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Alignment of ferroelectric polarization and defect complexes in copper-doped potassium niobate
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Defect complexes consisting of Cu substitutionals on Nb sites and oxygen vacancies in potassium niobate,
KNbO3, are investigated with respect to their contribution to ferroelectric hardening by means of density-
functional theory and classical atomistic simulations. We determine the easy and hard directions for the
ferroelectric polarization created by these defect complexes, the energy differences between easy and hard
directions, and upper limits for the energy barriers for switching the ferroelectric polarization between these
directions. The ferroelectric polarization preferentially aligns with the defect complexes, which is expected to
impede polarization switching and hence to contribute to ferroelectric hardening.
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I. INTRODUCTION

In the context of ongoing efforts to replace lead-containing
materials by more environment-friendly ones in industrial
production, lead-free ferroelectrics, such as potassium sodium
niobate, or bismuth sodium titanate, are currently considered
for use in piezoelectric actuators or sensors.1 In ferroelectrics,
the piezoelectric effect can be much stronger than in piezo-
electrics like quartz without spontaneous polarization.2 In
order to obtain a strong and nearly linear response of the
mechanical strain ε on the electric field E for an actuator, or
vice versa of the electric polarization P on the mechanical
stress σ for a sensor, a ferroelectric oxide can be “hardened”
by acceptor doping. Acceptor dopants in ferroelectric oxides
are substitutional cations which can attract oxygen vacancies
for charge compensation and thus form defect dipoles. It is
generally believed that these dipoles contribute to ferroelectric
hardening by impeding the motion of ferroelectric domain
walls.2 In Ref. 3, it was proposed that defect dipoles in
aged hard ferroelectrics can provide a restoring force for the
ferroelectric polarization and thus enable reversible domain
switching by 90◦, which is accompanied by a large strain.
According to Ref. 3, this 90◦ domain switching mechanism
works as follows: the defect dipoles in an acceptor-doped
ferroelectric align with the polarization in each ferroelectric
domain after some time. If initially no external electric field is
present, the polarization directions of the ferroelectric domains
are statistically distributed. Once an external electric field
is applied, a fraction of the domains is initially oriented
perpendicular to the direction of the external electric field.
In the presence of an external electric ac field, the polarization
in these domains aligns with the electric field, whereas
the defect dipoles do not have enough time to reorient,
resulting in a large strain of these domains parallel to the
electric field. Whereas without defect complexes this large
strain normally occurs just once, because the new domain
configuration is energetically equivalent to the old one, defect
complexes can restore the initial polarization direction of the
domains so that the reorientation process becomes reversible.
If the initial polarization of the material was macroscopically
zero, the defect complexes will restore the initial domain
configuration each time the external electric ac field crosses
zero, and a constricted P -E curve or “double-hysteresis”
loop is measured. Such double-hysteresis loops were indeed

observed in several acceptor-doped ferroelectric perovskites,
e.g., in BaTiO3 doped with Fe,3 in Mn-doped Pb(Ti,Zr)O3,4

and in Mn- and Cu-doped (K,Na)NbO3.4–6

On the atomic level, two mechanisms of ferroelectric
hardening caused by defect dipoles are possible: (1) in the
presence of the defect dipole some polarization directions
become energetically unfavorable, which impedes switching
the polarization into these directions, or (2) the defect dipoles
create or increase energy barriers for switching between
different polarization directions. Of course, both mechanisms
may occur simultaneously as well. In order to enable reversible
90◦ domain switching, the energy barrier for polarization
switching must be lower than that for rotating the defect
complexes.

It is the purpose of this work to investigate on the
atomic level, using the example of Cu-doped KNbO3, whether
defect complexes provide these conditions. Potassium niobate,
KNbO3, was chosen because it is an end member of the solid
solution system potassium sodium niobate, K0.5Na0.5NbO3

(KNN), and it has the same perovskite structure as KNN.7

KNN is regarded as a promising lead-free substitute for today’s
best material, lead zirconate titanate, Pb(Zr,Ti)O3 (PZT),
because in some cases for KNN similarly good piezoelectric
properties as for PZT have been observed.8 CuO is often
added during fabrication as a sintering aid,9 and Cu is
apparently incorporated into the KNN lattice.5,6 In electron
paramagnetic resonance (EPR) spectroscopy experiments of
Cu-doped KNbO3 and KNN, evidence for two types of defect
complexes was found, and these two defect complexes were
identified as CuNb-VO and VO-CuNb-VO.10,11

KNbO3 exists in several ferroelectric phases depending on
the temperature, analogous to BaTiO3.12,13 In the orthorhom-
bic room-temperature phase of KNbO3, the ferroelectric
polarization is approximately directed along one of the 12
〈110〉 directions of the primitive unit cell (the orthogonal
components are one order of magnitude smaller12), which are
all equivalent in the perfect crystal structure. The primitive
unit cell of orthorhombic KNbO3 is very similar to the cubic
one, the difference being a small elongation (approximately
2% of the cubic lattice parameter) of the unit-cell edges
along one of the 〈110〉 directions and small mutual atomic
displacements (approximately 4%) along the same direction in
the orthorhombic phase. In the presence of defect complexes,
some of the 〈110〉 directions of the ferroelectric polarization
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SABINE KÖRBEL AND CHRISTIAN ELSÄSSER PHYSICAL REVIEW B 88, 214114 (2013)

FIG. 1. (Color online) A cubic unit cell of the perovskite struc-
ture of KNbO3.

become inequivalent. A cubic unit cell of KNbO3 is depicted
in Fig. 1(a).

In this work, we proceed as follows: At first we determine
formation energies of atomic defects and binding energies of
defect complexes consisting of Cu substitutionals on Nb sites
(CuNb) and oxygen vacancies (VO) in KNbO3 [cf. Figs. 2(a)
and 2(b)] in order to confirm that these defect complexes
are energetically favorable. The defect formation energies are
calculated in the cubic, paraelectric phase, which occurs at
the high temperatures at which KNbO3 and KNN ceramics
are typically fabricated.14 Then, we estimate the energy
barrier for reorienting the defect dipole CuNb-VO in order to
confirm that this is higher than the one for reorienting the
ferroelectric polarization. At last, we investigate whether the
defect complexes stabilize or destabilize some orientations
of the ferroelectric polarization in the orthorhombic room-
temperature phase (hardening mechanism 1), and how they
affect energy barriers for switching the spontaneous ferroelec-
tric polarization (hardening mechanism 2) for a given fixed
orientation of the defect complex.

