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Recently, using a first principles approach, we predicted that zinc blende boron arsenide (BAs) will have an
ultrahigh lattice thermal conductivity, κ , of over 2000 Wm−1K−1 at room temperature (RT), comparable to that
of diamond. Here, we provide a detailed ab initio examination of phonon thermal transport in boron arsenide,
contrasting its unconventional behavior with that of other related materials, including the zinc blende crystals
boron nitride (BN), boron phosphide, boron antimonide, and gallium nitride (GaN). The unusual vibrational
properties of BAs contribute to its weak phonon-phonon scattering and phonon-isotope scattering, which are
responsible for its exceptionally high κ . The thermal conductivity of BAs has contributions from phonons
with anomalously large mean free paths (∼2 μm), two to three times those of diamond and BN. This makes
κ in BAs sensitive to phonon scattering from crystal boundaries. An order of magnitude smaller RT thermal
conductivity in a similar material, zinc blende GaN, is connected to more separated acoustic phonon branches,
larger anharmonic force constants, and a large isotope mixture on the heavy rather than the light constituent atom.
The striking difference in κ for BAs and GaN demonstrates the importance of using a microscopic first principles
thermal transport approach for calculating κ . BAs also has an advantageous RT coefficient of thermal expansion,
which, combined with the high κ value, suggests that it is a promising material for use in thermal management
applications.

DOI: 10.1103/PhysRevB.88.214303 PACS number(s): 66.70.−f, 63.20.kg, 71.15.−m

I. INTRODUCTION

We have recently examined phonon thermal transport in
boron arsenide (BAs) using a first principles approach1 and
found that BAs has an exceptionally high lattice thermal
conductivity, κ , over 2000 Wm−1K−1 at room temperature
(RT), comparable to the highest known bulk values of the
carbon crystals, diamond and graphite. For isotopically pure
BAs, a κ of over 3000 Wm−1K−1 was found, again compara-
ble to that of isotopically pure diamond. These findings were
surprising, since for decades, the carbon-based crystals have
been known to have κ values much higher than any other bulk
material. Also, conventional guides used to estimate κ predict
that the RT κ of BAs should be around 200 Wm−1K−1,2,3

much smaller than that of diamond. We have identified a
combination of vibrational properties that contribute to the
unusually high κ calculated for BAs, properties that are
not present in any other material that we have examined.
These are: (1) a large mass ratio of constituent atoms, which
provides a large frequency gap between acoustic and optic
phonons, thereby removing much of the intrinsic anharmonic
scattering between acoustic and optic phonons; (2) an unusual
atomic bonding, which causes a bunching together of the
acoustic phonon branches and decreases intrinsic anharmonic
scattering between acoustic phonons; and (3) a heavy atom
(As) having only a single isotope. For large atomic mass ratio
compounds, the motion of the heavy atoms dominates the
heat-carrying acoustic phonon modes. Thus, compounds with
both large mass ratio and isotopically pure heavy atoms show
significantly weaker phonon-isotope scattering than those with
heavy atoms having large isotope mixtures, regardless of the
isotopic mixture of the light atoms.

Given the strikingly high κ found for BAs, the unusual
underlying physical behavior, and the potential technological
importance of the finding, the purpose of this paper is to
provide a detailed description of the thermal transport behavior
of BAs. We compare this behavior to the other boron-based
III–V materials and to other relevant cubic compounds to
elucidate the effect of the unique vibrational properties of BAs
on thermal transport. We employ a phonon Boltzmann trans-
port equation approach with interatomic forces determined
from density functional theory to calculate κ . Calculated κ

values for a large number of other materials using ab initio
approaches have demonstrated consistently good agreement
with measured values,1,4–14 with no adjustable parameters.
This provides strong validation for the predictive capability
of this first principles approach and for the surprising finding
for BAs.

Cubic BAs has been fabricated, and some of its properties
have been characterized previously.15–19 It is a semiconductor
with an indirect electronic band gap measured to be about
1.5 eV and optical properties suggesting it may be a good
candidate for photovoltaic applications.19 It has almost purely
covalent bonding with the smallest ionicity of all III–V
zinc blende compounds.20 Although its thermal conductivity
has not been measured, we will show that it possesses a
unique combination of vibrational properties that should yield
extremely high κ for high-quality crystals.

In Sec. II, we present the conceptual ingredients required
to achieve high κ in nonmetallic crystals, and we highlight
unusual features possessed by BAs that contribute to its high
κ . Section III reviews the ab initio approach used to calculate
κ . In Sec. IV, a broad range of calculated results for BAs is
given and compared to those of other materials to illustrate the
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unique combination of transport properties in BAs. A summary
and conclusions are provided in Sec. V.

II. UNUSUAL PROPERTIES GIVING HIGH
THERMAL CONDUCTIVITY

We note first that in semiconductors and electrical insula-
tors, heat is carried primarily by phonons. The intrinsic lattice
thermal conductivity of an infinite perfect crystal is limited by
phonon-phonon scattering resulting from the anharmonicity
of the interatomic potential.21 To lowest order, this intrinsic
scattering involves three phonons.

The conventional conditions used to predict high κ for
nonmetallic crystals were given by Slack.2,22 These are: (1) low
average atomic mass, Mavg, (2) strong interatomic bonding,
(3) simple crystal structure, and (4) low anharmonicity.
Conditions (1) and (2) imply a large Debye temperature, θD ,
while condition (3) dictates a small number of atoms per unit
cell. Assuming constant anharmonicity, conditions (1) and (2)
suggest that κ should decrease with increasing Mavg and with
decreasing θD .

These criteria are based on the theory of Liebfried and
Schlömann (LS),23 later extended by Slack2,22 and others.24

While the LS theory has been found to give reasonable
estimates of κ for a number of materials,2,3,22 it does not
include all the properties determining the intrinsic lattice
thermal conductivity. We illustrate this with the following
considerations for compounds having two atoms per unit cell.
Such materials have three acoustic (a) phonon branches and
three optic (o) branches. Participating phonons in a three-
phonon scattering process must satisfy energy and momentum
conservation:

ωλ ± ωλ′ = ωλ′′ q ± q′ = q′′ + K, (1)

Here, each phonon mode is labeled by the index λ = (q,j ),
where q is the phonon wave vector and j is the phonon
polarization, and ωλ is the phonon frequency. Also, K = 0
for normal (N) processes, and K �= 0 for resistive Umklapp
(U) scattering. These conditions admit primarily two types
of processes: (1) scattering between three acoustic phonons:
a + a ↔ a, and (2) decay of two acoustic phonons into one
optic phonon or vice versa: a + a ↔ o.25,26 We label these aaa
and aao, respectively.

