

Using Eqs. (A7), (A8), and (A6) with x = xexch we obtain

E (2)
m = −Jm · �m + Dm · [∇ × m]

−
(

2D2
1

J1
+ 2D2

2

J2
+ 2D2

3

J3

)
m2, (42)

with

J = 3J̃ 2
1 + 3J̃ 2

2 + 3J̃ 2
3 + 10J̃1J̃2 + 10J̃1J̃3 + 22J̃2J̃3

4(J̃1 + J̃2 + J̃3)
,

(43)

D = −4(D1,13 · b1,13 + D2,13 · b2,13 + D3,13 · b3,13)

= 8xexch(D1+ + D2+ + D3+) − (D1+ − D1− + 2D1y)

− (3D2+ + D2− + 2D2y) − (−D3+ + D3− + 2D3y).

(44)

Notice that though the components Dx , Dy , Dz are included
in Eq. (44) in a nonsymmetrical way, it does not break the cubic
symmetry of the crystal. Indeed, Dnx , Dny , Dnz are nothing
but the components of an arbitrarily chosen DM vector from
the nth magnetic shell, and the appearance of Eq. (44) depends
on which of the twelve DM vectors of the shell we consider as
the first one.

The first term in Eq. (42) can be rewritten as

J ∂mα

∂rβ

∂mα

∂rβ

− 1

2
J∇ · (∇m2), (45)

where the second term gives a contribution to the surface
energy only:

−1

2
J

∫
V

dr∇ · (∇m2) = −1

2
J

∮
S

df · ∇m2. (46)

Far from the transition between paramagnetic and ferromag-
netic states, the absolute value m of the magnetic moment
changes slowly, and this contribution to the energy can be
neglected. However, near the phase transition, m can undergo
considerable changes, and in crystals with a significant surface
(nanocrystals, thin films) the term (46) could play an important
role. In particular, it could be important for the stabilization
of the A phase observed in thin films of Fe0.5Co0.5Si and
FeGe.40,41

The contributions from the canting to the energy density
are

E (1)
u = −

∑
n,{ij}

J̃n(τiσ + τjσ )u(1)
σαmα = 0, (47)

E (2)
u =

∑
n,{ij}

{−J̃n(τiσ − τjσ )u(1)
σα(bn,ij · ∇)mα

− J̃n(τiσ + τjσ )u(1)
σαmα − J̃nτiσ τjρu

(1)
σαu(1)

ρα

+ εαβγ Dn,ijα(τiσ − τjσ )u(1)
σβmγ

}
= 4(J̃1 + J̃2 + J̃3)u(1)

σαu(1)
σα

+ 8(D1+ + D2+ + D3+)εσβγ u
(1)
σβmγ

= 4(J̃1 + J̃2 + J̃3)(1 − m2)

− 8
√

2|D1+ + D2+ + D3+|m
√

1 − m2. (48)

Thus, we can finally rewrite the bulk energy density as
a function of the magnetic moment m accurate within the
second-order terms on D/J :

E = J ∂mα

∂rβ

∂mα

∂rβ

+ Dm · [∇ × m]

+ (J̃1 + J̃2 + J̃3)(4 − 16m2)

− 8
√

2|D1+ + D2+ + D3+|m
√

1 − m2

−
(

2D2
1

J1
+ 2D2

2

J2
+ 2D2

3

J3

)
m2 − 4gμBH · m. (49)

The first two terms with derivatives are nothing but the
deformation energy of the conventional phenomenological
theory of the chiral magnetics. However, here the values J
andD are expressed through the parameters of the microscopic
theory accordingly to Eqs. (43) and (44). The following term,
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on condition that m ≈ 1, gives −12(J̃1 + J̃2 + J̃3); that is, the
energy of 36 ferromagnetic bonds in first three shells in the
unit cell. Then, the term with

√
1 − m2 is the contribution

of the canting. It is always negative, which means that the
canting is an important and unavoidable peculiarity of the
magnetic structures of MnSi-type crystals. When minimizing
the energy on m, this term gives a contribution to the derivative
proportional to 1/

√
1 − m2, which becomes dominant, when

m → 1–0, impeding m from exceeding 1.

