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Simulation of uranium dioxide polymorphs and their phase transitions
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In this article first-principles DFT calculations and molecular dynamics simulations using empirical potentials
have been used to study four different polymorphs of uranium dioxide that appear under high compressive and
tensile deformations. It has been found, as expected, that the ground-state structure is the fluorite-type structure
(space group Fm3̄m). Under high compressive deformation urania transforms into cotunnite-type structure (space
group Pnma), as already known experimentally. The calculated transition pressure is 28 GPa in agreement with
the experimental data. Under tensile deformation urania transforms into either scrutinyite-type structure (space
group Pbcn) or rutile-type (space group P 42/mnm) structure. These two phases are almost energetically
degenerate; hence it is impossible to distinguish which phase is the most favorable. The transition pressure for
both phases is found to be equal to −10 GPa. Subsequently, assessment of four of the most used empirical
potentials for UO2—Morelon, Arima, Basak, and Yakub—have been carried out comparing the equations of
state with those found with DFT calculations. The Morelon potential has been found to be the most accurate to
describe the different urania polymorphs. Using this empirical potential and a dedicated minimization procedure,
complete transition pathways between the ground state (Fm3̄m) and both tensile structures (Pbcn or P 42/mnm)
are described. Finally, uniaxial tensile load molecular dynamics simulations have been performed. It has been
found that for load in the 〈100〉 direction urania transforms into the Pbcn structure while for load in the 〈110〉
direction it transits towards the P 42/mnm structure.

DOI: 10.1103/PhysRevB.88.214112 PACS number(s): 61.72.Cc, 61.80.Az, 66.30.hd

I. INTRODUCTION

Many compounds are naturally found in a fluorite-like
structure (space group Fm3̄m). Uranium dioxide in particular
(UO2) is a well-known example of an ionic crystal having
a fluorite-like ground structure. It is also of very significant
interest because of its use in the nuclear industry. Indeed
some of its thermophysical properties such as high melting
point, low thermal conductivity, and high resistance under
irradiation make it a good nuclear fuel, used in nuclear power
plants around the world. The conditions in nuclear reactors
cause high thermal gradients, formation of point and extended
defects, and fission gas accumulation. These defects cause
high local stresses, which can induce local phase transitions
and crack initiation. Therefore, in order to predict nuclear fuel
degradation, it is crucial to have a fundamental understanding
of its structural behavior. One important part of this behavior
is how the crystal structure changes with deformation, that is,
the different UO2 polymorphs, their relative stability, and the
ways they turn into each other.

Under pressure, other crystals with the Fm3̄m structure
undergo a transition to the orthorhombic cotunnite structure
(space group Pnma).1 This transition has been confirmed with
both experimental2,3 and theoretical4,5 studies in the case of
UO2.

Under tensile load, experimental works and MD simula-
tions of ceria (CeO2) nanorod, another oxide compound with
Fm3̄m ground structure, exhibited a phase transition from
fluorite-type to rutile-type structure (space group P 42/mnm).6

In UO2, a transition from cubic to orthorhombic scrutinyite-
type structure (space group Pbcn) has been found by Desai
et al. using first-principles DFT calculations and molecular

dynamics (MD) simulations at the vicinity of grain boundaries,
which play the role of stress concentrators.7,8 Zhang et al. have
also observed similar transformations in the fracture process
zone during crack propagation in UO2 using MD simulations.9

These local phase transformations appear at the vicinity of the
crack front before the creation of free surfaces as shown in
Fig. 1. This figure is the result of a MD crack simulation in
which a uniaxial tensile strain was applied along the 〈110〉
axis.10 However, these transitions under tensile load have
not been observed experimentally, probably because of the
metastable character or the small size of the secondary phases.
Although these studies are focused on UO2, a lot of compounds
undergo similar transitions.11

In spite of all these studies, we still lack a complete un-
derstanding on the structural changes that occur in UO2 under
deformation. Therefore, the aim of this study is to describe
using DFT calculations and MD simulations the behavior
of the four UO2 polymorphs found previously (i.e., Fm3̄m,
Pnma, P 42/mnm, and Pbcn) under either compressive or
tensile load, as well as the phase transition mechanisms
involved. For the MD simulation, we also assessed four of the
most used empirical potentials for UO2: Morelon,12 Arima,13

Basak,14 and Yakub.15

This assessment is important for the interpretation of larger
scale simulations that cannot be done currently using DFT
models, such as irradiation events, crack propagation, and
dislocations. It also helps ensure the phenomena are physically
relevant, and not potential-dependent.