One can then ask: What is required to restrict these two
processes in order to increase κ? The answer is immediately
evident for aao processes: If there is a large enough fre-
quency gap between acoustic and optic phonons (a-o gap),
then energy cannot be conserved in any aao process.27 This
can be achieved by choosing a material with a sufficiently large
mass ratio of its constituent atoms, as is well known from the
diatomic linear chain model.28,29

Restricting aaa processes is not as simple. In principle,
one way to achieve this would be to make the three acoustic
branches coincident throughout the Brillouin zone. This
follows from a selection rule that prohibits anharmonic decay
to any order of a phonon into a set of phonons of higher
phase velocity, and it applies to both N and U processes.30,31

Thus, a hypothetical diatomic crystal with the combination of
sufficiently large mass ratio and coincident acoustic branches
could have extremely high thermal conductivity, limited only

by extrinsic defects such as isotopes, or crystal boundaries.32,33

The microscopic details of the aaa and aao scatterings are not
incorporated in the conventional conditions stated above.

However, nature does not provide crystals with coinci-
dent acoustic branches. Instead, crystals have two distinct
transverse acoustic (TA) branches, TA1 and TA2, and a
higher-frequency longitudinal acoustic (LA) branch. It then
becomes of interest to search for high-κ materials that combine
the conventional criteria with the vibrational properties that
tend to reduce both aaa and aao processes. From our first
principles investigations of phonon thermal transport in over
two dozen materials1,4,5,11,12,14 and insights gained therein, we
have identified BAs as having the best combination of these
properties. The large As to B mass ratio of nearly 7 gives an
a-o gap nearly equal to the highest acoustic branch phonon
frequency, thus allowing no aao scattering. In addition, the
acoustic branches are bunched together more than in most
other materials. Finally, the light boron mass, stiff covalent
bonding, and small number of atoms per unit cell (two), along
with relatively weak anharmonicity,34 satisfy the conventional
criteria for high intrinsic κ , and the isotopically pure heavy
(As) atom ensures weak scattering of phonons by isotopes, as
discussed below.

Before presenting supporting results, we briefly review the
ab initio theoretical approach used to calculate κ .

III. THEORY

A. First-principles approach

The first-principles approach used here to calculate phonon
thermal conductivity has been described before.4,5,12,14 Here,
we provide a brief summary and refer readers to the refer-
enced work for further details. We consider a cubic crystal
in which a small steady-state temperature gradient, ∇T,
exists. The resulting thermal current can be expressed as
JQ=(1/V )

∑
λ h̄ωλvλnλ, where the sum is over all phonon

modes, vλ is the phonon velocity in mode λ, and V is the crystal
volume. For small ∇T, the nonequilibrium distribution func-
tion is nλ = n0

λ + n1
λ, where, n0

λ = 1/[exp(h̄ωλ/kBT ] − 1) is
the Bose factor at temperature T , and n1

λ is a small deviation,
which is linear in the temperature gradient. A phonon lifetime
can be defined through n1

λ = −(dn0
λ/dT )

∑
α vλατλαdT /dxα ,

where τλα is the phonon lifetime in mode λ for a temperature
gradient along direction α,5,21 and the sum is over the
Cartesian components, x, y, and z, taken to be along the
cubic axes. The phonon lifetime can be determined by solving
the phonon Boltzmann transport equation (BTE) using an
iterative approach.5,35,36 We note that this transport lifetime
is different from the more commonly used lifetime defined
from the inverse of the total scattering rates. In the latter,
momentum-conserving normal (N) processes are incorrectly
treated as independent resistive processes, on the same footing
as Umklapp (U) and extrinsic scattering processes. The full
BTE solution corrects for this error, resulting in increased life-
times and larger thermal conductivity. This point is discussed
further in Sec. IV.

The thermal conductivity can be calculated as:

κ =
∑

λ

Cλv
2
λατλα (2)
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where Cλ = h̄ωλ(∂n0
λ/∂T )/V is the specific heat capacity per

phonon mode. We note that the thermal conductivity of cubic
crystals is a scalar, and we define κ = καα .

The only inputs to the phonon BTE and resulting thermal
conductivity are the harmonic and anharmonic interatomic
force constants (IFCs), which are calculated ab initio from
density functional theory37,38 and density functional pertur-
bation theory39 using the QUANTUM ESPRESSO package40,41

with norm-conserving pseudopotentials in the local density
approximation (LDA). For each material, the lattice constant,
a, was determined by minimization of the total ground
state energy. The electronic structure calculations were typ-
ically done with 80 Ryd plane-wave cutoffs and 6 × 6 × 6
Monkhorst-Pack k-point meshes. The harmonic IFCs were
calculated using standard DFPT also with 6 × 6 × 6 k-point
meshes for each system. They were used to determine the
phonon frequencies, ωλ, eigenvectors, and velocities, vλ. Also
calculated were the effective charges and the macroscopic
dielectric constants of BN, boron phosphide (BP), BAs, and
boron antimonide (BSb) (referred to collectively as the BX
materials). We find a small value of − 0.154 for the reduced
effective charge of BAs, which demonstrates its almost purely
covalent bonding and a reversal from conventional anion and
cation identification.20 This value is in good agreement with
that obtained previously.42

The anharmonic IFCs were calculated using a DFT real-
space supercell approach described in detail in Refs. 11 and 14.
Pairs of atoms near the center of a 216 atom supercell were per-
turbed from the ground state configuration, and the resulting
Hellmann-Feynman forces on the atoms were determined from
	-point structure calculations. The anharmonic IFCs were
determined from the numerical derivatives of these forces.
We calculated anharmonic IFCs out to third nearest neighbors
of the unit cell atoms.