VII. EXTRA TWIST INDUCED BY CANTING

Now we return to Eq. (44), which defines the DM parameter
D of the phenomenological theory. As it was mentioned above,
from the physical point of view, the DM vectors are almost
perpendicular to the corresponding bonds and, consequently,
the expected value of D is small. In Ref. 20 some speculative
estimation has been performed with use of the well known
Keffer rule42 based on the Moriya theory,18 which gives us
following expression for the DM vector:

D12 = D[r1i × r2i], (50)

where D is unknown coefficient, and the vectors r1i and r2i

are directed from the positions of first and second magnetic
(Mn) atoms to that of an intermediate nonmagnetic (Si) atom
realizing the spin-orbit interaction. It is evident that D12 ⊥
r12 = r2i − r1i .

For the Keffer rule one needs the constants D and
coordinates of different intermediate atoms. Surprisingly, a
considerable result can be achieved with a more general rule,
namely that the DM vectors are perpendicular to the bonds.
The condition can be written as

D · b(x = xreal) = 0, (51)

and, comparing with Eq. (44), we easily find in this case that

D = 8(D1+ + D2+ + D3+)(xexch − xreal), (52)

which gives us a new definition of the exchange coordinate
as the manganese atom position inhibiting spiralling when
combining with the Keffer rule. The combination D1+ +
D2+ + D3+ is responsible for the canting in accordance
with Sec. V, and xexch is a combination of the exchange
interaction constants. Equation (52) can be interpreted as
evidence of the canting’s direct participation in the magnetic
structure spiralling. Besides, the sign of D and consequently
the magnetic chirality are determined both by the sign of the
canting component D1+ + D2+ + D3+ of the DM vectors and
that of the difference xexch − xreal, depending on the exchange
constants J̃1, J̃2, and J̃3.

Therefore, the canting, initially considered as a supple-
mentary microscopic peculiarity of the chiral magnetics,14,20

can be in fact an essential cause of the twisting power. Let us
demonstrate by a simple, albeit not very realistic, example how
the canting between different magnetic sublattices can result
in an essential twist gain. We consider a periodical 1D chain
of spins with a local interaction between them, composed of
unit cells containing two spins, say A and B (Fig. 4). All the
spins can rotate in a plane, and the energy of the chain is a

FIG. 4. (Color online) Periodical 1D chain of magnetic atoms
with two spins within a unit cell. The spins can rotate in a plane, and
their directions are fully determined by the only variable ϕ. The spin
interaction is described by the classic Hamiltonian (53). (a) When J =
0, the chirality is hidden; the lattice is divided onto two sublattices
with the ferromagnetic ordering of spins and the canting angle β

between them. (b) When an additional ferromagnetic interaction with
the atoms of the alternate kind is included (J > 0), the chirality
becomes apparent in the magnetic helix with the angle δ between
neighboring unit cells; besides, the angle α between the atoms A and
B within a cell remains the same over the chain.

function of differences of the angles:

E =
∑

n

{
CR

(
ϕA

n − ϕB
n + β

)2 + CL

(
ϕA

n − ϕB
n−1 + β

)2

+ J
(
ϕA

n − ϕB
n

)2 + J
(
ϕA

n − ϕB
n−1

)2}
. (53)

Here ϕA
n and ϕB

n are orientation angles of the spins A and B of
the nth cell, with respect to an arbirary direction; CR and CL

are positive constants. The condition CR �= CL determines the
chirality of the structure.

When J = 0, Eq. (53) describes a periodical magnetic
structure with the angle β of canting between the spin
sublattices A and B [Fig. 4(a)]. We suppose that this structure is
a result of the competition of two ordering interactions between
neighboring spins: a ferromagnetic one and a twisting chiral
one; besides, there is a reason, which is not considered here,
for elimination of the twist in this state.