These models were used to calculate the energy-volume
relations for the polymorphs as well as the thermodynamic
transition pressures. The results were compared to the available
data when possible. We found in particular that the Morelon
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FIG. 1. (Color online) Crack propagation simulation snapshot
showing a local phase transition ahead of the crack front. The loading
is a uniaxial tensile strain applied along a 〈110〉 axis. The atoms are
color coded according their potential energy. The secondary phase
is denoted by light blue, whereas the bulk is in dark blue, and
the advancing crack surface in orange/red. The encapsulated picture
on the right is a zoom of the area including both fluorite structure
and secondary phase. The printed axes show the crystallographic
directions in the initial Fm3̄m structure.

potential gives the best agreement with both available exper-
imental data and DFT calculations. For this reason, we used
it in further investigations of the phase transitions. To this
intent, we have developed a procedure to follow the pathway
from one structure to another, and obtain a complete overview
of the structural transformation without imposing a prede-
termined transition trajectory. These trajectories give a good
description of the transitions in terms of symmetry elements
and internal and external parameters change. However they
are not sufficient in the sense that the nucleation process and
the effects of the interfaces between the ground and secondary
phases are important, especially at smaller length scales. They
also lack a dynamic description of the phase transitions. For
these reasons, we finally carried out finite-temperature MD
simulations of the tensile phase transitions.

The paper is organized as follows: In Sec. II, the different
crystal structures studied herein are described. In Sec. III,

we present a description of the computational methods used
and the four empirical potentials. Section IV describes the
results obtained on the stability of the different polymorphs
and the transition pathways respectively. In the last section
some conclusions are drawn.

II. STRUCTURAL ASPECTS

In the following, we describe the crystal structures of the
five UO2 polymorphs studied herein, i.e., Fm3̄m, Pnma,
Pbcn, P 42/mnm, and Pnnm. In order to achieve a compre-
hensive description of the phase transitions, we also describe
the crystallographic links between these structures.

The ground-state structure of UO2 is known to be the
fluorite-type structure. It can be described by the Fm3̄m space
group, with the uranium ions setting in the 4a (0, 0, 0) special
site and the oxygen ions setting in the 8c ( 1

4 , 1
4 , 1

4 ) special site
(see Table I). This structure is composed of a face-centered
cubic uranium sublattice, in which the oxygen ions occupy
the tetrahedral sites, forming a simple cubic sublattice as
illustrated in Fig. 2(a). Each uranium ion is coordinated to eight
oxygen ions while each oxygen ion is tetrahedrally coordinated
to four uranium ions.

The cotunnite structure is orthorhombic and is illustrated in
Fig. 2(b). It appears under high pressure and is described in the
Pnma space group. Both oxygen and uranium ions sit in the
4c (x, 1

4 , z) special site, with different values for the internal
parameters x and z. In particular, there are two sets of (x,z) val-
ues for the oxygen ions to achieve stoichiometry (see Table I),
since the site multiplicity is the same for the oxygen and for
the uranium ions. Compared to Fm3̄m, the Pnma structure
exhibits a higher coordination number of 9 for uranium ions.
The oxygen ions form elongated tricapped trigonal prisms that
contain the uranium ions. The links between the Fm3̄m and the
Pnma structures rely on the 45◦ rotation of the (ab) plane and
on an origin shift of ( 1

4 , 1
4 , 1

2 ). Therefore, the relations between
the cell parameter lengths are aPnma = √

2aFm3̄m, bPnma =
aFm3̄m/

√
2, and cPnma = aFm3̄m. The internal parameter of the

uranium ions in the 4c special site must be x = 1
4 and y = 1

2 .

TABLE I. Structural data for the different UO2 crystalline structures studied herein. The values of the cell parameters and the internal
fractional coordinates are averaged over the four potentials studied. The values for the Pnnm structure have been extracted from the transition
pathway (see Fig. 6) around 47 Å3/UO2, close to the P 42/mnm structure. These values have been calculated with the Morelon potential only.

Name Fluorite Rutile Marcasite Scrutinyite Cotunnite

Lattice system cubic tetragonal orthorhombic orthorhombic orthorhombic
Space group (number) Fm3̄m (No. 225) P 42/mnm (No. 136) Pnnm(No. 58) Pbcn (No. 60) Pnma (No. 62)
atoms/cell 12 6 6 12 12

Cell parameters (Å) a = 5.45 ± 0.02 a = b = 5.15 ± 0.03 a = 5.225 a = 5.18 ± 0.05 a = 6.01 ± 0.01
c = 3.53 ± 0.03 b = 4.860 b = 6.12 ± 0.08 b = 3.62 ± 0.01

c = 3.713 c = 5.70 ± 0.08 c = 7.02 ± 0.04

Uranium ions 4a (0, 0, 0) 2a (0, 0, 0) 2c (0, 1
2 , 0) 4c (0, y, 1

4 ) 4c (x, 1
4 , z)

y = 0.174 ± 0.001 x = 0.254 ± 0.001
z = 0.595 ± 0.001

Oxygen ions 8c ( 1
4 , 1

4 , 1
4 ) 4f (x, x, 0) 4g (x, y, 0) 8d (x,y,z) 4c (x, 1

4 , z)
x = 0.3061 ± 0.001 x = 0.2049 x = 0.272 ± 0.001 xO1 = 0.15 ± 0.001

y = 0.1728 y = 0.394 ± 0.001 zO1 = 0.93 ± 0.001
z = 0.4226 ± 0.0002 xO2 = 0.05 ± 0.001

zO2 = 0.33 ± 0.001
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FIG. 2. (Color online) Atomic structures of the UO2 polymorphs
studied herein: (a) Fm3̄m (fluorite), (b) Pnma (cotunnite), (c) Pbcn