B. Robustness of the ab initio model

First principles calculations of κ have demonstrated good
agreement with measured thermal conductivities for a range
of systems.1,4–14 Because of the important and surprising
ultrahigh thermal conductivity of BAs, however, we performed
a range of test calculations of κ of BAs and cubic (c) BN
to verify the results. We note that c-BN has a large reduced
effective charge, calculated to be 0.88, so long-range polar
interactions may be more important in c-BN than in BAs,
which has almost purely covalent bonding. We have tested
the following: (1) inclusion of up to third nearest neighbors
for the real-space anharmonic IFCs (results for this case are
presented in Sec. IV), (2) inclusion of up to fifth nearest
neighbors for the real-space anharmonic IFCs, (3) a reciprocal
space approach that includes anharmonic IFCs up to seventh
nearest neighbors4,5,43 and long-range Coulomb interactions,44

(4) an approach using harmonic and anharmonic IFCs de-
termined in the generalized gradient approximation (GGA)
with ultrasoft pseudopotentials and a nonlinear core correction,
and including up to third nearest neighbors for the real-space
anharmonic IFCs, and (5) two different approaches to solve
the phonon BTE—a phase space search approach5 and an
adaptive Gaussian smearing approach.45,46 For BAs, we find
that the ultrahigh κ obtained using method (1) is robust against

calculational differences in (2), (3), (4) and (5). For example,
at RT, we find that the isotopically pure thermal conductivity,
κpure, of BAs from method (1) is 3170 Wm−1K−1.47 Methods
(2) and (3) give only a 1% reduction to this value. Methods
(4) and (5) give a 4% and 0.5% increase to this value,
respectively. For c-BN, we find more substantial differences.
Using method (1), we calculate κpure = 2145 Wm−1K−1 for
c-BN. Method (2) gives a 4% reduction to this value. Method
(3) gives a 1% increase to this value. Method (4) gives a 14%
reduction, and method (5) gives a 4% increase to this value. The
decrease in κpure for c-BN using method (4) is due to known
differences between LDA and GGA calculations, which tend
to overbind and underbind atoms, respectively. As a result,
the GGA calculations give optic phonon branches lower than
the LDA calculations, and lower than experiment. This gives
enhanced aao scattering and reduces κ .1,12,14

IV. RESULTS AND DISCUSSION

For high-quality semiconductors and insulators, the dom-
inant phonon scattering mechanisms around RT are intrinsic
three-phonon scattering and scattering of phonons by isotopes.
In the following, we consider only these two scattering
mechanisms. Expressions used here for the phonon-phonon
and phonon-isotope scattering rates have been published
previously.5,11,12,43,48,49 We first present results for the intrinsic
κ of isotopically pure materials.

A. Intrinsic thermal conductivity

Figure 1 shows the calculated intrinsic κ (κpure) for
isotopically pure c-BN, BP, BAs, BSb, and diamond as a
function of temperature. Around and above RT, the intrinsic κ

for BAs is considerably higher than those for the other BX
systems, reaching a RT value of around 3200 Wm−1K−1,
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FIG. 1. (Color online) Intrinsic thermal conductivity, κpure, as a
function of temperature for c-BN (orange), BP (purple), BAs (red),
and BSb (green). Also shown is the κpure of diamond (black).
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FIG. 2. (Color online) Calculated RT κpure (solid red curve) vs.
Mavg for BX crystals where the properties (atomic masses, interatomic
force constants, effective charges, dielectric constants) of pairs of
group V atoms (i.e., X in BX) are averaged continuously using their
relative concentrations in going from N to P to As to Sb. Also shown
is the κpure calculated by averaging the properties of elemental group
IV materials spanning diamond to silicon (Si) to germanium (Ge)
(dashed black curve). Qualitatively similar curves can be obtained
plotting κpure against the Debye temperature, θD . The calculated κpure

values for the BX materials are shown by the solid red squares, and
those for the elemental materials (diamond, Si, and Ge) are shown by
the black squares.

which is comparable to that of diamond, and even larger than
that of diamond above RT. This result is not predicted using
the conventional guidelines that direct the search for high-κ
materials. For example, in comparing with diamond, the Mavg

of BAs is over three times larger, the calculated θD of BAs is
about three times smaller, and the anharmonicity in the two
materials is roughly the same by conventional measure.1,34

The unusual behavior of κ in BAs and the other BX
materials is illustrated in Fig. 2, where the RT κpure is
given as a function of Mavg for the BX materials and for
the elemental materials: diamond, Si, and Ge. The solid
curve segments are obtained by averaging relevant physical
properties (atomic masses, force constants, lattice constants,
etc.) of each pair of materials at the segment end points. The
curve for the elemental materials follows the typical behavior,
with κpure decreasing monotonically with increasing Mavg. This
is associated with the heavier mass and reduced θD , which
result in decreased acoustic phonon velocities and frequencies
and with increased phonon-phonon scattering by increasing
phonon populations. The BX curve initially follows a similar
trend, with κpure dropping from c-BN to BP. However, the
curve then rises from BP to peak at around 3700 Wm−1K−1,
with BAs appearing very near this peak before dropping again
to BSb. We found the same unusual behavior for κpure in the
beryllium-VI cubic compounds, although with lower thermal
conductivities.48
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FIG. 3. (Color online) Total anharmonic three-phonon scattering
rates for the TA1 branch at T = 300 K for BAs (solid black
squares) and Si (hollow red circles) as a function of frequency.
The phonon frequencies are scaled by the highest TA1 frequency
for each material. The total scattering rates increase monotonically
with increasing frequency in Si, while in BAs, they decrease with
increasing frequency in the mid- to high-frequency range.

Underlying this surprising behavior are features of BAs
in particular and the BX materials in general that conspire
to cause weak intrinsic thermal resistance. First, the light
boron mass keeps the average atomic mass relatively small,
and this, combined with the stiff bonding, gives unusually
high-frequency scales in the BX materials compared to many
other materials. Second, the large mass difference between As
and B (MAs /MB = 6.93) produces a large gap between acoustic
and optic phonon branches (the a-o gap) (see Fig. 11 for the
phonon dispersion of BAs, and fig. 3 in Ref. 50). Finally, in the
BX materials and diamond, the acoustic branches are closer
together than they are in Si. This is particularly noticeable
along the 	→K direction, where the TA2 and LA branches
come quite close (See Fig. 2 in Ref. 1).