The question arises: What happens with the structure after
introducing of an additional ferromagnetic (J > 0) interaction
with the nearest neighbors from the complementary sublattice?
The minimization of Eq. (53) gives the solution in the helix
form

ϕA
n = nδ, ϕB

n = nδ + α, (54)

where

α = CRβ

CR + J
(55)

is a tilt angle between spins in the unit cell, and

δ = J (CR − CL)β

(CR + J )(CL + J )
(56)

is the twist angle per one period of the chain [Fig. 4(b)].
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At the first sight it seems to be paradoxical that introducing
an additional aligning interaction induces a twist, but a simple
analysis of the problem shows that there is no contradiction
here. When |J | → ∞, the angles α and δ go to zero as
expected. In order to understand the system behavior for finite
values of J , consider the numerator of Eq. (56). The factor
(CL − CR) reflects the degree of the internal chirality of the
structure. The product Jβ reminds us of a lever torque, with
β playing the role of the lever arm and J being analogous
to the rotating force. We can imagine that the “aligning
force” J , being applied to the initially tilted by the angle β

sublattices, results in structure distortions, which in their turn
induce the twist due to the potential chirality of the structure
(CR �= CL). Notice that the change of the sign of the constant
J , corresponding to the transition from ferromagnetic (J > 0)
to antiferromagnetic (J < 0) coupling, increases the degree of
the twist (reduces the helix pitch) and changes its handedness.

We expect that a similar effect takes place in chiral magnetic
MnSi. Indeed, there is an evident similarity of Eqs. (52)
and (56). In this case the role of a lever is played by the
canting induced by the DM interactions, whereas the “force”
is the ferro- or antiferromagnetic aligning interaction with
neighboring atoms.

VIII. ESTIMATION OF THE EXCHANGE PARAMETERS
AND THE RKKY THEORY

In analogy with the Dzyaloshinskii-Moriya interaction, the
exchange one is described differently in microscopical and
phenomenological approaches. Although it is evident that the
exchange constants of both theories should be connected to
each other, the connection is found in the nearest-neighbors
approximation14 to be not so trivial as we could expect.
Indeed, the expression (43) for J in the approximation of
three magnetic shells is significantly different from the simple
proportionality in the former case. However, the situation
seems to be even more intricate, because J is not sufficient
to induce the ferromagnetic alignment, and another exchange
parameter is also needed, namely

J� =
∑

j

J̃j , (57)

where the summation is taken over all the neighbors con-
tributing to the exchange interaction. Then the condition of
the validity of our approximation can be written as two
inequalities,

J� > 0, (58)

J > 0, (59)

both equally important. Here J� is nothing but the energy of
an individual spin interaction with its magnetic surroundings
in the untwisted (ferromagnetic) state, taken with an opposite
sign, and Eq. (58) guarantees stability of the state relative to
the change of the spin sign. Equation (59) in its turn guarantees
stability relative to the spin small rotations, providing the
smallness of the magnetic moment gradients. Therefore, only
combined use of the conditions leads to a ferromagnetic
ordering with a weak spiralling.

Neglecting the contribution of the DM interaction to
symmetrical exchange (i.e., using Jn instead of J̃n), we can
estimate J� and J in the frame of the RKKY theory,43–46

which is applicable to the itinerant magnetics. Indeed, in
this model Jn is a simple function of the distance between
interacting atoms,

Jn ≡ J (bn) ∼ −F (2kF abn), (60)

F (x) = x cos x − sin x

x4
. (61)

Here kF is the Fermi wave number, and bn is the dimensionless
length of the bonds of the nth magnetic shell.

It follows from Eqs. (60) and (61) that atoms situated at
approximately the same distances, e.g., b2 and b3, make similar
contributions to the exchange energy. Therefore, together
with the second and third shells it is necessary to take into
account the fourth shell corresponding to the atoms separated
by lattice periods. Because the atoms of the fourth shell
belong to the same magnetic sublattice, they do not affect the
canting between different sublattices, i.e., they leave uσα and
xexch unchanged and give simple additive contributions to J�

and J .
All the magnetic spheres of an atom have six atoms, so

J� = 6(J1 + J2 + J3 + J4). (62)

In order to calculate the additive from the fourth shell to J ,
we can write, for example, the interaction energy of two spins
separated by the period (1,0,0) of the lattice,

−J4s(r) · s(r + (1,0,0)) ≈ −J4

(
1 + s · ∂s

∂x
+ 1

2
s · ∂2s

∂x2

)
.

(63)

If we take the sum over six bonds, multiply it by the number
of magnetic atoms in the unit cell and take into account that
all the bonds in that sum are taken twice, then the correction
to the energy density can be written as

�E = −12J4 − 2J4m · �m. (64)

It is obvious from the comparison with Eq. (42) that the
additive to J from the fourth magnetic shell is 2J4.

