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Nonlinear dynamics of a microelectromechanical oscillator with delayed feedback
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We study the dynamics of a nonlinear electromechanical oscillator with delayed feedback. Compared to their
linear counterparts, we find that the dynamics is dramatically different. The well-known Barkhausen stability
criterion ceases to exist, and two modes of operation emerge: one characterized by hysteresis in combination with
a bistable frequency and amplitude; the other, by self-stabilization of the oscillation frequency and amplitude. The
observed features are captured by a model based on a Duffing equation with delayed force feedback. Nonlinear
oscillators with delayed force feedback are exemplary for a large class of dynamic systems.
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Oscillators are ubiquitous in nature and engineering, with
implementations in physical, life, and social sciences.1–3

Typical components of an oscillator are a resonant system and
a positive feedback loop. Oscillators are self-sustained and
produce an ac output signal from a dc input. Compared to a
resonator, which is driven by an ac signal, an oscillator exhibits
a reduced line width and improved phase-noise performance.
These properties make them interesting as sensitive detectors
and as timing references. A common example is the quartz
crystal oscillator, with widespread application in electronic
circuits.

In current applications the oscillating element is typically
linear, implying that the displacement is proportional to
the driving force as in Hooke’s law. In a linear system,
displacement-proportional feedback modifies the spring con-
stant, whereas velocity-proportional feedback modifies the
damping. Stability for the latter systems is bounded by the
well-known Barkhausen criterion.4,5 It states that a self-
sustained oscillation occurs when the phase shift around the
loop is an integer multiple of 2π , and the loop gain exceeds
the value k/Q, where k is the spring constant and Q the
quality factor without feedback. Although the linear regime
has been studied in great detail, much less is known about
nonlinear oscillating elements. In a nonlinear oscillator, the
oscillating frequency depends on the amplitude of the motion.
Micro- and nanoscale electromechanical devices exhibit strong
nonlinearity, which makes them ideal devices to study such
systems.6–8 We demonstrate that in the presence of a delayed
force feedback, the nonlinearity gives rise to intricate dynamic
behavior near the oscillation threshold.

To construct a strongly nonlinear oscillator, we use a doubly
clamped micromechanical beam with a high aspect ratio as
the oscillating element. Figure 1(a) shows the device, with di-
mensions L × w × h = 750 × 8 × 0.5 μm3, fabricated from
silicon nitride using standard microfabrication processes.9 An
integrated piezoelectric actuator enables periodic driving of
the beam, as well as static tuning of its resonance frequency.
The motion of the beam is probed with pm/

√
Hz sensitivity

using an optical deflection technique, by, is shown in Fig. 1(b),
reflecting a laser beam off the surface of the device onto
a position-sensitive photodetector.10 The experiments are
conducted at room temperature and atmospheric pressure.
We start with open-loop measurements to characterize the
dynamic properties of the oscillating element.

Figure 1(c) shows the response (magnitude and phase) at the
fundamental resonance frequency, while driving the actuator
with a sinusoidal voltage at three amplitudes Vd . When weakly
driven, Vd = 1 V, the response resembles a harmonic resonator
with a resonance frequency f0 = 125.9 kHz, and a quality
factor Q0 = 34, typical for micromechanical resonators vi-
brating at atmospheric pressure. When driven more strongly,
the resonance frequency depends on the driving voltage and
the response line becomes asymmetric. The susceptibility11

on resonance is constant, |H | = 6.2 mV/V, which indicates
that the vibration amplitude is proportional to the driving
force, and nonlinear damping plays no significant role in
these experiments.12,13 In doubly clamped resonators, the
nonlinearity stems from the displacement-induced tension,
which becomes important when the vibration amplitude
becomes comparable to the device thickness. Corrections
to the spring constant should then be taken into account,
which give rise to a stiffening of the resonator and a higher
resonance frequency and bistability when driven beyond
the critical amplitude.14,15 Throughout this work, the res-
onator is driven below this amplitude, and although the
nonlinearity is clearly present, the open-loop amplitude and
phase response remain single-valued functions of the driving
force.