B. Intrinsic phonon-phonon scattering rates

The larger a-o gap and the bunching of the acoustic
branches have a profound effect on the intrinsic anharmonic
scattering rates of BAs. To illustrate this, Figs. 3 and 4 compare
these scattering rates against frequency for phonons from the
TA1 branch in Si and BAs. The frequencies are obtained
on a fine mesh of q points in the irreducible wedge of
the Brillouin zone. The spread in values at each frequency
reflects the q-dependent anisotropy in the scattering rates.
This comparison is useful since BAs and Si have similar
frequency ranges and acoustic velocities for their acoustic
branches. Figure 3 shows the total scattering rates, while
Fig. 4 gives the scattering rate breakdown by the different
combinations of a or o phonons. For ease of comparison,
frequencies are scaled by the maximum calculated acoustic
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FIG. 4. (Color online) Anharmonic three-phonon scattering rate
contributions for the TA1 branch at T = 300 K from the aao and aaa
processes as a function of frequency. Solid black squares give the aaa
contributions for BAs. Hollow red circles (green triangles) give the
aaa (aao) contributions for Si. The phonon frequencies are scaled by
the highest TA1 frequency for each material.

phonon branch frequency for each material. At low frequencies
(not shown in Fig. 4), aaa and aoo contributions to the intrinsic
scattering rates are similar and dominant in both materials. In
Si, at higher frequencies, aaa and aao processes dominate
and are comparable in strength. The total scattering rates
shown in Fig. 3 (i.e., aaa + aao + aoo) increase monotonically
with increasing frequency in Si. In contrast, the scattering
rate behavior in BAs is quite different. For BAs, the aao
processes are absent due to the large a-o gap. Further, with
increasing frequency, the aaa processes in BAs first increase
and then decrease in the mid- to high-frequency range of the
acoustic phonon spectrum, becoming more than an order of
magnitude smaller in BAs than those for Si approaching the
highest-frequency region.

Another difference is seen by examining the respective
strengths of the Umklapp (U) scattering rates in Si and
BAs. Acoustic phonons carry the majority of the heat due to
their larger acoustic velocities and larger phonon populations
compared to optic phonons. Umklapp scattering, which is
directly responsible for the thermal resistance, typically
occurs for higher-frequency acoustic phonons for which wave
vectors are a substantial fraction of the Brillouin zone.21

Figure 5 gives the ratio of the anharmonic scattering rates
for U processes to the total intrinsic scattering rates (U + N)
as a function of frequency for phonons in the TA2 branch.
Phonon frequencies are again scaled by the largest frequency
in that branch. In the region of small frequencies, N scattering
is prevalent, and U scattering is weak for both materials, as
expected. For higher frequencies, the resistive U scattering
becomes dominant in Si. In contrast, the U scattering is
relatively weak in BAs, even at higher frequencies. This is
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FIG. 5. (Color online) Umklapp scattering rates for the TA2

branch at RT as a function of frequency for BAs (solid black squares)
and Si (hollow red circles). The Umklapp scattering rates are scaled
by the total anharmonic three-phonon scattering rates, and the phonon
frequencies are scaled by the highest TA2 frequency for each material.
The weaker Umklapp scattering ratio for BAs at higher frequencies
is particularly striking since the total BAs intrinsic scattering rates
are already much smaller than those in Si.

particularly striking given that the total intrinsic scattering
rates for BAs in this frequency range are already weak, as seen
in Figs. 3 and 4.

Insight into the weak intrinsic scattering rates of the
acoustic phonons in BAs is gained from examination of the
two-phonon density of states:

D±
j (q) =

∑
j ′j ′′

∫
dq′δ(ωj (q) ± ωj ′ (q′) − ωj ′′ (q ± q′ − K))

(3)

which gives a measure of the phase space available for
three-phonon scattering per phonon mode, �j (q) = D+

j (q) +
D−

j (q)/2.51 Figure 6 compares �TA2 (q) for Si and BAs for
a fine q mesh in the irreducible wedge. As in Figs. 3–5, the
spread in values reflects the q-anisotropy of this phase space.
The horizontal axis again gives phonon frequency scaled by
the largest TA2 frequency for a mesh of q points taken from the
irreducible wedge of the Brillouin zone. For small frequency
corresponding to small q near the center of the Brillouin zone,
the TA2 phase space for three-phonon scattering in BAs is
comparable to or larger than that of Si. However, for higher
frequencies, this phase space decreases rapidly in BAs while
staying roughly constant in Si. The large a-o gap in BAs has
removed all aao processes, which are prevalent in Si (see
Fig. 4). Thus, the rapid phase space decrease in BAs arises from
a decrease in aaa processes, which is a direct consequence of
the bunching of acoustic branches. As noted in Sec. II, aaa
processes become forbidden throughout most, if not all, of
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FIG. 6. (Color online) Phase space for three-phonon scattering
per phonon mode for the TA2 branch at RT as a function of scaled
frequency for BAs (solid black squares) and Si (hollow red circles),
as defined from the two-phonon density of states, Eq. (3). The rapid
phase space decrease in BAs arises from a decrease in aaa processes
resulting from the bunching together of the acoustic branches.

the Brillouin zone if the acoustic branches coincide.30,31 As
the acoustic branches approach this limit, the phase space
for three-phonon scattering decreases correspondingly. While
this limit does not actually occur in any material, the bunching
of the acoustic branches is quite noticeable in the mid- to
high-frequency range in BAs, the other BX materials, and in
diamond (see Fig. 11 herein, Fig. 3 in Ref. 50, and Fig. 1
in Ref. 5).52 We find that the dominant three-phonon aaa
scattering processes in the elemental group IV and zinc blende
III–V materials that we have studied involve two TA phonons
and one LA phonon: TA1,2 + TA1,2 ↔ LA. The bunching
together of the three acoustic branches in BAs compared to
Si (see Fig. 2 in Ref. 1) throughout the Brillouin zone reduces
the phase space for this scattering, as seen in Fig. 6.