(scrutinyite), (d) P 42/mnm (rutile), and (e) Pnnm (marcasite). The
uranium ions are represented by the large spheres and the oxygen
ions by the small ones (respectively gray and red). The visible bonds
link the U atoms to their first O neighbors.

The scrutinyite structure is more commonly known as the
α-PbO2 structure [see Fig. 2(c)]. It is orthorhombic and is
described in the Pbcn space group (see Table I). The uranium
ions are in the 4c (0, y, 1

4 ) special site and the oxygen ions
sit in the 8d (x, y, z) special site. The coordination number
of uranium is 6, lower than the one in the Fm3̄m structure.
The UO6 octahedra form planar chains sharing edges in a
zigzag arrangement along the c direction. Each octahedron is
strongly distorted, with the uranium being off-center. The key
differences between the Fm3̄m and the Pbcn structures are
the elongation along the 〈010〉 direction and an origin shift of
(0, 0, 1

4 ). The Fm3̄m structure can be described in the same
setting as the Pbcn structure. The difference is that for the
Fm3̄m structure the three axis lengths must be all equal. For
the Fm3̄m structure, the uranium ions stay in the 4c special
site but with y = 0, while the oxygen ions sit in the 8d special
site with x = y = z = 1

4 .
The rutile structure is tetragonal and is described in the

P 42/mnm space group. The uranium and oxygen ions set in
the 2a (0, 0, 0) and 4f (x, x, 0) special sites, respectively (see
Table I). Interestingly, the uranium sublattice is face-centered
cubic type similarly to the Fm3̄m structure. The coordination
number is 6 as seen in the Pbcn structure. The octahedra
share the edges of their basal planes along the c axis. These
octahedral chains are linked to one another by corner sharing,

forming small tunnels along the c axis, as illustrated in
Fig. 2(d).

The marcasite structure is described in the Pnnm space
group, with the uranium and oxygen ions setting in the 2c
(0, 1

2 , 0) and 4g (x, y, 0) special sites, respectively. This
structure, which has not been yet mentioned, is closely related
to P 42/mnm, and appears during some phase transitions,
as will be shown later. It has an orthorhombic cell and
a face-centered cubic uranium sublattice. The coordination
number of uranium ions is 6 (forming UO6 octahedra) like
in the P 42/mnm structure, with rather similar arrangements
between the octahedra. The most striking difference between
both structures is a small rotation of the UO6 octahedra around
the c axis. The conventional cell of the Fm3̄m structure is
related to the Pnnm structure through a 45◦ rotation of the
Pnnm (bc) plane and an origin shift of (0, 1

2 , 0). The relations
between the cell parameter lengths of the Fm3̄m and the Pnnm

structures are written as follows: aPnnm = a Fm3̄m and bPnnm =
cPnnm = aFm3̄m/

√
2. The uranium ions stay in the 2c (0, 1

2 ,
0) special site and the oxygen ions have x = 1

4 and y = 0 in
the 4g (x, y, 0) special site. The Pnnm and the P 42/mnm

structures share the same cell axes and all the angles are equal
to 90◦. The P 42/mnm structure can be described as a particular
Pnnm structure, with aPnnm = bPnnm = aP 42/mnm = bP 42/mnm

and cPnnm = cP 42/mnm and with an origin shift of (0, 1
2 , 0). The

internal parameters of the oxygen ions, x and y, have to be
equal in order to describe the P 42/mnm structure.

III. COMPUTATIONAL DETAILS

To study the phase transitions in high pressure and
tensile domains, we have performed two types of calcu-
lation. First-principles calculations were used in order to
investigate with required accuracy the equations of state of
the above-mentioned urania structures. Static calculations
and MD simulations using empirical potentials were used
to investigate detailed pathways of urania pressure-induced
transitions because they are computationally less expensive.
In the following section, we will describe both methods.