To implement an oscillator we devise the feedback loop
displayed in Fig. 2(a). The resonator is now driven only by
its own motion, as the photodiode signal is amplified and fed
back to the piezo actuator. The feedback signal is delayed by
τ = 5.9 μs, which gives rise to a phase lag φ = 1.49π ≈ 3

2π

between the driving signal and the beam displacement. Thus,
the feedback force is closely proportional to the velocity of
the resonator and compensates the viscous damping force.
This behavior is verified by measuring the power spectral
density (PSD) of the displacement noise in Fig. 2(b). Without
amplification (G = 0) the oscillation peak is not detected.
Increasing the gain reduces the damping, and the oscillation
peak emerges. The peak becomes narrower when the gain is
increased, as the effective Q factor of the closed-loop system
is given by Qeff = Q/(1 − G · |H |). For G > 161 we observe
an increase in the amplitude, which confirms the onset of
self-sustained oscillations at G · |H | = 1. Further increasing
the gain results in a limit cycle at an amplitude dictated by
the saturation value of the feedback amplifier. Interestingly,
a frequency shift �f ≈ 2 kHz is observed upon entering the
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FIG. 1. (Color online) (a) Scanning electron microscope image
of the silicon nitride beam with embedded piezoelectric actuator.
(b) Schematic of the experimental setup. PD, two-segment position-
sensitive photodetector; NA, network analyzer. (c) Open-loop net-
work analyzer measurements (magnitude and phase response) of the
resonator susceptibility at weak and strong driving.

regime of self-sustained oscillations, which is large compared
to the oscillator line width and comparable to the frequency
shift due to the Duffing nonlinearity shown in Fig. 1(b). As
the time delay in the feedback loop is fixed, this change
in the oscillation frequency significantly alters the effective
feedback force, which gives rise to intriguing dynamics near
the threshold of self-sustained oscillations.

To study this behavior in more detail, we adjust the phase
between the feedback signal and the beam motion by tuning the
eigenfrequency of the beam via the residual stress. Applying
a dc voltage to the piezo tunes the mode by 200 Hz/V,16 and
this provides a means to accurately modify the phase over
a few tens of milliradians around φ0 = 3

2π . In the following
discussion, f0 denotes the tuned open-loop eigenfrequency
of the oscillating element; fosc, the peak frequency of the
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FIG. 2. (Color online) (a) Schematic of the feedback loop. The
delay time (τ ), feedback gain (G), and limiter are implemented in
a digital signal processor. SA, spectrum analyzer. (b) Closed-loop
measurement of the displacement noise power spectral density at the
indicated feedback gain.

closed-loop system; and �f = fosc − f0, the frequency shift
in the closed loop. δ = φ − φ0 denotes the offset of the
phase of the feedback signal from the velocity-proportional
condition.

Close to the oscillation threshold we fine-tune the parameter
δ and measure the displacement-noise power spectral density
of the oscillator to determine the frequency shift �f for
different values of G. Figure 3(a) shows the results. For
δ > 0 (top panel) a continuous and monotone increase in the
oscillation frequency and amplitude is observed. There is no
clear oscillation threshold, as the frequency and amplitude
continuously increase towards the saturated value. The traces
for increasing and decreasing G coincide. In contrast, for δ < 0,
a clear oscillation threshold exists, marked by a transition
of �f . Both the oscillator amplitude and its frequency are
discontinuous functions of the gain. Moreover, the oscillation
frequency shows hysteresis as the gain is swept forward and
backward. A regime of bistability exists, where the oscillation
threshold for an upwards sweep occurs at a higher gain than
in the reverse direction.

We have performed a systematic study of the oscillation
threshold by fine-tuning the eigenfrequency of the beam over
range of positive and negative δ. A two-dimensional map
is constructed by sweeping the gain from a low to a high
value, and vice versa, for a range of eigenfrequencies f0,
which corresponds to a phase adjustment over several tens
of milliradians around 3

2π . Figure 3(b) shows the oscillator
frequency for a range of G and f0, where each pixel represents
a frequency shift �f as determined from a noise spectrum
[cf. Fig. 2(b)]. The gain is swept from a low to a high value
in the upper panel, and the reverse occurs in the lower panel.
The regimes are characterized by a continuous increase in
the oscillator amplitude and frequency for δ > 0 and bistable
hysteretic transitions for δ < 0. The condition δ = 0, indicated
by the dotted horizontal white line in the figure, separates the
two regimes. The width of the hysteresis is indicated by the
dashed black line in the lower panel.