An additional consequence of the acoustic branch bunching
is the weakening of the three-phonon scattering matrix
elements, |�λλ′λ′′ |2 (see Eq. 8 in Ref. 5), for the allowed aaa
processes. Since the acoustic branches are similar in energy
due to the bunching, a phonon with frequency ωλ in the
higher-frequency range can decay via a three-phonon process
into two phonons, one with a similar high frequency, ωλ′′ , and
one with a small frequency, ωλ′ , and thus small wave-vector
magnitude, q′. In this case, the scattering matrix elements scale
as |�λλ′λ′′ |2 ∼ q′2.53 As the branches bunch together, q′ and the
matrix elements get smaller, and the resulting aaa scattering
becomes weaker. Interestingly, there is a competition between
this matrix element reduction and an increase in the scattering
rate prefactor terms (see Eq. 8 in Ref. 5), which contain
n0

λ′/ωλ′ ∼ (1/q ′)2 for acoustic branches with small q′. Also,
other factors such as the magnitudes of the anharmonic IFCs
and the atomic masses enter into determining the scattering

0

50

100

150

200

250

300

100 200 300 400 500

%
 Is

ot
op

e 
E

ff
ec

t, 
P

Temperature (K)

diamond c-BN

BSb

BAs

BP

FIG. 7. (Color online) Calculated isotope effect,
P = 100(κpure/κnat − 1), as a function of temperature for c-BN
(orange), BP (purple), BAs (red), BSb (green), and diamond (black).

rates. Careful calculations are required to determine the
scattering behavior for a given material.

C. Temperature dependence

The intrinsic thermal conductivities of BAs and BSb
have weaker temperature dependence than those of the other
materials in Fig. 1. For low temperature, aao scattering is
weak in all materials. In this case, the intrinsic κ values
follow the prediction of conventional guidelines; i.e., materials
with lighter atoms and stiffer bonds have higher intrinsic κ .
Thus, at T = 100 K, the intrinsic thermal conductivities are
ordered: diamond, c-BN, BP, BAs, and BSb. With increasing
temperature, the onset of a-o scattering in diamond, BN, and
BP causes a faster drop in κ for these materials. At T =
400 K, the intrinsic thermal conductivities are reordered: BAs,
diamond, c-BN, BSb, and BP.

D. Thermal conductivity with natural isotope mixtures

Phonon scattering by naturally occurring isotopes reduces
κ . The relative strength of the phonon-isotope scattering com-
pared to the intrinsic phonon-phonon scattering can be charac-
terized by the percent isotope effect: P = 100(κpure/κnat − 1).
Excluding materials with the highest thermal conductivities,
phonon-isotope scattering is typically much weaker than
intrinsic phonon-phonon scattering around RT. As a result,
the corresponding P is small. For example, in Si, the RT
P is about 8%, while in GaAs, it is about 4%. In contrast,
for high-thermal-conductivity materials such as diamond, the
intrinsic phonon-phonon scattering is unusually weak. Then,
scattering of phonons by isotopes can be comparable to the
intrinsic scattering and can significantly reduce κ .

Figure 7 plots the calculated P as a function of temperature
for the BX materials and for diamond. Although natural carbon
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has a relatively small isotope mix (98.9% 12C, 1.1% 13C),
the P value for diamond is large (50% at RT) because the
stiff covalent bonding and light atomic mass give a high
phonon frequency scale. As a result, RT is an effectively low
temperature compared to the Debye temperature in diamond,
and the intrinsic phonon-phonon scattering is correspondingly
weak. Around and above RT, P for c-BN is larger than that of
diamond (130% at RT for c-BN), even though its frequency
scale is lower. This difference reflects primarily the larger
isotope mix in boron (19.9% 10B, 80.1% 11B) compared to that
in carbon, which causes stronger phonon-isotope scattering
in c-BN. In contrast, the P for BAs around and above RT
is comparable to that of diamond and becomes considerably
smaller than that of diamond well below RT. This is at first
surprising since the large boron isotope mix also occurs in
BAs as it does in c-BN. The weak phonon isotope scattering
in BAs results from the large As to B mass ratio, which
causes the motion of the heavy (and in this case, isotopically
pure) As atoms to dominate for high-frequency acoustic
phonons.1,30,48,49 For c-BN, the constituent masses are similar,
and the motion of the boron atoms plays a significant role in
the phonon-isotope scattering of the acoustic phonons. The
much larger isotope effect for BSb compared to BAs reflects
the large isotope mix on the heavy Sb atoms.

With decreasing temperature, the isotope effect in diamond
increases more rapidly than in BAs. This reflects in part
the weakening aao scattering in diamond, which causes the
intrinsic κ to rise faster than in BAs, as seen in Fig. 1.
In addition, the high-frequency scale in diamond makes N
scattering more important at low temperature than in BAs.

E. Thermal conductivity accumulation

New measurement techniques are able to extract the accu-
mulation of thermal conductivity as a function of the phonon
mean free path (mfp),54–56 and good agreement between ab
initio calculations8 and measurements have been obtained for
Si.55,56 This accumulation provides insight into the nature
of thermal transport in materials. We define the mfp of a
phonon in mode λ as |vλ| τλz, with z along the direction of a
cubic axis and temperature gradient. The thermal conductivity
accumulation is:

κacc(l) =
∑

λ

Cλv
2
λzτλzθ (l − |vλ| τλz) (4)

where θ (x) is the Heaviside step function, which is zero (one)
for x < 0 (x > 0). The term κacc(l) sums the fraction of heat
carried by phonons with mfps smaller than l. Figure 8 shows
κacc(l) at RT for Si and BAs with naturally occurring isotope
concentrations. The values are scaled by the total κnat for
each material. For Si (thick black curve), the accumulation
is spread over more than three orders of magnitude of
mfps, with 80% lying in the wide range 0.05 μm < l <

20 μm, and with the 50% total accumulation point occurring
near 0.6 μm. These results are in good agreement with
previous ab initio calculations8,46 and with measured values.56

On the other hand, for BAs, the accumulation is over a
much narrower range: 80% of the accumulation occurs for
1.2 μm < l < 3.3 μm, and it is shifted to larger mfps, with the
50% accumulation point occurring at 2 μm. These differences

0

0.2

0.4

0.6

0.8

1

0111.0

mfp (μm)

Si

T=300K

κ a
cc

/κ
na
t

 BAs
(RTA) BAs

FIG. 8. (Color online) Calculated thermal conductivity accu-
mulation, κacc(l), at T = 300 K for naturally occurring isotope
concentrations as a function of phonon mean free path for BAs (red
curve) and Si (black curve). κacc(l) is scaled by the total κnat in this
case. The blue curve gives κacc(l)/κnat for BAs in the RTA.

can be understood qualitatively as follows: For Si, the main
contributions to κ come in the frequency range below 6 THz,
where these contributions are roughly constant (see Fig. 3 in
Ref. 1). The increasingly strong scattering rates (see Fig. 3 for
TA1 phonons) cause acoustic phonon scattering times τλz to
decease rapidly over this frequency range, giving the observed
wide range of mfps contributing to the Si thermal conductivity
accumulation. In contrast, acoustic branch bunching in BAs
gives decreased scattering rates in the middle to high range
of acoustic phonon frequencies (see Fig. 3 for TA1 phonons),
which keep the corresponding τλz larger than those in Si and
within a narrower lifetime range. This focuses accumulation
contributions at larger mfps and within the narrow mfp range
seen in Fig. 8.