II. COMPUTATIONAL METHODOLOGY

At first, in order to determine the thermodynamic stability
of the defect complexes, the formation energies of the CuNb-VO

and a straight form of the VO-CuNb-VO defect [see Figs. 2(a)

and 2(b)], are calculated using density-functional theory
(DFT). In a second step, for a given orientation of such a
defect complex, the energies of different orientations of the
surrounding ferroelectric polarization are calculated also with
DFT. In Fig. 2, these different relative orientations of the
ferroelectric polarization with respect to the defect complexes
are depicted. Two variants, a straight and a bent one, of the
(VO-CuNb-VO) defect complex [cf. Figs. 2(b) and 2(c)] are
considered. In principle, the possibility that Cu substitutes
on K sites can not be excluded. However, in a previous
work, we found that the most stable configuration in thermal
equilibrium at room temperature is the substitution on Nb
sites.15 In a third step, the energies thus obtained with DFT
are used as target data for validating a classical interatomic
potential for Cu-doped KNbO3. At last, this potential is
applied to obtain energy barriers for switching between the
different polarization directions in order to reduce the number
of computationally expensive DFT calculations needed.

A. Formation of defect complexes in cubic KNbO3

1. Defect formation energies

Using density-functional theory (DFT), the formation
energies Ef of the defect complexes are calculated following
the approach outlined, e.g., in Ref. 16:

Ef [Xq] = Etot[X
q] − Etot[bulk] −

∑
i

μini+ q(EF +EVBM).

(1)

Here, Etot[Xq] is the total energy of the supercell with a defect
X carrying a charge q, Etot[bulk] is the total energy of a
perfect supercell of the same size, μi is the chemical potential
of atom species i, ni is the number of atoms of species i

that are exchanged with a reservoir in order to incorporate
the defect into the crystal, and EF is the Fermi energy or
chemical potential of the electrons relative to the valence-band
maximum EVBM.16 A potential alignment correction is added
to EVBM in order to account for the difference of the energy
zero between the system with and without a defect.16

FIG. 2. (Color online) Defect complex configurations of CuNb (black circle) and VO (small black square) in a unit cell of orthorhombic
ferroelectric KNbO3 with different orientations of the ferroelectric polarization P . (a) CuNb-VO; (b) straight VO-CuNb-VO; (c) bent VO-CuNb-VO.
The dashed blue arrows mark the electric dipole moments of the defects PD , dashed blue lines the defect axes AD , and the orange dots mark
the possible directions of the spontaneous ferroelectric polarization P in the orthorhombic phase (they do not mark atoms). One polarization
direction is indicated by a solid orange arrow.
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The chemical potentials of metal atoms are approximated
by the total energy per atom in the crystalline reference phases,
so that the formation enthalpies are approximated by formation
energies. For the oxygen gas, however, a temperature and
pressure correction based on the equation of state of the ideal
gas is applied following Ref. 17:

μO(T ,p) = 1

2
GO2 (T ,p)

= 1

2
[HO2 (T ,p0) − T SO2 (T ,p0)]

+1

2
kBT ln

(
p

p0

)

= μO(T ,p0) + 1

2
kBT ln

(
p

p0

)
, (2)

where p0 is a reference oxygen partial pressure (the standard
atmospheric pressure, about 1 bar), T is the temperature, G is
the Gibbs free energy per molecule, and H and S are enthalpy
and entropy per oxygen molecule, which can be found in
thermochemical tables and are taken from Ref. 18.

The total energy of the oxygen molecule, needed to obtain
the chemical potential of gaseous oxygen, is calculated in a
periodic cubic supercell with an edge length of about 30 Å. For
the oxygen molecule, spin polarization is taken into account.

The chemical potentials are chosen such that they lie in the
range of thermodynamic stability of KNbO3. After introducing
relative chemical potentials �μi with respect to those in the
most stable elemental phase of each species μ0

i ,

�μi = μi − μ0
i , (3)

the condition that KNbO3 be stable with respect to decompo-
sition into competing phases is

�μK + �μNb + 3�μO = �H 0
f (KNbO3), (4)

where �H 0
f (KNbO3) is the formation enthalpy of KNbO3

from its elemental constituents (metallic K, metallic Nb, and
gaseous oxygen). The equality in Eq. (4) means that KNbO3

is in equilibrium with the reservoirs of its constituents.
An upper boundary of the chemical potentials is given by

�μi � 0 (5)

since otherwise the elemental phase of component i would
precipitate. Other possible competing phases lead to further
constraints for the chemical potentials:

2�μK + �μO � �H 0
f (K2O),

2�μK + 2�μO � �H 0
f (K2O2),

�μNb + �μO � �H 0
f (NbO), (6)

�μNb + 2�μO � �H 0
f (NbO2),

2�μNb + 5�μO � �H 0
f (Nb2O5).

The remaining region of chemical potentials for which KNbO3

is stable is depicted in Fig. 3.
The chemical potentials chosen for the following are those

of point 1 in Fig. 3, so that the defect formation energies are
calculated for oxygen-rich conditions (air) at a temperature

FIG. 3. Region of possible values for the relative chemical
potentials as defined in Eq. (3). The area inside the outer triangle
is given by the Eqs. (4) and (5), the shaded area remains after
taking into account Eqs. (6). The diagonal lines indicate the chemical
potentials of oxygen that correspond to oxygen partial pressures in
air at the standard atmospheric pressure and in air at 10−6 bar, for the
temperatures 300 and 1300 K (Ref. 15).

well above room temperature, but below a typical sintering
temperature for this compound [about 1300 K (Ref. 14)].
The chemical potential of Cu is set to �μCu = �H 0

f (CuO) −
�μO. The binding energies of the defect complexes are
independent of the chemical potentials of the elements.

2. Charge corrections

In various studies published in the literature, the conver-
gence of defect formation energies with respect to supercell
size has been improved substantially by applying a classical
scheme that accounts for defect-defect and defect-jellium
interactions in the case of charged defects. This correction,
based on the work of Makov and Payne,19 consists of
calculating the classical electrostatic energy of a periodic
array of point charges in a compensating homogeneous charge
background or jellium with an effective dielectric constant
and by subtracting this energy from the total energy of the
supercell. Typically, the first two or three terms of a multipole
expansion (monopole, dipole, and quadrupole terms) are
corrected for in this scheme. For cubic systems, the correction
is19

E = E0 − q2α

2εL
− 2πp2

3εV
− 2πQq

3εL3
+ O(L−5), (7)

where E is the formation energy of the periodic array of atomic
defects, E0 the one of the isolated defect of interest, q the
defect charge, α the Madelung constant for the given geometry,
ε the dielectric constant, p the defect dipole moment, Q

the quadrupole moment, V the supercell volume, and L

the effective length of the supercell, for example V 1/3. For
noncubic systems, the expression for the dipole-dipole energy
[the third term on the right of Eq. (7)] has to be modified.20