A. First-principles method

First-principles DFT calculations were performed using the
ABINIT code16 in the projector augmented wave formalism. The
atomic data are identical to those used in the study of defects in
UO2.17 Electron exchange and correlations were described by
a generalized gradient approximation (GGA) functional of the
Perdew-Burke-Ernzerhof type.18 With this choice of functional
we avoid the severe difficulties that appear when one uses
“beyond local” functional (such as hybrid functional or local
density approximation, LDA + U) due to the occurrence in
such calculations of multiple minima that requires special care
in the search for the ground state. Schemes have been proposed
to solve the local minima problem, like occupancy matrix
control19,20 or U-ramping.21 These schemes are very expensive
from a computational point of view. Moreover, the lack of
data about the secondary phases makes it hard to evaluate the
improvements they would have over a simpler approach.

Even if one cannot reproduce the insulating nature of UO2

with such “simple” GGA functional, they have proven able to
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TABLE II. Parameters for the potential of Eq. (1).

Q A (eV) ρ (Å)
C (eV Å

6
) D (eV) B (Å

−1
) rc (Å)

U O U-U U-O O-O U-U U-O O-O O-O U-O U-O U-O

Morelon12 3.227552 −1.613626 0 566.49 11272.6 0.4202 0.1363 134 0 0 0
Arima13 2.7 −1.35 2.48128×1013 55911.95 979.057 0.072 0.202 0.332 17.3555 0 0 0
Basak14 2.4 −1.2 294.619 693.601 1632.89 0.327022 0.327022 0.327022 3.948 0.57745 1.65 2.369
Yakub15 2.2208 −1.1104 187.03 432.18 883.12 0.3422 0.3422 0.3422 3.996 0.5055 1.864 2.378

describe accurately the crystallographic and elastic properties
of UO2. The calculations used regular grids of k points with
equivalent densities of sampling of the Brillouin zone of
the four phases. In practice, the grids were determined by
finding the smallest regular grid whose smallest reciprocal
vector is at least 3.7 nm long. We have performed DFT-GGA
energy minimizations in order to determine the equations of
state of the Fm3̄m, Pnma, Pbcn, and P 42/mnm structures.
The calculations at each given volume were done with full
relaxation of internal parameters.

Since the main goal of this study is to calculate the relative
stability of the different phases as a function of the volume,
for simplicity no spin polarization was considered for either
Pnma, Pbcn, or P 42/mnm phases of UO2. Moreover, the
magnetic structures of most of these lattices are not known
experimentally, and thus were not taken into account. These
problems have been discussed by Geng et al. in the case of
Pnma.4 However, structural analysis was performed to ensure
the validity and the relevance of the resulting configurations.

The result is the description of the energy as a function
of the volume for each crystalline structure. We calculate a
thermodynamic transition pressure between two phases by
calculating a tangent common to both energy curves, and the
corresponding volume change. It is known that this method
does not give an exact value when an energy barrier exists
between the two structures, like in the case of Fm3̄m and
Pnma.4 In this case, this thermodynamic transition should be
taken as an estimate. This structure has also more issues that
will be discussed later.

B. Empirical potentials

In order to assess the empirical potentials, we also
calculated the equations of state of each phase with static
calculations. The optimization was carried out for each urania
structure at given volumes with full relaxation of the angles, the
cell, and the internal parameters. We also performed standard
MD simulations in the NPT ensemble at very low temperature
(10 K) to complete the description of the Fm3̄m, Pnma, Pbcn,
and P 42/mnm urania structures given in Table I.

A large variety of interatomic empirical potentials are
available to model UO2. The reviews of Govers et al.22,23

and Potashnikov et al.24 compare most of them in various
domains of application but always in the Fm3̄m structure. A
recent study done by Chernatynskiy et al.25 has compared 26
interatomic potentials and assessed the structure stability for
UO2. However, this study only calculated for each potential the
energy of the ground-state structure, but does not describe the
equations of state for each phase. Here, in order to describe

in detail the different polymorphs that appear under tensile
or compressive load, we have chosen to compare four of
the most used potentials: Morelon,12 Arima,13 Basak,14 and
Yakub.15 All of them are based on a rigid ion approximation
with only pairwise interactions. The potentials are of similar
analytical form, which is composed of a Coulomb term, a
Born-Mayer-Huggins like repulsive term, and a van der Waals
attractive term for the anion-anion interactions. For two of the
potentials (Basak and Yakub) a covalent Morse term for the
cation-anion interactions is added. Thus, the general form of
the interaction energy between two atoms of chemical species
α and β, separated by a distance r , is written as follows:

Vαβ(r) = QαQβ

4πε0r
+ Aαβ e−r/ραβ − Cαβ

r6

+Dαβ [e−2Bαβ (r−rc) − 2 e−Bαβ (r−rc)]. (1)

Here Q is the ionic partial charge; Aαβ , ραβ , Cαβ , Dαβ , Bαβ , and
rc are adjustable parameters. The values of these parameters
for all potentials are given in Table II. It should be noted that
for the Morelon potential the cation-cation interactions are
only described by the Coulomb interactions. Moreover, the
anion-anion interaction is unconventional and is defined by
intervals as follows:

VOO(r) = QOQO

4πε0r

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AOO e−r/ρOO , 0 < r � 1.2 Å,

fifth-order polynomial, 1.2 Å < r � 2.1 Å,

third-order polynomial, 2.1 Å < r � 2.6 Å,

−COO

r6 , 2.6 Å < r.