The blue curve in Fig. 8 shows the scaled κacc(l) for BAs
in the relaxation time approximation (RTA) to the phonon
BTE. In the RTA, the phonon lifetimes are taken from
Matheissen’s rule: 1/τRT A

λ = 1/τN
λ + 1/τU

λ + 1/τ iso
λ , where

1/τN
λ and 1/τU

λ are the intrinsic scattering rates for Normal and
Umklapp, respectively. This incorrectly treats N processes as
resistive, which artificially increases the thermal resistance and
shifts the accumulation to smaller mfps. Further, the calculated
κnat within the RTA is about 40% smaller than the full solution
to the BTE. This highlights the importance of implementing
the full iterative solution to the BTE.

Figure 9 compares the κacc(l)/κ values for BAs, diamond,
and c-BN with naturally occurring isotope concentrations
(thicker curves) with those for the isotopically pure materials
(thinner curves). For the pure case, the accumulation in
diamond occurs at smaller mfps than for BAs. This seems
at first contradictory, since the RT κpure values for diamond
and BAs are about the same. The explanation is as follows:
The acoustic phonon group velocities in diamond are larger
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FIG. 9. (Color online) Calculated κacc(l)/κ at T = 300 K for natu-
rally occurring isotope concentrations (thick curves) and isotopically
pure (thin curves) BAs (red), diamond (black), and c-BN (purple) as
a function of phonon mean free path.

than those in BAs. However, the largest contributions to the
diamond κ occur at high frequencies, where the acoustic
phonon lifetimes are relatively small. On the other hand, the
largest κ contributions in BAs come in a narrow region of lower
frequencies, where the corresponding lifetimes are larger. The
mfp for mode λ, |vλ| τλz, is linear in the velocity, but the
thermal conductivity integrand is quadratic in the velocity
(see Eq. (2)). This larger velocity weighting gives diamond
similar κ to BAs, even though the contributing mfps are
smaller.

The effect on κacc(l) of phonon-isotope scattering in
diamond and c-BN is markedly different than it is in BAs.
In diamond and c-BN, the acoustic phonon-isotope scattering
rates are weak at low frequency and increase rapidly and mono-
tonically with increasing frequency, flattening out near the
maximum acoustic phonon frequencies, where they approach
(diamond) or exceed (c-BN) the RT phonon-phonon scattering
rates. As a result, contributions from the higher-frequency
(small mfp) phonons are suppressed and shifted to even smaller
mfps, while the fractional contributions to κacc(l) increase for
the lower-frequency (large mfp) phonons, as seen in Fig. 9.
Similar behavior has been noted in Mg2SixSn1−x alloys.11

In BAs, the acoustic phonon-isotope scattering rates are weak,
with roughly constant peak values in a narrow frequency range
(see Fig. 13 for TA1 phonons) that coincides with the peak
contributions to κpure (see Fig. 3 in Ref. 1). This causes the
full accumulation curve to be rigidly shifted to smaller mfp.
The weakness of this isotope scattering ensures that this shift
is relatively small.

The large lifetimes in the narrow region of higher acoustic
phonon frequencies give an unusual distribution of per-
branch contributions to the thermal conductivity in BAs. For
conventional high-κ materials, the RT per-branch contribu-

tions decrease with increasing frequency, i.e., in going from
TA1 to TA2 to LA. Thus, for diamond (c-BN), the fractional
contributions to the RT κnat from these three branches are: 0.41
(0.45), 0.34 (0.31), and 0.25 (0.24). This trend is a consequence
of the high-frequency scales in diamond and c-BN (maximum
acoustic phonon frequencies for diamond and c-BN are 5.8
and 4.9 times larger than the RT thermal energy, respectively),
which give a reduction in RT acoustic phonon population
with increasing frequency. In contrast, the acoustic phonon
frequency range in BAs extends to only 50% higher phonon
energy than the RT thermal energy, and roughly the same
per-branch contributions might be expected. However, for
BAs, the fractional contributions to the RT κnat for TA1 to
TA2 to LA are: 0.25, 0.49, and 0.26, which show that the
TA2 contribution is twice as large as those from TA1 and LA.
This anomalously large TA2 contribution occurs because of
a coincidence of large TA2 group velocities with large TA2

phonon lifetimes.
To summarize this section, the majority of heat transported

in BAs comes from large mfp phonons within a narrow range of
mfps. The accumulation of thermal conductivity as a function
of phonon mfp in BAs is not much affected by phonon-isotope
scattering.

F. Sensitivity to boundary scattering

The large mfps of phonons carrying heat in BAs and the
narrow range over which they are distributed make the acoustic
phonons sensitive to scattering from crystal boundaries. An
estimate of this effect can be obtained by including a boundary
scattering rate:21 1/τb

λ = |vλ| /L, where L gives a qualitative
measure of the crystal size. Figure 10 compares the RT κnat

values for BAs with those of diamond as a function of L. Below
about 10 μm, the κnat for BAs drops more rapidly than that
for diamond. Diamond also has κ accumulation over a narrow
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FIG. 10. (Color online) Calculated κnat at T = 300 K for diamond
(black curve) and BAs (red curve) as a function of boundary scattering
length, L, which gives a qualitative measure of the crystal size. The
κ of BAs is more sensitive to scattering from crystallite boundaries.
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range of mfps,46,57 but it is concentrated at mfps less than half
those for BAs (50% accumulation occurs at around 0.8 μm for
diamond). As a result, the diamond thermal conductivity drops
less rapidly with the boundary scattering length than does that
of BAs.