The parameters Fn ≡ F (2kF abn) are oscillating functions
of the argument kF a, which are easy to calculate using real
distances between magnetic atoms. In MnSi for x = 0.138
we find b1 = 0.613, b2 = 0.908, b3 = 0.964, and b4 = 1.
Figure 5(a) shows the functions F1–F4 plotted in the area
10 < kF a < 20, where the value kF a = 16.4 for MnSi is
situated (kF = 3.6 Å−1,47 a = 4.56 Å). The graphs show that
Eqs. (58) and (59) can be satisfied together in the areas of
negative values of F1. Figure 5(b) represents dependences of
J� and J on kF a, calculated for the same area. Both J� and
J are oscillating alternating-sign functions; the jumps of J
correspond to the zeros of J1 + J2 + J3. The nearest to the
value kF a = 16.4 “plateau” with positive J� and J is in the
area 17.1 < kF a < 18.9.

Notice that the behavior of J at some kF a could seem
paradoxical. For example, the divergence of J → +∞ would
mean a strong suppression of long-wavelength fluctuations.
However, the paradox can be resolved by taking into account
the behavior of J� . Indeed, if J1 + J2 + J3 = 0, then J� ∼ J4,

214402-8



MULTISHELL CONTRIBUTION TO THE . . . PHYSICAL REVIEW B 88, 214402 (2013)

FIG. 5. (Color online) (a) The Fn ≡ F (2kF abn) dependences on
the Fermi wave number for four magnetic shells. The distances b1–b4

are chosen as for MnSi. The minima of F1 give the areas with J�,J >

0. (b) The J� (solid line) and J (dashed line) dependences on the
Fermi wave number. The plots show strong oscillations. The jumps of
J correspond to the zeros of J1 + J2 + J3. The areas with J�,J > 0
determine weakly twisted ferromagnetic states. The plateau closest to
the known value for MnSi, kF a = 16.4, is in the area 17.1 < kF a <

18.9.

where J4 is nothing but the coupling constant of the spins
belonging to the same sublattice. This means that, when
J → +∞, the connection between sublattices gets broken.
Thus, when the spins of three sublattices are aligned in the
same direction, the spins of the fourth one can have an
arbitrary direction, even if the condition J4 > 0 guarantees
the ferromagnetic order within the sublattice. The foregoing
means that in addition to Eqs. (58) and (59), we should
introduce another inequality,

J ′
� =

∑
j

′
J̃j > 0, (65)

determining the ferromagnetic connection of the four magnetic
sublattices. Here the sum is taken over the bonds connecting
atoms belonging to different sublattices. In the approximation
of four magnetic shells, J ′

� = 6(J1 + J2 + J3) = J� − 6J4,
therefore the zeros of J ′

� coincide with the jumps of J .
The RKKY model allows us as well to estimate the

exchange coordinate xexch. Because, according to Eq. (52), the
degree of the twist is determined by the difference xexch − xreal,
it is useful to have an idea about how much this difference could

FIG. 6. (Color online) Exchange coordinate xexch calculated in
the RKKY model. The jumps of the function correspond to the
zeros of J1 + J2 + J3. The dotted line identifies the real value
xreal = 0.138 for MnSi. The inset shows the xexch dependence in
the area corresponding to positive J� and J , 17.1 < kF a < 18.9,
where −0.28 < xexch − xreal < 0.16. The chirality of the magnetic
structure change its sign when xexch = xreal.

be. In the nearest-neighbors approximation xexch = 1
8 , which

is close to the real value xreal = 0.138 for MnSi. However,
when taking into account the contributions from the second
and third shells, xexch can have arbitrary large positive and
negative values near the zeros of J1 + J2 + J3 (Fig. 6). Close
to the minima of F1, J2 and J3 are small in comparison with
J1 and, therefore, xexch ≈ 1

8 ; see the inset in Fig. 6. Notice that
the zeros of J1 + J2 + J3 do not result in a divergence of the
wave number k = D/2J , because J in the denominator and
xexch in the numerator increase simultaneously.

As seen in from Fig. 6 and its inset, the difference
xexch − xreal can change its sign depending on kF . This gives
a possibility to control the magnetic structure chirality by
varying the concentration of different elements in the crystal.