However, as pointed out in Ref. 21, this correction is an
upper limit. The more delocalized the defect charge, the
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smaller the correction and the higher the needed multipole
orders that should be taken into account. In the case of cubic
KNbO3, a practical complication occurs when choosing the
dielectric constant. The dielectric constant in the cubic phase
is strongly temperature dependent (at the cubic-tetragonal
phase transition it assumes a maximum)22 and can not simply
be extrapolated to the zero temperature of the calculation.
In principle, the validity of the Makov-Payne correction
(including the choice of the dielectric constant and the number
of multipole orders taken into account) can be assessed by a
convergence study of the corrected defect formation energies
with respect to the supercell size and shape, possibly taking
into account a change in dielectric constant near the defect
as in Ref. 23. Such a systematic study is not done here,
only an estimate of the monopole-monopole and dipole-dipole
energy without convergence study is given in the results
section. The formation energies shown there are those without
correction.

In the cubic high-temperature phase, for which we cal-
culate the defect formation energies, the dielectric constant
is isotropic, and the monopole-monopole and dipole-dipole
terms are given by the first two terms of Eq. (7). In KNbO3

in the orthorhombic phase at room temperature, the dielectric
tensor is anisotropic, and we calculate the monopole-monopole
energy using the Ewald summation expression for the screened
Madelung constant αε from Ref. 24, which is derived in
Ref. 25. Using αε, we calculate the dipole-dipole term as the
Madelung energy of a lattice of dipoles minus the binding
energy of a dipole.

The dielectric constant of KNbO3 in the cubic phase is
estimated from Fig. 2 of Ref. 22 to be at least about 2500
in the studied temperature range (up to 460 ◦C). This value
of 2500 is used to estimate the monopole-monopole energy
in the cubic phase. For the orthorhombic phase, the clamped
dielectric constant tensor measured by Wiesendanger26 is used.
In the principal-axes system, it reads as diag(37,780,24), where
the polarization is oriented along the third axis.

B. Details of the DFT calculations

Using DFT for structural relaxations of systems that are
not very small, the most obvious choice for the exchange-
correlation potential is either a local-density approximation
(LDA) or a generalized-gradient approximation (GGA). In
Ref. 27, structural properties of KNbO3 obtained with LDA,
GGA, and a weighted-density approximation are compared.
Whereas the LDA result for the lattice constant deviates from
the experimental one more strongly than the GGA result, a
clear advantage of the GGA for the atomic displacements
and the ferroelectric instabilities, which we are mainly in-
terested in, is not obvious. Therefore, we choose the simpler
LDA.

For the DFT calculations in this work, the Ceperley-
Alder28 LDA exchange-correlation functional as parametrized
by Perdew and Zunger29 and a mixed basis of plane waves
and atom-centered basis functions30–34 for K s + p semicore
states, O p valence states, Nb s + p semicore and d valence
states, and Cu d valence states are used. The atom-centered
basis functions account for strongly localized orbitals, such
as d orbitals, and accelerate in general the convergence

FIG. 4. A 2 × 2 × 3 simple-cubic supercell used in the calcu-
lation of defect formation energies in cubic KNbO3 (solid lines
mark the edges of the single simple cubic perovskite unit cells).
The dotted line marks the edge of a single face-centered-cubic (fcc)
or face-centered-orthorhombic (fco) unit cell, which contains two
formula units of KNbO3. A 2 × 2 × 2 supercell of the fco unit cell
shown here is chosen for orthorhombic KNbO3.

with respect to the plane-wave cutoff energy compared to a
pure plane-wave basis. The atomic cores are represented by
optimally smooth35 norm-conserving pseudopotentials.

The defect formation energies are calculated with supercells
consisting of 2 × 2 × 3 simple cubic (sc) perovskite unit cells
(60 atoms) at the calculated equilibrium lattice constant of
cubic KNbO3 (a = 3.943 Å). The supercell is depicted in
Fig. 4. Spin polarization is neglected here. Test calculations
for isolated Cu substitutionals in (K,Na)NbO3 including spin
polarization yield energy differences of about 0.2 eV between
the polarized and the unpolarized states, and in orthorhombic
KNbO3 with defect complexes we obtain energy differences
of 0.1 eV (CuNb-VO) and 0.07 eV (CuNb-2VO), thus the spin
polarization of the Cu defects has only a small effect on the
defect formation energies.

A plane-wave cutoff energy of 340 eV and a 4 × 4 × 3
Monkhorst-Pack36 k-point mesh with Gaussian broadening37

by 0.2 eV are applied. This k-point mesh corresponds approx-
imately to a 8 × 8 × 8 k-point mesh for the single perovskite
unit cell, which has been found to be sufficiently dense to
obtain well-converged properties of ferroelectric KNbO3 in
previous studies by other authors (e.g., Ref. 38).

For total-energy calculations, charged atomic defects are
accounted for by applying a compensating homogeneous
charge background. In all cases, the atomic positions are
relaxed until the forces are smaller than 10 meV/Å.
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1. Time scales for the formation of defect complexes

In Ref. 39, the time scales for the formation and alignment
of defect dipoles have been determined by means of a kinetic
model in the case of Cu- and Fe-doped lead titanate. Their
approach is based on the Arlt–von Neumann model (cf. Ref. 40
and references therein), which describes the buildup of an
internal bias field caused by the alignment of defect dipoles
and the ferroelectric polarization in an external electric field in
terms of rate equations for the jumps of oxygen vacancies. In
Ref. 39, the energy barriers needed for the rate equations have
been determined ab initio for all possible jumps, and it has been
found that at temperatures between the Curie temperature and
room temperature the equilibrium distribution of the oxygen
vacancies is reached within seconds. Here, we follow a related,
but simpler approach to estimate the equilibration time for
oxygen vacancies in Cu-doped KNbO3. Using the Einstein
relation,41 the diffusion constant D of a given species in cubic
crystals is

D = 〈R2〉/6t, (8)

where 〈R2〉 is the averaged quadratic diffusion length after
a time t . According to classical transition-state theory,42 the
diffusion constant can be written as