G. Coefficient of thermal expansion

Materials used for passive cooling applications must have
coefficients of thermal expansion (CTEs) that closely match
those of the sensitive electronics they are designed to cool in
order to prevent thermal stresses. Therefore, it is important
to examine the CTE of BAs compared to commonly used
materials in microelectronic devices, in particular silicon.
Within the quasiharmonic approximation, the CTE is given
by:

CTE = 1

3B0

∑
λ

Cλγλ (5)

where B0 is the bulk modulus determined from the harmonic
IFCs, and γλ is the mode Grüneisen parameter, which can be
expressed as:58

γλ = − V

ωλ

dωλ

dV

= − 1

6ω2
λ

∑
k

∑
l′k′

∑
l′′k′′

∑
αβγ

�αβγ (0k,l′k′,l′′k′′)

× eλ∗
αke

λ
βk′

m̄km̄k′
eiq·Rl′ rl′′k′′γ (6)

where lk designates the kth atom in the lth unit cell, eλ
αk and m̄k

are the αth component of the phonon eigenvector and isotope-
averaged atomic mass of that atom, respectively, and the terms
�αβγ (lk,l′k′,l′′k′′) are the third-order anharmonic IFCs. Rl and
rlkα are the lattice vector and the αth component of the vector
locating the kth atom in the lth unit cell. The calculated values
obtained for B0 are 1.57 Mbar (BAs) and 1.00 Mbar (Si). The
calculated RT CTE value for Si, 2.72 × 10−6 K−1, is in good
agreement with the corresponding measured value, 2.6 × 10−6

K−1.59 The calculated RT CTE for BAs of 3.04 × 10−6 K−1 is
close to that of Si. By comparison, for diamond, we obtain B0

= 4.42 Mbar and a RT CTE value of 1.02 × 10−6 K−1, again
close to the measured value of 1.1 × 10−6 K−160 but almost
three times smaller than the RT CTE value for Si, suggesting
that BAs may be a better candidate for thermal management
in Si-based devices than diamond.

H. Other materials?

The findings here suggest that the combination of large
a-o gap and acoustic branch bunching should be considered in
addition to the four commonly used criteria discussed in Sec. II
when searching for high-κ materials. The surprisingly high κ

of BAs prompts the question: Are there other materials that
also should exhibit anomalously high κ for similar reasons?
A seemingly promising prospect is c-GaN. Ga (N) is opposite
As (B) across the group IV column of the periodic table, and
GaN has a large mass ratio of constituent atoms, which gives
a large a-o gap.

0

5

10

15

20

25

Scaled Wave Vector

Fr
eq

ue
nc

y 
(T

H
z)

Γ X K Γ L

c-GaN

BAs

FIG. 11. (Color online) Calculated phonon dispersions for BAs
(solid black curves) and c-GaN (dashed red curves) in the high-
symmetry directions. Experimental data for BAs are given by the
open black circles.18

Figure 11 compares the phonon dispersions for BAs and
c-GaN. The TA1 and TA2 branches almost exactly coincide,
and both TA and LA acoustic velocities near the center
of the Brillouin zone are similar. However, in the higher
acoustic frequency range, the LA branch for c-GaN lies at
higher frequencies, which gives a larger phase space for
aaa phonon-phonon scattering and stronger three-phonon
scattering matrix elements. Also, c-GaN has a smaller mass
ratio (MGa/MN = 4.98) than does BAs (MAs /MB = 6.93),
which gives a smaller frequency gap between the TO branches
and the acoustic phonons in c-GaN compared to BAs. This
introduces aao scattering in c-GaN, which is absent in BAs.
Further, the calculated anharmonic IFCs of c-GaN are larger
than those of BAs, and these are squared in the three-phonon
matrix elements that determine the scattering rates (see eq. 8 in
Ref. 5). These differences give increased intrinsic anharmonic
scattering rates in c-GaN compared to BAs. This is illustrated
in Figure 12 for the TA1 branch in each material. As a result, the
calculated intrinsic κ of c-GaN, κpure = 360 Wm−1K−1,12,14 is
almost an order of magnitude smaller than that in BAs.

Further, there is a large isotope mix in c-GaN on the
heavier (Ga) atom, which gives much stronger phonon-isotope
scattering rates in c-GaN than in BAs, as shown in Fig. 13 for
the TA1 phonons in each material. This is in spite of the fact
that the mass variance parameter, a multiplicative factor in the
isotope scattering rate (see Eq. 6 in Ref. 49), is about seven
times larger in BAs. The strong phonon-isotope scattering in c-
GaN gives a large reduction of its intrinsic thermal conductivity
to κnat = 215 Wm−1K−1.12,14 The significantly lower κ of
c-GaN highlights the sensitivity of the thermal conductivity
to the a-o gap, the acoustic branch bunching, the magnitude
of the anharmonic IFCs, and the isotope composition of the
constituent atoms in each material.
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FIG. 12. (Color online) Anharmonic three-phonon scattering
rates for the TA1 branch at T = 300 K for BAs (solid black squares)
and c-GaN (solid blue triangles) as a function of phonon frequency.

We have examined other cubic and wurtzite group IV,
II–VI, and III–V binary systems14,48 and have not found
any that have a combination of properties as promising as
those of BAs. One might expect that group IV and group
III–V combinations with large mass ratio would give better
prospects than, for example, II–VI materials because of the
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FIG. 13. (Color online) Phonon-isotope scattering rates for the
TA1 branch at T = 300 K for BAs (solid black squares) and c-
GaN (solid blue triangles) as a function of phonon frequency. c-GaN
has larger isotope scattering rates than BAs despite the larger mass
variance of boron compared to gallium.

less covalent nature of the latter, which makes for less stiff
bonding and lower phonon frequencies. For example, the
beryllium chalcogenides, BeSe and BeTe, are qualitatively
similar to BAs and BSb in having large a-o gaps and bunching
of acoustic branches. However, the calculated intrinsic thermal
conductivities are lower.48 Nevertheless, the remarkably high κ

found for BAs may motivate a systematic examination of large
groups of materials, using, for example, recently developed
high-throughput approaches.61

V. SUMMARY AND CONCLUSIONS

In summary, we have used an ab initio theory to elucidate
the unusual thermal transport properties of BAs that give a
calculated RT thermal conductivity, κnat (κpure), greater than
2000 Wm−1K−1 (3000 Wm−1K−1) and a value exceeding
that of diamond at higher temperatures. The large κ in BAs
arises from a combination of vibrational properties, including:
bunching together of the acoustic phonon branches, a large
mass ratio of the constituent atoms, and an isotopically
pure heavy atom, all features not commonly identified as
contributing to high κ .