Equations (58) and (59) are evident preconditions of
the experimentally observed ferromagnetic order in MnSi.
Nevertheless, we can not preclude that one of the constants
J� , J , or both these parameters, can have negative values.
For example, the condition J� < 0 does not surely result in
an antiferromagnetic order. The strong frustrations intrinsic in
the system, e.g., the triangles of bonds, and nonisotropic DM
interactions can induce a small magnetic moment and lead to
a ferri- or a weak ferromagnetic order. This could explain the
weak magnetic moment observed in MnSi (g ≈ 0.4). When
J < 0, the contributions to the energy density with higher
spatial derivatives should be taken into account, which can
stabilize the helix pitch.

IX. CANTING AND MAGNETIC DIFFRACTION

In Sec. V, we obtain Eq. (37), which says that in the first
approximation the canting can be described as spin rotations
by the same small angle around corresponding threefold axes.
A similar expression for the ferromagnetic state caused by a
strong magnetic field was found in Ref. 20, where an approach
was suggested to measure the canting using neutron or x-ray
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magnetic diffraction. In Ref. 20, the angle of spin tilt was
proportional to δ = D1+/4J1. In order to obtain that result
we can find the coefficient κ ∼ √

1 − m2/
√

2m for untwisted
state. The minimization of Eq. (49) on magnetic moment
modulus m, assuming that H ‖ m = const, gives

κ = D1+ + D2+ + D3+
4(J1 + J2 + J3 + gμBH/8)

. (66)

Notice that κ = δ, when D2 = D3 = J2 = J3 = H = 0. The
corresponding expressions for the structure factors of purely
magnetic reflections 00�(� = 2n + 1) can be easily found from
Ref. 20.

Notice that there is another contribution to the reflec-
tions, induced by the anisotropy of magnetic susceptibility
tensor.48,49 The contributions can be distinguished because (i)
the tilts have different directions, and (ii) the canting effect
does not depend on the magnetic field modulus, whereas
the tilts induced by the susceptibility tensor anisotropy are
proportional to H .

The fact that both the twist and canting are determined
by the same DM vectors components gives an additional
possibility of numerical verification of the theory. Indeed,
excluding D1+ + D2+ + D3+ from Eqs. (66) and (52), we
can connect the canting angle in the unwound state and the
wave number k = D/2J of the magnetic helices:

κ = J
16(J1 + J2 + J3 + gμBH/8)(xexch − xreal)

k. (67)

Excepting observable physical values, Eq. (67) contains only
exchange interaction constants, which are easier to calculate
using ab initio methods than the DM vectors.

X. SUMMARY AND DISCUSSION

An essential difference of the microscopic description
of the magnetic properties of MnSi-type crystals from the
phenomenological one is the usage of the pseudovector D
instead of pseudoscalarDwhen describing the Dzyaloshinskii-
Moriya interaction. The presence of the extra parameters
(pseudovector components) results in the existence of a
local canting, a feature not studied yet in magnetic twisted
structures. An important problem solved in the present work
is how to distinguish the components of D responsible for
the twist and the canting. Hopkinson and Kee in Ref. 19
showed numerically (in the nearest neighbors approximation)
that the components of the D vectors lying along the bonds
were responsible for the twist, whereas the D components
directed perpendicular to the bonds and lying in the planes of
bond triangles in the trillium lattice were responsible for the
canting. In Ref. 14 we specified the result and showed that real
components of D inducing the twist and the canting lay along
crystallographic directions closed to those found in Ref. 19.
Nevertheless, the problem remained that, in accordance with
the quantum mechanical description, the DM vectors should
be perpendicular or almost perpendicular to the bonds. In other
words, the D components responsible for the twist accordingly
to Refs. 14 and 19 could be diminutive. In order to solve the
problem we take into account the contribution of non-nearest

neighbors in the magnetic interaction. Surprisingly, it appears
that in the case, when all the DM vectors are perpendicular
to the bonds, the spiralling is determined by the same D
components as the canting. It leads to the conclusion that the
canting, initially being considered as an additional microscopic
effect in relation to the global twist, can in fact serve as a
cause of the abnormal twist experimentally found in MnSi-type
crystals, particularly in MnGe. It is also important that the
contribution of non-nearest magnetic neighbors should be
taken into account.