D = NNNνae
(Ebarrier/kBT )λ2f/6, (9)

where NNN is the number of nearest-neighbor sites of the
diffusing species, and νa is the attempt frequency for jumps,
which we approximate, following Ref. 43, by the lowest
optical phonon frequency of 190 cm−1 or νa = 0.9 THz
obtained experimentally for KNbO3,44 λ is the distance to
that neighboring lattice site, f is a correlation factor which
accounts for deviations of the diffusion behavior from a
random walk, and Ebarrier is the energy barrier for the jump.
According to Ref. 42, an approximation for the correlation
factor f is f = (1 − 1/NNN)/(1 + 1/NNN), where NNN is
the number of nearest-neighbor lattice sites. In the perovskite
structure, NNN is 8 for the oxygen atoms, so that f = 0.778.
Assuming a random walk of the oxygen vacancies, the
average number of jumps a vacancy needs to encounter a
Cu substitutional is given by 〈Njump〉 = 1/pCu, where pCu is
the probability that a given lattice site is a nearest neighbor
of a Cu substitutional. The experimental Cu concentration
of cCu = 0.25 mol% used in Ref. 11 is assumed also here.
For the average number of hops, a vacancy needs to end
up next to a Cu substitutional, the corresponding diffusion
length is R = √〈Njumps〉λ2. By combining Eqs. (8) and (9),
one obtains for the time until an oxygen vacancy is trapped by
a Cu substitutional

trandom walk = e(Ebarrier/kBT )/(pCuNNNνaf ). (10)

Whereas in the cubic, paraelectric phase at high temperature,
which occurs during and directly after sintering a ferroelectric
ceramic, all bound states are equivalent, in the ferroelectric
phases there is an energetically preferred orientation of the
defect complex with respect to the surrounding polarization.
Those bound oxygen vacancies, which are not coincidentally
already located in the lowest-energy position, are driven to
move there. The time needed for this process is governed by

the energy barrier for that jump:

treorient = e(Ebarrier/kBT )/(NNNνaf ). (11)

Assuming that jumps to an unbound position have a much
higher energy barrier and are therefore negligible, here the
number of possible final positions NNN is 4 and f = 0.6.

In order to obtain an estimate for the energy barrier for
the reorientation of the CuNb-VO defect needed for Eq. (11),
the DFT energy barrier for the migration of VO between
nearest-neighbor lattice sites is determined by means of the
“nudged elastic band” (NEB) algorithm45 in simple-cubic
2 × 2 × 2 supercells (40 atoms) at the theoretical lattice
constant of undoped KNbO3, assuming the charge state of
the defect to be (CuNb-VO)− and that of the isolated O vacancy
to be V 2+

O .

C. Orthorhombic, ferroelectric KNbO3 with defect complexes

1. “Easy” and “hard” polarization directions (DFT and SMP)

In analogy to magnetocrystalline anisotropy, we call a
direction of the spontaneous ferroelectric polarization P

“easy” if it is energetically favorable and “hard” if switching
P into this direction is energetically unfavorable. Cu-doped
KNbO3 in the orthorhombic ferroelectric phase is modeled
using larger supercells with equal extensions in all Cartesian
directions in order to account for the subtle energy differences
between the different polarization states. The choice of unit
cell is not unique. The simple cubic (sc) perovskite lattice
can alternatively be represented by a face-centered-cubic (fcc)
one, for which the lattice vectors in units of the simple-cubic
ones read as [011], [101], and [110]. The fcc unit cell contains
two formula units of KNbO3, whereas the sc cell contains one
(cf. Fig. 4). This change of unit cell allows for supercells with
numbers of atoms different from those which can be obtained
by multiplying the original sc unit cell. It is still possible when
the structure is no longer exactly cubic, as in the orthorhombic
phase we study here. When the sc unit cell of the paraelectric
phase becomes a “simple-orthorhombic” (so) one in the
ferroelectric phase, then the fcc cell becomes “face-centered
orthorhombic” (fco). We use face-centered-orthorhombic (fco)
2 × 2 × 2 supercells consisting of 16 perovskite unit cells (80
atoms), corresponding to a Cu concentration of 6.25 mol%.

For the DFT calculations of energy differences between
easy and hard directions, plane waves with energies up to
340 eV in the basis and a 2 × 2 × 2 Monkhorst-Pack36 k

point for the orthorhombic supercell of KNbO3 are used.
With this choice, the density of k points is nearly the
same as that of a 5 × 5 × 5 mesh for the single unit cell.
The room-temperature phase of KNbO3 has a base-centered
orthorhombic conventional unit cell, but the primitive unit
cell is monoclinic with a < b = c and α < β = γ = 90◦. For
the sake of consistency, the theoretical equilibrium lattice
parameters of undoped orthorhombic KNbO3 are used (a =
3.929 Å, b = c = 3.959 Å) rather than the experimental ones.
In order to reduce the number of cell parameters to be
optimized in the DFT calculations, we fix the three angles
of the primitive unit cell in the orthorhombic phase to 90◦
(experiment12: 90◦; 90◦; and 89.7◦).
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Whereas spin polarization is neglected when calculating
the defect formation energies because its contribution is
comparatively small in that case, the ferroelectric instabilities
are so small that additional effects of spin polarization may
make a difference. Therefore, we include it in the calculation
of ferroelectric energy differences. However, we find that
taking into account spin polarization has no significant effect
on the energy differences between different ferroelectric
configurations.

2. Switching between easy and hard polarization directions (SMP)

The energy changes along transition paths between the
different orientations of the ferroelectric polarization with
respect to the defect complexes are calculated using a classical
atomistic shell-model potential (SMP). In the shell model,46

an atom is represented by an ionic core and an electronic shell,
which interact with each other via a spring force,

Vcs = 1

2
k1r

2
cs + 1

24
k2r

4
cs, (12)

where rcs is the distance between core and shell. Cores and
shells of different atoms interact with each other via the
electrostatic Coulomb interaction, and the shells of different
atoms interact additionally via the Buckingham47 potential,
which consists of a repulsive Born-Mayer48 term and an
attractive van der Waals term,

Vij (rij ) = Aij e
− rij

�ij − Cij

r6
ij

, (13)

where rij is the distance between two shells. The atomistic
calculations are performed using the program GULP.49 An
atomistic potential for KNbO3 from Ref. 50 with slightly
modified parameters51 is combined with a potential for a
Cu-O interaction from Ref. 52. The potential parameters are
compiled in Table I. The Buckingham potential is truncated
at a distance of 6.5 Å, the spring force at 1 Å. This atomistic
potential is first validated by calculating the energies of the
different orientations of the ferroelectric polarization with
respect to the defect complexes and comparing them to those
obtained with DFT.