(2)

The coefficients of both polynomials are given in Table III.
Energy-volume curves obtained with the empirical potentials
were used to extract the transition pressures between the phases
using the common tangent method.

C. Transition pathways

The use of empirical potentials being far less computa-
tionally expensive than the DFT-GGA calculations, we were
able to extensively explore the transition pathways between
structures under either tensile or compressive load. The
aim was to describe the most favorable evolution of the
potentially metastable structures with volume changes. In
particular, in the tensile domain, the cell parameters have to
be carefully controlled to prevent spontaneous recovery to
the most thermodynamically stable structure, i.e., the Fm3̄m
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TABLE III. Polynomial coefficients for the O-O interactions in the Morelon potential.

Fifth-order polynomial Third-order polynomial

a0 (eV) a1 (eV Å−1) a2 (eV Å−2) a3 (eV Å−3) a4 (eV Å−4) a5 (eV Å−5) b0 (eV) b1 (eV Å−1) b2 (eV Å−2) b3 (eV Å−3)

Morelon 479.955 −1372.53 1562.223 −881.968 246.435 −27.245 42.713 −55.29 22.998 −3.1212

structure. In order to achieve this, we have developed a method
to closely follow the local energy minima. Contrary to the
usual methodology,26 here no initial pathway deduced from
the geometric-topological approach is imposed.

The calculation starts from a known stable configuration,
whose domain of stability has been defined from previous
investigations of the equations of state (see Sec. IV A). The
transition pathways are then determined by following the local
minimum energies calculated at different imposed volumes.
Each imposed volume is separated by a volume increment
δV for which value of 0.5 Å3 has revealed to be sufficient to
smoothly follow the transition paths. At each volume step, the
minimum energy of the isovolume hypersurface is extracted
from a fine sampling of the cell parameters. In fact, only two
(e.g., a and b) of the three lattice axes are imposed. The last
one, c, is calculated from the cell parameter-volume relation
as follows: c = V/(a × b). The sampling of the a and b cell
parameters was done with windows of ±0.5 Å by steps of
5 × 10−3 Å. These windows of ±0.5 Å are sufficient to explore
the isovolume hypersurface without having undesired return
into the thermodynamically stable Fm3̄m structure. Also, we
chose to freeze the angles at their initial values, i.e., 90◦,
because all the structures studied are either cubic, tetragonal,
or orthorhombic. Subsequently, the internal parameters are
relaxed by a standard static energy minimization using the
GULP code27 for each (a, b) sampling value. This relaxation
enables the determination of the optimized cell and internal
parameters at a given constant-volume step. This optimized
structure is then introduced as the starting point of the next
volume increment, and the constant-volume minimization is
repeated until the target volume is reached. This procedure
forces the system to stay in local minima along the path, even
if these local minima are highly metastable.

In the compressive domain, where urania is found to be
the most stable in the Pnma structure, the minimization
procedure described above was adapted to explore far larger
cell parameter windows. The windows explored at each
volume increment were for each free cell parameter equal
to ±2 Å by steps of 5 × 10−3 Å. The exploration of such
large cell parameter windows allows us to obtain the transition
barrier in the compressive domain, i.e., between Pnma and
Fm3̄m structures. However, the method has been deemed
unsuccessful for these structure transitions as we will see
below.

We also investigated the effects of tensile loads by means of
MD simulations in order to investigate the dynamic processes
that occur during phase transitions. These calculations were
performed at 300 K, with strain rates ranging from 107 to
109 s−1, along the 〈100〉 and 〈110〉 directions. These strain
rates are many orders of magnitude higher than what occur in
reality; nevertheless no significant differences have been found
between simulations of different strain rates. Hence, we are

confident the results may be extrapolated to lower strain rates.
The size of the simulation box is 8 × 8 × 8 unit cells of the
Fm3̄m structure in order to allow long-range effects to happen.
At each increment of deformation, the resulting pressure of the
simulation box is calculated with the virial theorem and the
atomic displacements are recorded. With this procedure one is
able to calculate of the pressure-volume curves during phase
transition for a given temperature at different strain rates.

IV. RESULTS

A. Equations of state and phase transition pressures

The internal energy versus volume curves and transition
pressures for the Fm3̄m, Pnma, P 42/mnm, and Pbcn phases
of UO2 have been calculated with DFT-GGA static energy
minimization methods. Note that the equations of state of
the Pnnm structure was not considered since this structure
could not be stabilized. The results are reported in Fig. 3, with
the energies normalized per UO2 formula unit to allow direct
comparison of the energy versus volume curves, irrespective
of the number of atoms in each conventional cell (see Table I).