In the simplest phenomenological theory describing twisted
magnetic structures, it is supposed that |M| = const, which is
roughly true at low temperatures, far below the phase transition
from the paramagnetic state. However, this condition makes
energetically unfavorable such structures as the Skyrmions and
their lattices, associated with the A phase observed close by the
transition point. In order to overcome this problem as well as
to describe the critical phenomena, two additional terms, M2

and M4, limiting the value of magnetic moment are included
in the free energy.16 The presence of the terms decreases M

in the regions with a large density of the magnetic energy,
thereby decreasing the energy of the whole structure. Thus, in
Ref. 50 the terms M2 and M4 are used in order to calculate the
energy of Skyrmions. It is found that M decreases considerably
nearby the core of the Skyrmion, where the magnetic moment
M has a direction opposite to the external magnetic field, and
has a maximum at some distance from the core, where the
energy gain from the double twist is maximal. However, in
the latter case the magnetic moment exceeds its saturation
value M0, which is not acceptable for physical reasons. In
the present work we show that there should be a contribution
from the canting ∼m

√
1 − m2 to the energy density, which

can play the same role as M2 and M4, but does not allow the
magnetic moment modulus to exceed the saturation threshold.
Besides the canting, the thermal fluctuations of spins also
contribute to the reduction of the magnetic moment M . Near
the transition point the amplitude of the fluctuations can be
comparable with the canting. Moreover, the lower the effective
local field heff,i = −∂E/∂si is, acting on the individual
spin si , the greater the fluctuations and cantings. Therefore,
the reinforcements of both the thermal fluctuations and the
canting have the same cause, so they should give a similar
effect.

If the canting were to be observed in MnSi, direct confir-
mation of a non-nearest-neighbors effect could be possible
using Eq. (67), connecting the propagation number of the
magnetic helices with the magnitude of the residual canting
in the unwound state in a strong magnetic field. The equation
involves only the exchange constants Jn and does not depend
on the DM vectors. The possibility of an experimental proof
of the theory should stimulate ab intio calculations of the
interaction constants. Some semiquantitative estimations are
made in the present work with use of the RKKY model.
However, problems still remain. For example, the RKKY
parameter kF a = 16.4 for MnSi corresponds to the area, where
J� < 0 and J < 0. More realistic calculations would give a
tip about the direction of a further search.

It has been found in Ref. 51 that the propagation number
k of the magnetic helix in the alloy Fe1−xCoxSi is strongly
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dependent on the concentration x of the cobalt atoms. Thus,
when x changes from 0.05 to 0.15, the helix period decreases
abruptly by several times. It can be explained, in particular,
by the strong dependence of the Fermi wave number kF

on the cobalt impurity concentration, which also effects the
exchange parameters J� , J , and xexch. This phenomenon
could be also responsible for the recently observed52,53 change
of the sign of the magnetic helicity in Mn1−xFexGe alloys.
Indeed, from Eq. (52) the correlation follows between the
crystalline chirality �c and the magnetic helicity γm. Thus, for
the left-handed structure (�c = −1), described in Sec. III, the
magnetic helicity

γm = sgnD = sgn(D1+ + D2+ + D3+) sgn(xexch − x)

(68)

(D > 0 corresponds to the right magnetic helix). The first
multiplier in the right part of Eq. (68) is the sign of some
combination of the DM vectors components, whereas the
second one depends on the isotropic exchange parameters.
Equation (68) shows that the helicity γm can change even if
the microscopic DM interaction, defined by the vectors D,
remains constant. In this case the sign change is due to the
interplay between the exchange parameters J1, J2, and J3 of
three magnetic shells. This is drastically different from the
usually supposed change of the sign of the DM interaction.
Thus, a potential possibility arises to control the sign of the
magnetic chirality by varying the concentration of the different
components and therefore affecting the Fermi wave number
kF . Notice that the possibility of such an effect becomes
evident only when the interactions with non-nearest neighbors
are taken into account.