During the structure optimizations, symmetry constraints
are applied both in the simulations with the SMP and in
the DFT calculations. After validating the SMP, it is used to
calculate the minimum-energy path for switching between the
different polarization states by means of the NEB method. The
NEB images are constructed by linear interpolation of initial
and final configuration of the transition path. In cases where
the lattice parameters differ between initial and final image
structures (e.g., a = b > c initially and a < b = c finally),

the lattice parameters are linearly interpolated and are kept
constant. The atomic coordinates are optimized by the NEB
method until the force norm ||f ||, defined as

||f || =
√∑

i fi

N
,

where fi is a force acting on an individual coordinate xi and
N is the number of coordinates, becomes less than about
1.5 meV/Å.

3. Ferroelectric polarization

The ferroelectric polarization P is calculated as follows:

P =
∑

i

wi Zi e �ri/V , (14)

where Zi e is the charge of the ith particle in the supercell
(core or shell, e is the elementary charge quantum), �ri is its
displacement vector from its ideal position in the paraelectric
case, V is the cell volume, and wi = 1/Nc is the weight factor
of the atom in the (super)cell. It is equal to the reciprocal
of the number of (super)cells Nc the atom belongs to. In the
DFT calculations, only the electric polarization of the ions is
calculated, for which formal ionic charges (K+, Nb5+, Cu2+,
and O2−) are assumed. The ferroelectric polarization obtained
for this choice of reference state is that of the ferroelectric bulk
plus the polarization induced by the defect dipole moment,
but it does not include the bare defect dipole moment itself.
The polarization obtained in this way is comparable to the
polarization in the perfect crystal in the sense that in both
cases it is zero if all atoms occupy the lattice sites of the
paraelectric reference structure. When dipole moments of
individual unit cells are calculated, the unit cells are centered
in the B-site atom (Nb or Cu). In principle, in the case of
DFT calculations, the polarization should be calculated using,
e.g., the “Berry-phase approach” outlined in Refs. 53 and 54.
However, it is a common practice (applied in, e.g., Refs. 55
and 56) to calculate instead the ferroelectric polarization of
systems with distorted geometries (compared to the perfect
crystal), such as domain walls or surfaces, by using an equation
similar to our Eq. (14) with Born-effective charge tensors for
the Zi , which have been calculated for the perfect crystal.
In the case of perfect, undoped KNbO3 we find that the
polarization obtained from Eq. (14) using formal charges and
using a Born-effective charge tensor for cubic KNbO3 from
the literature38 differ by a large, but approximately constant
factor of about 1.8 (see Sec. III A). Because of this finding, and
because Born-effective charges for the Cu-doped KNbO3 are
not available in the literature, we resort to formal charges when
calculating dipole moments from defect structures obtained

TABLE I. Shell-model-potential parameters [cf. Eqs. (12) and (13)] for CuNb-doped KNbO3. Notice that for Cu atoms with ∞ for k1 the
core-shell polarization is turned “off.”

Atom A (eV) � (Å) C (eVÅ6) Core charge (e) Shell charge (e) k1 (eVÅ−2) k2 (eVÅ−4)

K 126870.4000 0.194514 0.0 1.237854 −0.418377 229.74443 0.0
Cu 712.8000 0.32698 0.0 0.000000 2.000000 ∞ 0.0
Nb 1053.2161 0.389027 0.0 −2.984072 7.816735 255.95572 410.47927
O 3657.8642 0.282693 200.1785 1.122198 −3.006245 76.581476 1539.2972
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with DFT. However, the dipole moments obtained with formal
ionic charges are only used for qualitative discussion purposes.
In the case of the atomistic calculations with the shell model,
the electronic contribution to the ferroelectric polarization
arises from the electronic shells of the shell model, and the
use of Born-effective charges is not required. Here, the core
and shell charges of the SMP are used for the Zi .

III. RESULTS

A. Validation of the computational methods and parameters

In Table II, the structural properties of undoped KNbO3

obtained with the SMP and DFT are compared to experimen-
tally measured ones. Our structure parameters obtained with
the LDA at the theoretical volume are very similar to those
obtained in Ref. 27 also with DFT, but for the experimental
volume. Whereas in Ref. 27 a severe underestimation of the
ferroelectric instabilities by the LDA for the theoretical volume
is observed, we do not reproduce this discrepancy. Our results
for ferroelectric instabilities, obtained with the LDA at the
theoretical lattice constants, agree quantitatively well with data
for heats of formation from experiment.13 For a 5 × 5 × 5
k-point mesh and a plane-wave cutoff energy of 300 eV
for the single unit cell, which corresponds approximately to
the parameters of our supercell calculations, the ferroelectric
energy differences are not completely converged yet compared
to an 8 × 8 × 8 mesh and a cutoff energy of 340 eV, but
agreement with experiment is similar in both cases.

In general, the SMP results are very close to the ones
obtained with DFT. The atomic displacements uz in the
ferroelectric phases with respect to those in the paraelectric
case are underestimated by about one third both by the SMP
and by DFT. The same is observed in Ref. 27 for different
exchange-correlation functionals and may be related to the
fact that the ferroelectric polarization and instabilities are
extremely sensitive to slight changes in the volume of the unit
cell. Using the atomic coordinates from DFT in Eq. (14), the
ferroelectric polarization obtained with cubic Born-effective
charges differs from the one obtained with formal ionic charges
by an almost constant factor of about 1.8 for all phases of
KNbO3 considered here.

B. Formation of defect complexes in cubic KNbO3

1. Defect formation energies

Figure 5 shows the defect formation energies of the
CuNb-VO complex and the straight VO-CuNb-VO complex as
a function of the chemical potential of the electrons. The
defect formation energies of the defect complexes (solid lines
and filled symbols in Fig. 5) are lower than the sums of
the defect formation energies of the isolated defects (dotted
lines and open symbols in Fig. 5) by more than one eV.
In the middle of the band gap, the binding energies are
EB = −1.4 eV for the CuNb-VO defect and EB = −2.2 eV for
the straight VO-CuNb-VO defect. The formation energy of the
bent VO-CuNb-VO defect obtained with DFT lies about 0.2 eV
below that of the straight VO-CuNb-VO defect (not shown).

TABLE II. Structural properties (lattice constants a and c, cell
angle α, bulk modulus B, volume V , ferroelectric instabilities with
respect to the cubic phase � EFE in meV/f.u., atomic displacements
in the ferroelectric phases with respect to those in the paraelectric
one in units of the lattice constant uz) of undoped KNbO3, and z

component of the ferroelectric polarization Pz obtained with the SMP,
DFT, and experiment (experimental values are taken from Refs. 12,
13, 22, 57, and 58). Numbers in brackets for the orthorhombic phase
are those obtained for a monoclinic cell with α < β = γ = 90◦. In
the case of the SMP, the uz are those of the ionic cores. With DFT, Pz is
calculated once using formal charges (FC), once using Born-effective
charges (BEC) from Ref. 38. The DFT calculations are, unless stated
otherwise, performed for single perovskite unit cells, employing
a 8 × 8 × 8 k-point mesh and a plane-wave cutoff energy of
340 eV.