As expected, the ground-state structure of urania is the
cubic Fm3̄m phase. The equilibrium volume is equal to
39.5 Å3/UO2 (i.e., 5.4 Å for the unit cell), close to the
experimental value of 40.9 Å3/UO2.28 At higher pressures,

FIG. 3. (Color online) Cell cohesive energy as a function of the
cell volume for the Fm3̄m (solid lines), Pnma (squares), P 42/mnm

(crosses), and Pbcn (diamonds) phases calculated with DFT-GGA
(black), Morelon (blue), Arima (red), Basak (green), and Yakub
(orange) potentials. Both volume and energy are expressed as
quantities per UO2 formula.
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TABLE IV. Phase transition pressures in UO2 calculated with DFT-GGA and four empirical potentials: Morelon, Arima, Basak, and Yakub.
These values are compared with other molecular dynamics simulations and experimental data. We have found only experimental data for the
Fm3̄m to Pnma transition. Note that the MD reference value for the Pbcn transition is an estimate.

This work Other MD Exp.

DFT Morelon Arima Basak Yakub Yu5 Desai7 Idiri3 Benedict2

Fm3̄m → Pnma (GPa) 28 48 57 10 1.3 20 42 29
Fm3̄m → Pbcn (GPa) −10 −10 −6 −1.7 −1.4 −4.5*
Fm3̄m → P 42/mnm (GPa) −11 −9 −5 −1.7 −1.9

DFT-GGA calculations predict the orthorhombic Pnma phase
to be the most stable. The equilibrium volume of the Pnma

phase is found around 36.5 Å3/UO2. This value is close to the
one found in previous study with DFT-LSDA+U.4 For volume
greater than 45 Å3/UO2 (negative pressure), the Pbcn as well
as P 42/mnm phases are more favorable than the Fm3̄m phase.
The Pbcn and P 42/mnm phases are almost energetically
degenerate; hence it is impossible to distinguish which phase
is the most favorable. The values of the transition pressures
between the different phases under tensile and compressive
loads are reported in Table IV. The volume differences between
each phase for each transition are also reported in Table V.
Under compression, DFT-GGA calculations give a transition
from the Fm3̄m to the Pnma structure at 28 GPa, with
a volume decrease of 7%. This is in agreement with the
experimental values of Idiri3 and Benedict,2 in which the
transition pressure ranges from 29 GPa to more than 69 GPa,
with a volume change of 7%. Under tensile load (negative
pressure), the transition from the Fm3̄m to the Pbcn or to the
P 42/mnm structure occurs around −10 GPa. These transitions
involve large volume expansions of the cells. The volume
differences with respect to the Fm3̄m structure are estimated
to 21% and 24% increase for the Pbcn and the P 42/mnm

phases, respectively. No experimental data have been found
to confirm these values, but it is in qualitative agreement with
previous DFT and empirical potential calculations done by
Desai et al.7 These authors observed the transitions, but the
transition pressures were not quantified. It is worth mentioning
that similar pressure-induced phase transitions have been
observed in several compounds of type AX2, where A refers
to a cation and X to an anion.11 For example, PbO2 with the
Pbcn structure is known to have a phase transition to the
Fm3̄m structure under compressive load.11 The comparison
can also be made with MnF2 in the P 42/mnm structure. A
compressive load on that compound induces a phase transition
towards the Fm3̄m structure.11

TABLE V. Volume variations of a UO2 cell during the phase
transitions calculated with DFT-GGA and four empirical potentials:
Morelon, Arima, Basak, and Yakub. All the potentials and the
DFT calculations agree qualitatively on the volume variation at the
thermodynamic transition.

DFT Morelon Arima Basak Yakub Exp.3

Fm3̄m → Pnma −7% −6% −8% −8% −12% −7%
Fm3̄m → Pbcn 21% 17% 18% 12% 10%
Fm3̄m → P 42/mnm 24% 15% 20% 9% 8%

The equations of state of the urania Fm3̄m, Pnma,
P 42/mnm, and Pbcn phases were also calculated with the
four chosen empirical potentials. The energies as a function
of the volume have been reported on Fig. 3. The transition
pressures and volume changes are reported in Tables IV and
V, respectively.