Intuitively, the observations are explained as follows.
When the amplitude of the motion increases, the nonlinearity
shifts the oscillation frequency to a higher value and this
reduces the delay time required to match the oscillation
condition. This mechanism presents a feedback loop in itself
and gives rise to either an escalation or a stabilization of
the motion in the vicinity of the critical point. In the case
where δ > 0, the oscillator phase increases by the nonlinear
frequency shift, which causes the system to move away
from the oscillation condition. Here, the nonlinear frequency
pulling stabilizes the oscillation amplitude and frequency.
The oscillation threshold vanishes, as the frequency and
amplitude increase continuously with the gain. When δ < 0
an upwards frequency shift pushes the system farther into the
instable regime. The system collapses, which gives rise to a
distinct oscillation threshold, beyond which a transition in the
frequency and the amplitude of the oscillation occurs. When
the gain is swept in the reverse direction, a different branch is
followed as, at a higher frequency, the oscillation can remain
self-sustained at a lower gain.

To perform a more quantitative analysis of the experiment,
we calculate the dynamic behavior. The system in its simplest
form is modeled by a nonlinear Duffing oscillator with a
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FIG. 3. (Color online) (a) Oscillation frequency for different values of G, for f0 = 126.2 kHz and f0 = 127.3 kHz. The arrow indicates the
sweep direction. (b) Full measurement from which the cross sections (a) are taken. The color scale indicates �f , as obtained from the noise
spectrum. f0 is swept by applying a constant voltage to the piezo actuator. (c), (d) Calculated oscillator frequency with parameters similar to
those in the experiment. The dashed black line in (b) and (d) indicates the region of hysteresis.

time-delayed force feedback and amplitude saturation as
follows:

mẍ + m(2πf0)

Q0
ẋ + m(2πf0)2x + αx3 = Ghx(t − τ ) + Fth,

|Gx(t − τ )| < L. (1)

Here, m is the total mass of the resonator, x is the resonator
displacement, f0 is the linear resonance frequency, Q0 is the
open-loop quality factor, G is the total feedback gain, and τ is
the delay time. h is the transduction gain, which depends on
the laser power and the alignment of the optics. The parameter
α represents the strength of the nonlinear restoring force. An
over dot denotes taking the derivative to time. The system
is driven by a stochastic force Fth, and the feedback force is
limited by L. We calculate the frequency shifts with parameters
similar to the values in the experiment, m = 7.8 × 10−12 kg,
Q0 = 34, and α = 2.6 × 1021 kg/m2 s2, as estimated from the
device geometry.17 The delay time is τ = 5.9 μs, which yields
a 3

2π phase shift at f0 = 127 kHz. With these parameters,
Eq. (1) is integrated using a fourth-order Runge-Kutta method,
and the frequency shift �f is determined by taking the fast
Fourier transform of the calculated time series in the steady
state. Figure 3(c) shows the frequency shifts for positive and
negative detuning. As in the experiment, for δ > 0 (top panel)
a continuous and monotone gain dependence is the result,
while an hysteretic transition characterizes the regime with
δ < 0. For the parameters corresponding to the experiment, the

frequency shifts are presented in Fig. 3(d). The simulation
results confirm the emergence of the two regimes, the
hysteresis, and the minimum gain to reach the oscillation
threshold at φ = 3

2π .
The bistability for δ < 0 enables the oscillator to function

as a mechanical switch. In contrast to mechanical switches
based on Duffing resonators,18–20 the oscillator-based switch
presented here is driven by a dc source. Moreover, as shown
in Fig. 1(b), the strength of the driving force in the oscillator
switch is below the critical amplitude for open-loop bistability,
which enables the switch to function at a lower power. This
is possible, as in a nonlinear oscillator the bistability is due
to a change in the efficiency of the feedback force caused
by nonlinearity. This gives rise to a Hopf-type bifurcation,21

which should be contrasted to the saddle-node bifurcation that
characterizes a Duffing resonator.