Phase SMP DFT Expt.

Cubic a (Å) 3.997 3.943 4.021
V (Å3) 63.86 61.72 65.01
B (GPa) 184 223 165

172
Tetrag. a (Å) 3.989 3.931 3.997

c (Å) 4.056 3.995 4.063
c/a 1.017 1.016 1.017

�EFE −9.8 −12.3 −8.2
−6.6a

uz (K) 0.016 0.012 0.023
uz (Nb) 0.000 0.000 0.000
uz (O1,2) 0.040 0.034 0.042
uz (O3) 0.037 0.034 0.040

Pz (μC/cm2) 26.9 20.0 (FC) 30 (Ref. 22)
27.5 (BEC) 37 (Ref. 58)
36.7 (BEC)b

Orthorh. a (Å) 3.986 (3.986) 3.929 (3.973)
c (Å) 4.027 (4.028) 3.959 (4.036)
c/a 1.011(1.011) 1.010 (1.017)

α (degrees) 90c (89.65) 90c (89.74)
�EFE −11.4 −13.5 (−11.9)

−8.9a

uz (K) 0.006 0.010 (0.016)
uz (Nb) 0.000 0.000 (0.000)
uz (O1,2) 0.022 0.024 (0.028)
uz (O3) 0.025 0.027 (0.030)

Pz (μC/cm2) 20.2 14.4 (FC) (22) (Ref. 22)
26.2 (BEC)b (29) (Ref. 58)

Rhomboh. a (Å) 4.015 3.952 4.016
α (degrees) 89.74 89.91 89.83

�EFE −12.9 −13.9 −13.3
−9.1a

uz (K) 0.005 0.008 0.0112
uz (Nb) 0.000 0.000 0.0000
uz (O1,2) 0.020 0.021 0.0295
uz (O3) 0.018 0.021 0.0308

Pz (μC/cm2) 17.3 12.0(FC)
17.3 (BEC)
21.9 (BEC)b

aCalculated with a 5 × 5 × 5 k-point mesh and a plane-wave cutoff
energy of 300 eV.
bBorn-effective charges for the cubic phase were used.
cThis angle was set to 90◦ and not varied.
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FIG. 5. (Color online) Formation energies Ef of the defect com-
plexes (CuNb-VO) and straight (VO-CuNb-VO) as function of the Fermi
energy EF in KNbO3, as well as the sums of the formation energies
of CuNb and one isolated VO (CuNb + VO) and two isolated VO

(CuNb + 2VO). The electronic chemical potential (EF ) is allowed to
vary between the LDA valence band maximum (VBM, EF = 0) and
conduction band minimum (CBM, EF = 1.59 eV), as indicated by
vertical lines. The numbers attached to the curves mark the charge
states of the defects.

For the supercell we used for the cubic phase, the monopole-
monopole energy [the second term in Eq. (7)] of a point defect
with charge 2e (e.g., VO in its formal ionic charge state +2e) is
only about 3 meV, whereas the dipole-dipole energy (the third
term) of a dipole consisting of two point charges ±2e separated
by half a lattice constant, corresponding to the CuNb-VO defect
dipole, is zero. The straight VO-CuNb-VO defect complex does
not have a dipole moment.

2. Time scales for the formation of defect complexes

Figure 6 shows the energy barrier for the migration of a
VO between two sites that are nearest neighbors of a CuNb

substitutional. Hence, this is the energy barrier for rotating
the CuNb-VO defect by 90◦. The DFT energy barrier amounts
to 2 eV and is much higher than the energy barrier for the
migration of an isolated VO along the same path, for which
about 0.6 eV is obtained.

0
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NEB image

VO (DFT)
VO (SMP)

VO at CuNb (DFT)
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FIG. 6. (Color online) Energy barriers for the migration of an
isolated VO and of a VO neighboring a CuNb substitutional. The latter
corresponds to a rotation of the CuNb-VO defect by 90◦. The lines only
serve as a guide to the eye.

At 300 K, from Eq. (10) one obtains trandom walk = 0.3 s,
hence the oxygen vacancies have enough time to reach the
Cu substitutionals. It is therefore reasonable to assume that
a large fraction of the Cu substitutionals trap one or two
oxygen vacancies immediately and no aging is required in
order to obtain defect complexes. However, the rotation of
the CuNb-VO defect complex and hence the alignment of this
defect complex with the surrounding polarization occurs on a
different time scale. At a temperature of 708 K, which is near
the Curie temperature (near the cubic-tetragonal transition),
using Eq. (11), the time treorient needed to spontaneously
reorient the defect dipole is on the order of minutes only
(we obtain 79 s). But, near the tetragonal-orthorhombic
phase transition at 498 K it is prohibitively large (we obtain
30 months). Assuming that the barrier is reduced by about
0.1 eV due to its asymmetry in the orthorhombic phase, and by
another 0.2 eV due to thermal expansion, with Ebarrier = 1.7 eV
a time of the order of a day (we obtain 20 h) is still needed to
reorient this defect dipole at 498 K.

To further evaluate the ability of the SMP to reproduce DFT
energies, the energy barriers are recalculated with the SMP by
a symmetry-constrained energy minimization of the structures
at the initial and the saddle points obtained with DFT. The SMP
energy barriers amount to 0.2 eV (isolated VO) and 2.1 eV (VO

at CuNb) (see open symbols in Fig. 6). The SMP strongly
underestimates the energy barrier for jumps of the isolated
VO, but correctly predicts a much higher energy barrier for the
bound VO. Notice that apart from this one test, the SMP was not
used for atomic jumps between lattice sites. It was employed
to interpolate the DFT energy surface only where very small
atomic displacements related to the ferroelectric polarization
were involved (few percent of lattice constants, cf. Table II).

C. Orthorhombic, ferroelectric KNbO3 with defect complexes

1. Easy and hard polarization directions

The energies of the different inequivalent orientations of P

with respect to the defect complexes in Fig. 2 obtained with
DFT and with the SMP are depicted in Fig. 7. For all three
defect complexes, the energy of the system is lowest if P

forms the smallest possible angle with the defect axis AD . If
the defect complex has an electric dipole moment PD , as in the
cases of the CuNb-VO defect and the bent VO-CuNb-VO defect,
for a given angle between P and AD the energy is lowest for
the configuration with the smallest possible angle between PD

and P . Spin polarization does not have an effect on the energy
differences between different orientations of the ferroelectric
polarization (see filled and open black circles in Fig. 7).