Another interesting fact, not yet explained within the frame-
work of microscopic theories, is the helix ordering along some
special directions, e.g., 〈111〉 or 〈100〉. Usually this ordering
is associated with a weak anisotropic exchange,16 but in fact
the ordinary DM interaction also can result in the appearance
of cubic anisotropic terms in the energy of spiral orientation
in the lattice with a cubic space group. These contributions of
order (D/J )4 will determine the critical magnetic field Hc1, at
which the helix comes off of its preferable zero-field direction.
This is in good agreement with the observed ratio of the
first and second critical fields Hc1 � Hc2, because it follows
from our estimations that Hc1/Hc2 ∼ (D/J )2. Indeed, as an
example, the period of the magnetic helix in MnSi yields about
40 unit cell parameters, which gives the value 2π/40 for the
propagation number modulus |k|. On the other hand, it follows
from the phenomenological description that k = D/(2J ), or
D/J ∼ π/10 ≈ 0.3. This gives us the estimation Hc1/Hc2 ∼
0.1, which is in good agreement with the experimental data.
In our previous work14 we proposed a coarse-grain approxi-
mation, which allowed us to calculate only the contributions
to the energy proportional to (D/J )2. In the present work a
new approach has been developed permitting more precise
calculations of the energy. In particular, the terms of the order
of (D/J )4 would give us a contribution of the Dzyaloshinskii-
Moriya interaction to the energy of the cubic anisotropy
responsible for (i) the ordering of the spiral axes along selected
crystallographic directions, e.g., 〈111〉 in MnSi, in the absence

of external magnetic field; and (ii) the orientation of the triangle
Skyrmion lattice in the A phase observed in these crystals.7–9
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APPENDIX

The vectors τ i , τ j , (τ i − τ j ), (τ i + τ j ), [τ i ×
τ j ], bn,ij , Dn,ij (n = 1,2,3) change with use of the
same symmetry transformations of the point group 23,
when the index ij passes trough 12 possible values
{12,13,14,21,23,24,31,32,34,41,42,43}. Therefore we can
use the formulas ∑

{ij}
aij = 0, (A1)

∑
{ij}

aijαbijβ = 4(a12 · b12)δαβ, (A2)

where aij and bij are the vectors from the above-listed set.
Thereby the following summations can be easily made:∑

{ij}
(τ i − τ j )α(τ i + τ j )β = 0, (A3a)

∑
{ij}

(τ i ± τ j )α[τ i × τ j ]β = 0, (A3b)

∑
{ij}

(τ i − τ j )α(τ i − τ j )β = 32δαβ, (A3c)

∑
{ij}

(τ i + τ j )α(τ i + τ j )β = 16δαβ, (A3d)

∑
{ij}

[τ i × τ j ]α[τ i × τ j ]β = 32δαβ, (A3e)

∑
{ij}

(τiατjβ + τjατiβ) = −8δαβ. (A3f)

Using Eqs. (A3a)–(A3e) we can calculate the sums con-
taining products of the vectors bn,ij , Dn,ij (n = 1,2,3):∑

{ij}
(τ i − τ j )αb1,ijβ = 4(−8x + 1)δαβ, (A4a)

∑
{ij}

(τ i − τ j )αb2,ijβ = 4(−8x + 3)δαβ, (A4b)

∑
{ij}

(τ i − τ j )αb3,ijβ = 4(−8x − 1)δαβ, (A4c)

∑
{ij}

(τ i − τ j )αDn,ijβ = 8Dn+δαβ, (A5)

∑
{ij}

Dn,ijαDn,ijβ = 4D2
nδαβ, (A6)
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∑
{ij}

b1,ijαb1,ijβ = (32x2 − 8x + 2)δαβ, (A7a)

∑
{ij}

b2,ijαb2,ijβ = (32x2 − 24x + 6)δαβ, (A7b)

∑
{ij}

b3,ijαb3,ijβ = (32x2 + 8x + 2)δαβ, (A7c)

∑
{ij}

D1,ijαb1,ijβ = [(−8x + 1)D1+ − D1− + 2D1y]δαβ,

(A8a)∑
{ij}

D2,ijαb2,ijβ = [(−8x + 3)D2+ + D2− + 2D2y]δαβ,

(A8b)∑
{ij}

D3,ijαb3,ijβ = [(−8x − 1)D3+ + D3− + 2D3y]δαβ.

(A8c)
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