To demonstrate the micromechanical oscillator switch, we
prepare the oscillator in a bistable state, and control its state
by adjusting the loop gain.22 Figure 4(a) shows the noise
spectra of the oscillator-based switch; the insets represent
its state schematically. For δ = −28 mrad and G = 102 the
oscillator is monostable in the low-amplitude and -frequency
state, called the “low” state henceforward. For G = 106 the
oscillator is monostable in the “high” state. For G = 104 the
oscillator is bistable, and the “set” and “reset” operations
are implemented by adjusting G as indicated in the inset in
the middle panel. Since in the nonlinear oscillator both the
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FIG. 4. (Color online) Switching and transient response in a
bistable oscillator. (a) Monostability for G = 102 (top) and G =
106 (bottom). Bistability for G = 104 (middle). Insets: State of
the oscillator and procedures to “set” and “reset” the switch.
(b) Temporary amplitude (top) and frequency (bottom) during a
switch from a “low” to a “high” state. (c) Relation between amplitude
and frequency during the transient. Solid (red) line: quadratic fit.

amplitude and the frequency are bistable, during a switch both
the oscillation amplitude and the frequency exhibit transient
behavior. These are investigated now in more detail by a
time-domain analysis of the oscillator amplitude and frequency
during a transition. To record transitions, the gain is swept
across the bistable regime while recording the photodiode
signal using an oscilloscope. The instantaneous frequency and
amplitude are then computed by fitting a piecewise sinusoidal
function through the time series.

Figure 4(b) shows the oscillator amplitude and frequency
during the transition from a low to a high state. Both the
amplitude and the frequency of the oscillation depend on time,
where the relaxation time for the ring-up equals τ = 3.9 ms.
In Duffing resonators driven below the critical amplitude,
the resonance frequency increases quadratically with the
amplitude of the vibration. It is interesting to investigate

whether this coupling also is present in a Duffing oscillator,
during a transition between two oscillating states. Figure 4(c)
shows the frequency as a function of the oscillation amplitude:
indeed a quadratic coupling is observed in the transients,
with �f

f0
= 2.26A2. A calculation using Eq. (1) confirms the

quadratic coupling between the transient responses. Thus, the
observed transients in the bistable oscillator are well described
by the cubic nonlinearity.

Nonlinearity is an important theme in micro- and nanome-
chanical devices.12,23 It may arise from intrinsic geometric
origins, as in cantilevers and doubly clamped beams,17,24,25 or
from an externally applied nonlinear field such as the electro-
static force.26 Depending on the origin of the nonlinearity, the
nonlinear spring constant can be positive or negative. When
an oscillator is constructed from such devices, the phenomena
described in this paper can be observed, as the dynamics
are described by Eq. (1). Considering that the nonlinearity
parameter α can be positive or negative, the near-threshold
behavior will be stabilizing when α · δ > 0 and hysteretic
when α · δ < 0. In this realm new applications emerge, such
as mechanical switches and variable-frequency generators,
driven by a dc source. In the stabilizing regime, i.e., on the
steep slope in Figs. 3(a) and 3(c), the nonlinearity amplifies
changes in the eigenfrequency. This principle may be used to
enhance the response of oscillator-based sensors.

In conclusion, we have investigated the dynamics of a non-
linear microelectromechanical oscillator with delayed force
feedback. The near-threshold behavior strongly deviates from
that of a linear oscillator, as distinct regimes of stabilization
and hysteresis emerge. Both the steady-state and the transient
dynamics are captured by a simple model based on a Duffing
equation with delayed feedback. Although the characteristic
dynamics described in this paper are particularly relevant
to micro- and nanomechanical systems, the behavior is by
no means restricted to mechanical oscillators. Truly linear
systems are rare in nature, and feedback with a fixed delay time
occurs typically when a signal propagates from a sensing to
an actuating device. We therefore anticipate that the presented
analysis is applicable to a large class of dynamical systems.
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