Different empirical potentials can give significantly differ-
ent results as far as the relative energy of different structures
is concerned.25 That said, the four potentials used here predict
the correct ground structure, and overall similar behaviors
compared to the DFT-GGA calculations. The most favorable
phases are, in order from small to large volume, Pnma

(high pressure), Fm3̄m (ground state), Pbcn, and P 42/mnm

(negative pressure). The latter two curves are very close and
hardly distinguishable, with the P 42/mnm phase slightly
lower in energy than Pbcn for the empirical potentials,
whereas the opposite is found for DFT calculations. The
volume changes (see Table V) calculated by all the empirical
potentials are very similar to each other and reproduce fairly
well the values obtained by DFT-GGA calculations. However,
the phase transition pressures calculated with the empirical
potentials show, to some extent, a wide range of values.
Basak and Yakub potentials, under tensile load, give smaller
transition pressures (around −1 to −2 GPa, respectively)
than the DFT-GGA calculations (around −10 GPa). These
two potentials also give much lower transition pressures
in the compressive domain (10 and 1.3 GPa, respectively)
than the experimental value and the DFT-GGA calculations
(around 30 GPa). On the other hand, the Arima and Morelon
potentials show much better agreement with the experimental
and DFT-GGA values. We can note that the Morelon potential
exhibits (i) a transition pressure to the Pnma structure in the
range of what is observed experimentally and (ii) the transition
pressures to the P 42/mnm or to the Pbcn structure are
closer to the DFT-GGA values than with the Arima potential.
Therefore, in the following we will show only the results
obtained with the Morelon potential. However, most of the
studies presented below were also investigated with the three
other potentials in order to assess the observed behaviors. For
example, we have optimized the four urania phases (Fm3̄m,
Pnma, P 42/mnm, and Pbcn) by means of low-temperature
(at 10 K) MD simulations at constant pressure (0 GPa) using
the four empirical potentials.

The calculated cell parameters and the internal fractional
coordinates of each of the four structures are presented in
Table I. All four interatomic potentials give similar results.
Again, MD simulation of the Pnnm structure was impossible
because the structure spontaneously returns to the Fm3̄m
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FIG. 4. Evolution of the cell and internal parameters during the
Pbcn-Fm3̄m transition as a function of volume per UO2 formula.
The aPbcn, bPbcn, cPbcn, and xO

Pbcn, yO
Pbcn, zO

Pbcn, and yU
Pbcn are the cell

and internal parameters for the Pbcn structure and aFm3̄m refers to the
cell parameter of the Fm3̄m structure. The volume of stable urania is
indicated by a vertical line and mentioned as the UO2 ground state.
The vertical dashed line marks the volume at the transition point.

structure. The cell and internal parameters reported on the
Table I for the Pnnm structure were extracted from the static
transformation pathways presented below.

Quantitative variations from one potential to another are to
be expected when using classical MD. Moreover, one potential
performing well to predict some properties does not imply
universal applicability. This is clearly visible here, as the
Morelon potential which is the best of the four tested for the
transition pressures gives significant lower elastic constants
than the others. This is interesting, as it implies that the elastic
behavior is not the most important for these phase transitions.

B. Static transformation pathways

Having established the thermodynamic evolution of urania
as a function of volume, we investigate the transition pathways
from one structure to the next. We recall that we start our
calculations from the stable structure of urania and then
we smoothly decrease/increase the volume using our energy
minimization procedure towards the target volume. Applying a
volume decrease (increase of the pressure) from the P 42/mnm

or the Pbcn structure to the Fm3̄m structure we were able to
extract the whole transformation pathways. These pathways
were analyzed using the FINDSYM software.29 With this
software, we were able to determine the space groups along the
transition paths, namely as a function of the volume. We also
followed the evolution of the cell and internal parameters as a
function of the volume. The results are reported as snapshots

FIG. 5. (Color online) Snapshots of the phase transition from the
Fm3̄m to the Pbcn structure projected onto the a-b plane of the Pbcn

structure. (a) Crystal in the Fm3̄m structure. The axes correspond to
both Fm3̄m and Pbcn settings. (b) The oxygen planes start to glide
along the b axis; the uranium ions are still perfectly aligned. (c) The
uranium planes begin to glide along the b axis forming a zigzag
pattern. (d) Complete transition to the Pbcn structure.

and graphs in Figs. 4 and 5 for the Pbcn-Fm3̄m transition and
in Figs. 6 and 7 for the P 42/mnm-Fm3̄m transition.

The transition pathway from the urania Pbcn structure
down to the Fm3̄m structure is relatively simple from a
crystallographic point of view (see Sec. II). Each axis of the
Fm3̄m structure corresponds to one axis in the Pbcn structure.
The evolution of the cell and internal parameters can then
easily be followed (see Fig. 4). Starting from high volumes of
around 50 Å3/UO2 down to the UO2 ground-state volume, we
observe that urania in the Pbcn structure transits towards the
Fm3̄m structure for a volume equal to about 47.5 Å3/UO2.
From this volume down to the UO2 ground-state volume
(40.5 Å3/UO2), urania remains in the Fm3̄m structure. In
the Pbcn structure domain, we observe that the bPbcn-axis
length slope is slightly higher than for the two other axes
(aPbcn and cPbcn) until the transition volume. This bPbcn-axis
length accommodation of the deformation can be seen as well
on the evolution of the yU