The unusual combination of vibrational properties of BAs
results in weak phonon-phonon and phonon-isotope scattering
rates and anomalously long acoustic phonon lifetimes in a
narrow frequency range resulting in huge RT mean free paths
of phonons (∼2 μm), contributing to κ , with mfp values
over two times larger than those for diamond. The resulting
sensitivity to scattering of phonons by crystal boundaries
necessitates fabrication of large single crystals, preferably at
least 10 μm in size, in order to avoid large reductions in κ . In
addition, high-quality samples with few defects will also be
required to observe the predicted ultrahigh κ for BAs.

The large κ predicted from ab initio calculations pre-
sented here and in Ref. 1 motivates thermal conductivity
measurements of high-quality BAs crystals. In addition, the
demonstrated sensitivity of the calculated κ to changes in
phonon frequencies, anharmonic force constants, and isotope
mixture motivates measurements of: (1) the full phonon
dispersion for BAs, which would provide useful data about the
bunching of acoustic phonon branches, which in turn could be
compared with that predicted from ab initio calculations.62 (2)
the CTE for BAs, which would provide information to assess
the relatively weak anharmonic force constants calculated
from first principles.

For many of the materials that we have examined, κ

is sensitive to changes in the vibrational properties. This
sensitivity suggests the possibility of further enhancing the
κ of BAs and other materials by tuning of these properties.
Thus, in principle, manipulation of the chemical bonding in a
large mass ratio compound targeted to further bunch together
the acoustic branches could drive the thermal conductivity to
record high values. Induced strain is potentially one way to
accomplish this.

The findings presented here for BAs provide important
new insight into the nature of thermal transport in high-
thermal-conductivity materials and highlight the need to do
fully detailed calculations on phonon physics to understand
thermal conductivity even at a qualitative level. The desirable
RT coefficient of thermal expansion for BAs, close to that of
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silicon, combined with its high-κ value suggest that BAs could
be a promising material for use in passive cooling applications.
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Eq. 2), and the mode Grüneisen parameter, γλ, is defined in Eq. 6.
The calculated RT value of γ̄ = 0.67 for BAs is relatively small
compared to many other materials (e.g., see Ref. 3). By comparison,
diamond, considered to have weak anharmonicity, has a calculated
RT γ̄ = 0.75.

214303-11

http://dx.doi.org/10.1103/PhysRevLett.111.025901
http://dx.doi.org/10.1103/PhysRevLett.111.025901
http://dx.doi.org/10.1016/0022-3697(73)90092-9
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1103/PhysRevB.80.125203
http://dx.doi.org/10.1103/PhysRevB.80.125203
http://dx.doi.org/10.1073/pnas.0907194107
http://dx.doi.org/10.1103/PhysRevLett.106.045901
http://dx.doi.org/10.1103/PhysRevLett.106.045901
http://dx.doi.org/10.1103/PhysRevB.84.085204
http://dx.doi.org/10.1103/PhysRevB.84.085204
http://dx.doi.org/10.1103/PhysRevB.84.104302
http://dx.doi.org/10.1103/PhysRevB.84.104302
http://dx.doi.org/10.1103/PhysRevB.85.184303
http://dx.doi.org/10.1103/PhysRevB.86.174307
http://dx.doi.org/10.1103/PhysRevLett.109.095901
http://dx.doi.org/10.1103/PhysRevLett.109.095901
http://dx.doi.org/10.1209/0295-5075/101/16001
http://dx.doi.org/10.1209/0295-5075/101/16001
http://dx.doi.org/10.1103/PhysRevB.87.165201
http://dx.doi.org/10.1103/PhysRevB.87.165201
http://dx.doi.org/10.1107/S0365110X58000827
http://dx.doi.org/10.1107/S0365110X58000827
http://dx.doi.org/10.1021/ja01491a014
http://dx.doi.org/10.1021/ja01491a014
http://dx.doi.org/10.1149/1.2424125
http://dx.doi.org/10.1103/PhysRevLett.73.2476
http://dx.doi.org/10.1103/PhysRevLett.73.2476
http://dx.doi.org/10.1021/ja301765v
http://dx.doi.org/10.1103/PhysRevB.36.6058
http://dx.doi.org/10.1103/PhysRevB.36.6058
http://dx.doi.org/10.1103/PhysRev.137.A128
http://dx.doi.org/10.1103/PhysRevB.23.3095


D. A. BROIDO, L. LINDSAY, AND T. L. REINECKE PHYSICAL REVIEW B 88, 214303 (2013)

35M. Omini and A. Sparavigna, Nuovo Cimento Soc. Ital. Fis. D 19,
1537 (1997).

36M. Omini and A. Sparavigna, Phys. Rev. B 53, 9064 (1996).
37P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
38W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
39S. Baroni, S. Gironcoli, A. D. Corso, and P. Giannozzi, Rev. Mod.

Phys. 73, 515 (2001).
40http://www.quantum-espresso.org.
41P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,

C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo,
A. D. Corso, S. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer,
U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-
Samos et al., J. Phys.: Condens. Matter 21, 395502 (2009).

42T. Pletl, P. Pavone, U. Engel, and D. Strauch, Physica B 263–264,
392 (1999).

43G. Deinzer, G. Birner, and D. Strauch, Phys. Rev. B 67, 144304
(2003).

44G. Deinzer, M. Schmitt, A. P. Mayer, and D. Strauch, Phys. Rev. B
69, 014304 (2004).

45J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B 75,
195121 (2007).

46Wu Li, Natalio Mingo, L. Lindsay, D. A. Broido, Derek A. Stewart,
and N. A. Katcho, Phys. Rev. B 85, 195436 (2012).

47For our “isotopically pure” calculations, we have omitted the
phonon-isotope scattering, while still retaining the isotope-averaged
boron mass for simplicity. We have tested the validity of this
approximation by calculating κpure using the isotopically pure boron
11 mass. The phonon dispersions obtained for the two cases are
almost indistinguishable, and the phonon-phonon scattering rates
are slightly reduced, resulting in a small, 1.5% increase in the BAs
thermal conductivity at room temperature (from 3171 Wm−1K−1 to
3220 Wm−1K−1).

48L. Lindsay, D. A. Broido, and T. L. Reinecke, Phys. Rev. B 88,
144306 (2013).

49S. I. Tamura, Phys. Rev. B 30, 849 (1984).
50S. Bagci, S. Duman, H. M. Tütüncü, and G. P. Srivastava, Phys.
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