In the orthorhombic phase, the monopole-monopole energy
of the point charge 2e is 60 meV, the dipole-dipole energy of
the formally charged [CuNb3− -V 2+

O ]1− defect is 23 meV (it
is repulsive) if it has a component parallel or antiparallel to
the electric polarization, and about 5 meV for the orthogonal
orientation (in this case it is attractive). For the formally
charged [CuNb3−-2V 2+

O ]1+ defect, the dipole-dipole energy is
repulsive for all orientations studied here. It is 86 meV if the
defect has a component orthogonal to the polarization, and
140 meV if it is parallel or antiparallel to the polarization.
Therefore, a dipole-dipole correction would further stabilize
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FIG. 7. (Color online) Potential energy per Cu defect complex (d.c.) of the configurations depicted in Fig. 2. (a) CuNb-VO; (b) straight
VO-CuNb-VO; (c) bent VO-CuNb-VO. Black solid lines and circles: DFT; red lines and symbols: SMP. Small filled and large open circles in
(a)–(c): DFT calculations with and without spin polarization, respectively. The lines only serve as a guide to the eye.

the parallel orientation of defect dipole moment and ferroelec-
tric polarization.

The SMP reproduces the order of the energies correctly,
although it overestimates the energy difference between the
bent and the straight VO-CuNb-VO defect (SMP: 1.3 eV; DFT:
164 meV). As long as only small atomic displacements are
involved, such as during the rotation of the ferroelectric
polarization, the SMP results agree qualitatively and semi-
quantitatively with those obtained with DFT, so that we
proceed with the SMP in the following.

2. Switching between easy and hard polarization directions

By means of the NEB method, the energy changes along
transition paths between different relative orientations of P and
the defect complexes are calculated with the SMP for different
defect concentrations, ranging from 6.25 mol%, for which the
DFT calculations were performed as well, to approximately
1.5 mol% Cu (one Cu defect in a 320-atom supercell).
In Fig. 8, the Cartesian components of the ferroelectric
polarization and the potential energy (per Cu defect and per
perovskite formula unit, respectively) along several paths for
homogeneous switching in a crystal region with a CuNb-VO

defect are depicted. For a Cu concentration of 6.25 mol%, the
ferroelectric polarization of the configurations [01̄1̄] and [1̄01̄]
(here, the z component of P is oriented antiparallel to PD) is
strongly perturbed by the defect complex [see open circles in
Fig. 8(a)], but for the two lower Cu concentrations [cross and
star symbols in Fig. 8(a)] it converges toward the bulk value.
The energy barrier between the configurations [1̄01̄] and [1̄01]
is comparatively small with respect to the energy differences
between different equilibrium configurations. Whereas the
energy differences per defect between the different relative
orientations of P are approximately constant as expected
[Fig. 8(b)], the energy barrier between the configurations [1̄01̄]
and [1̄01] is also approximately constant and does not yet
converge to the bulk value for the Cu concentrations studied
here. The well-converged energies per defect complex indicate
that the defect concentration is low enough to avoid finite-size
effects. Therefore, the difference between energy barriers in
the doped and the undoped case occurs more likely because
the defects break the symmetry of the perfect orthorhombic

crystal structure. Hence, in the supercell with the defect more
and different intermediate configurations are possible than in
the single, perfect unit cell under symmetry constraints.

Figure 9 shows the corresponding results for the straight
VO-CuNb-VO defect complex. The energy differences between
the equilibrium configurations [11̄0], [01̄1̄], [01̄1], and [101]
are apparently converged with respect to the Cu concentration
[cf. Fig. 9(b)], whereas in this case also the energy barrier be-
tween the configurations [01̄1̄] and [01̄1] converges smoothly
to the bulk value [cf. Fig. 9(c)].

Figure 10 shows the corresponding results for the bent
VO-CuNb-VO defect. Again, the energy difference per defect
complex [Fig. 10(b)] is approximately converged with respect
to the defect concentration, whereas the energy barriers for
switching between the equilibrium configurations do not yet
approach their bulk values for the concentrations studied here
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FIG. 9. (Color online) The same as in Fig. 8 for the straight
VO-CuNb-VO defect [see Fig. 2(b)].

[Fig. 10(c)]. The fact that the energy barriers converge well
for the straight VO-CuNb-VO defect, but not for the CuNb-VO

defect and the bent VO-CuNb-VO defect, is probably related to
the lower symmetries of the latter two defects with respect to
the former one and the undoped crystal.

Figure 11 illustrates the atomic positions and the ionic
polarization around a CuNb-VO defect complex for the con-
figurations P ↑↑ PD , P ↑↓ PD , and P ⊥ PD after energy
minimization with DFT. The configuration depicted in Fig. 11
is obtained by periodically replicating the face-centered-
orthorhombic supercell (79 atoms) used for the DFT cal-
culations and then cutting out a plane which contains the
defect complex. The neighboring Nb and Cu ions move away

from VO, which in the case of P ↑↓ PD leads to polarization
reversal in the unit cells numbered 2 and 8 with respect to the
surrounding P .

IV. DISCUSSION

The formation of the defect complexes is associated with
an energy gain of more than 1 eV (cf. Fig. 4), hence
the defect complexes will actually form. Since the time a
CuNb substitutional needs to trap a VO is very short even
at room temperature (we obtain 0.3 s), and even much
shorter at elevated temperatures, the defect complexes form
instantaneously, and no aging is required. But once formed,
the defect complexes align with the surrounding ferroelectric
polarization much more slowly (estimated in some days
even at elevated temperatures) because the energy barrier for
reorienting the CuNb-VO defect dipole is high, although we
are aware that our calculated estimate of 2 eV for the energy
barrier (cf. Fig. 6) may be not yet converged with respect
to the supercell size. In principle, this energy barrier should
be calculated for the orthorhombic phase of KNbO3, and one
would obtain an asymmetric barrier, analogous to the approach
that was made in Ref. 59 for FeTi-VO defect complexes in
tetragonal PbTiO3. However, the minimum energy path in
Fe-doped PbTiO3 is very asymmetric and attains barrier values
of either about 0.2 or about 1.2 eV, depending on the direction
of the jump, which is caused by the large energy differences
between the different positions of the VO with respect to P

there. In the case of Cu-doped KNbO3, the corresponding
energy differences are very small compared to the energy
barrier itself (about 0.2 eV compared to 2 eV), so that here,
unlike in PbTiO3, the asymmetry of the minimum energy path
is much smaller and can be neglected as a first approximation.
Since the energy barrier for rotating the CuNb-VO defect dipole
(≈2 eV, cf. Fig. 6) is much higher than the one for rotating
the surrounding polarization (≈0.2 eV, cf. Fig. 8), the defect
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FIG. 11. (Color online) Atomic positions (large purple spheres: K, medium gray spheres: Nb, medium black sphere: Cu, small red spheres:
O) near a CuNb-VO defect complex [see Fig. 2(a)] for the configurations (a) P ↑↑ PD , (b) P ↑↓ PD , and (c) P ⊥ PD after energy minimization
with DFT. Orange arrows mark the electric dipole moments of the individual unit cells.

dipole will remain immobile in an external ac field. Artificial
interactions between periodic images of the defects in the
calculations are small due to the large dielectric constant of
this material. Finite-size effects should be even smaller for
the migration barriers than for the defect formation energies
because charge corrections are to some extent the same for
the different configurations along the migration path (e.g., the
electrostatic monopole-monopole interaction is the same for
all NEB images).

We now compare the alignment behavior of P and PD in
Cu-doped KNbO3 to that in Fe- or Cu-doped PbTiO3, which
has been investigated earlier in Ref. 60. There it has been found
for the defect complexes CuTi-VO and FeTi-VO in tetragonal
PbTiO3 that the configuration P ↑↑ PD is lowest in energy.
Whereas in Ref. 60 the configuration P ⊥ PD of the FeTi-VO

defect complex has the highest energy, like the CuNb-VO and
the bent VO-CuNb-VO defect in KNbO3 as obtained in this
work, for the CuTi-VO defect in PbTiO3 the configuration
with the highest energy is P ↑↓ PD . The energy penalty for
the configuration P ↑↓ PD in PbTiO3 depends strongly on
the dopant: For the CuTi-VO defect it is 1.2 eV, whereas for the
FeTi-VO defect it is only 0.45 eV.60 In KNbO3 it is even smaller,
for the CuNb-VO and the bent VO-CuNb-VO defect it is only 0.15
and 0.21 eV, respectively. These energy penalties hence depend
very sensitively on the dopant and the host crystal species.

Based on the results of our own DFT relaxation calculations
and those of Erhart et al.,60 that a VO repels the nearest B

cations in doped PZT and KNN (both host and dopant ions, B

stands for Ti, Nb, Cu, or Fe, cf. Fig. 11 for Cu-doped KNbO3),
we propose the following explanation for the energetic order-
ing of the configurations P ↑↑ PD , P ↑↓ PD , and P ⊥ PD:

In the ground state (P ↑↑ PD), two stability conditions are
fulfilled. First, the defect axis is oriented along the direction of
the ferroelectric strain (which is parallel to P ). This condition
is fulfilled for either P ↑↑ PD or P ↑↓ PD . The second
stability condition is that P ↑↑ PD (and not P ↑↓ PD). The
first condition, the parallel alignment of defect axis and strain,
allows us to accommodate the large displacements of the
nearest B ions away from VO, the second condition enables
the ferroelectric polarization to have the same direction in
all unit cells, only perhaps with the exception of the cell
containing the substitutional B atom. More precisely, as can
be seen in Fig. 11, the unit cell containing the substitutional
acceptor atom (the unit cell no. 5 in Fig. 11) does not contribute

much to the overall ferroelectric polarization, whereas a strong
contribution arises from the unit cell which contains a host
B atom and VO (unit cell no. 2 in Fig. 11). Due to the
large displacement of the B ion, the individual polarization
of unit cell no. 2 is always parallel PD , regardless of the
overall direction of P in the surrounding unit cells. In the case
P ↑↓ PD , therefore a minuscule ferroelectric “domain wall” is
created (essentially around unit cell no. 2), which costs energy.
Hence, the first condition minimizes the elastic strain energy,
whereas the second minimizes the electrostatic energy. If the
first condition dominates over the second, P ↑↓ PD is more
stable than P ⊥ PD , and vice versa.

In the case of Cu-doped KNbO3 the main effect of the defect
complexes is that they create “easy” and “hard” directions
for P and are thus responsible for hardening mechanism (1),
whereas the energy barriers for polarization switching created
by the defects are usually small in comparison to the energy
differences between easy and hard directions, so that hardening
mechanism (2) is less relevant in the case of Cu-doped KNbO3.

The combination of moderately small energy differences
between easy and hard ferroelectric polarization directions and
very low-energy barriers for switching between these, which
we find for Cu-VO and VO-Cu-VO defect complexes in KNbO3,
mean that these defect complexes can provide a restoring
force for P . Hence, these defect complexes should enable
the reversible 90◦ domain switching mechanism. However,
because the energy differences between different orientations
of the defect complexes with respect to the surrounding
polarization found here are much smaller than those found
for Cu- and Fe-doped PbTiO3 in Ref. 60, this effect should be
smaller in Cu-doped KNbO3 than in Cu- or Fe-doped PbTiO3.

In a previous study of Cu-doped KNN, using a virtual-
crystal approximation for the A-site species K and Na, we
found very similar formation and binding energies (maximum
0.2-eV difference in defect formation energy) for the same
defect complexes as studied here in KNbO3.61 Moreover,
the crystal structure of KNN and the one of KNbO3 are the
same up to a Na content of 50%, and the lattice parameters
evolve smoothly from KNbO3 to (K0.5,Na0.5)NbO3 in this
composition region.62 If therefore the ferroelectric energies
in Cu-doped KNN vary smoothly with composition as well,
our results obtained for KNbO3 should be at least qualitatively
transferable to KNN for compositions with not too high sodium
content.
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SABINE KÖRBEL AND CHRISTIAN ELSÄSSER PHYSICAL REVIEW B 88, 214114 (2013)

V. SUMMARY

Three types of atomic defect complexes in Cu-doped
KNbO3, namely, the CuNb-VO defect complex, a straight
and a bent configuration of the VO-CuNb-VO defect complex,
were investigated using density-functional theory and classical
atomistic simulation. All three complexes create easy and hard
directions for the ferroelectric polarization in the orthorhombic
room-temperature phase of KNbO3 and may thus contribute to
ferroelectric hardening of this material. The energy differences
between easy and hard directions, however, are small com-
pared to those found in Ref. 60 for Cu- and Fe-doped PbTiO3,
so that the effect is expected to be smaller than in Cu- or
Fe-doped PbTiO3. The existence of easy and hard polarization
directions, together with small energy barriers for polarization
switching found here for Cu-doped KNbO3, supports the

assumption that one of these defect complexes or both of
them are responsible for the reversible 90◦ domain switching
observed experimentally in the isostructural (K,Na)NbO3

when doped with Cu.
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