Pbcn internal coordinate of uranium in
the 4c (0, yU

Pbcn, 1
4 ) special site. The value of yU

Pbcn smoothly
converges down to zero (value for the Fm3̄m structure) at
the transition volume. This trend can be visualized in Fig. 5.
The zigzag pattern made by the U-U-U chains in the Pbcn

structure smoothly aligns along the a axis during the transition
to Fm3̄m. We also observe change of the positions of the
oxygen ions along the b axis. This is related to the strong
variations of (i) the yO

Pbcn internal parameter to the value 1
4

and (ii) the bPbcn axis length to the Fm3̄m structure value.
Close to the transition, we also observe a strong discontinuity
of the evolution of the aPbcn- and bPbcn-axis lengths. Both
shift to one single value by a quasidiscrete step of around
0.2 Å. This discrete transition is also drastic for the internal
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FIG. 6. Evolution of the cell; internal parameters during the
P 42/mnm-Fm3̄m transition as a function of volume per UO2

formula. The aP 42/mnm, bP 42/mnm, cP 42/mnm, and xP 42/mnm, yP 42/mnm

refer to the cell and internal parameters of the P 42/mnm structure;
the aPnnm, bPnnm, cPnnm, and xPnnm, yPnnm are the cell and internal
parameters of the Pnnm structure; and finally, aFm3̄m refers to the
cell parameter of the Fm3̄m structure. Note that half of the small
diagonal aFm3̄m/

√
2 does appear. In fact, the fluorite conventional

cell is expressed in the P 42/mnm cell, and they are linked to one
another by a 45◦ rotation in the a-b plane. The volume of stable
urania is indicated by a vertical line and mentioned as UO2 ground
state. The vertical dashed lines indicate the volume at each transition
point.

parameters. These discrete steps are concomitant with the
uranium coordination number change from six in the Pbcn

structure to eight in the Fm3̄m structure.
The second transition path considered is from the

P 42/mnm to the Fm3̄m structure. The transition is slightly
more complicated than the previous one since the pathway
contains one intermediate structure. In order to easily follow
the transitions, we have reported the evolutions of the cell
and internal parameters along the pathway as a function of the
volume in Figs. 6 and 7. The transition starts from high volume
(50 Å3/UO2) with urania in the P 42/mnm structure down to
the ground-state structure. We observe along the pathway (see
Fig. 6) a first structural transition from the P 42/mnm structure
to the Pnnm structure at about 47.5 Å3/UO2 and a second
structural transition from the Pnnm structure to the Fm3̄m

structure at about 45 Å3/UO2. The system remains in the
Fm3̄m structure for smaller volumes down to the UO2 ground-
state volume. In the P 42/mnm structure domain, only the
basal plane axes (aP 42/mnm = bP 42/mnm) decrease with volume.
The oxygen internal parameters start to split smoothly at the
transition to the Pnnm structure. This is concomitant with the
faster split of the basal plane axes (aP 42/mnm = bP 42/mnm) of
the P 42/mnm structure to the axes of the Pnnm structure

FIG. 7. (Color online) Snapshots of the phase transition from the
Fm3̄m to the P 42/mnm structure projected onto the a-b plane of
the P 42/mnm structure. (a) Crystal in the Fm3̄m structure. The
axes correspond to the P 42/mnm setting. (b) The UO2 triplets start
to rotate. This is the intermediate Pnnm structure. (c) Complete
transition to the P 42/mnm structure. During the transition, the
distance between the U ions changes but the other symmetries are
not broken whereas the O sublattice is completely reorganized.

(aPnnm �= bPnnm). Note that the transition from P 42/mnm

to Pnnm structure leaves the c axis almost unchanged, and
the evolution from cP 42/mnm- to cPnnm-axis length remains
surprisingly smooth. The Pnnm domain corresponds to the
rotation of the UO6 octahedra around the cP 42/mnm- or
the cPnnm-axis as represented in Fig. 7. The evolution of
the cell and internal parameters do have higher amplitudes
in the Pnnm structure domain than in the P 42/mnm structure
domain. The bPnnm- and cPnnm-axis lengths of the Pnnm

structure converge to the aF /
√

2-axis length of the Fm3̄m

structure. This is because the transformation from the Fm3̄m

structure to the Pnnm structure involves a 45◦ rotation of the
Pnnm (bc) plane (see Sec. II). The aPnnm-axis length rapidly
converges to the aFm3̄m-axis length of the Fm3̄m structure.
The length change of the bPnnm axis is significant. Its value is
reduced by around 1 Å, which corresponds to 20% of its initial
value at the Fm3̄m-Pnnm transition point. Note that the rapid
evolution of the bPnnm-axis length is somehow compensated by
the counteracting change of the yPnnm internal parameter such
that the rotation of the UO6 octahedra is kept smooth along
the transition pathway. The evolution of the cPnnm-axis length
remains small in comparison to the other axes. As observed
previously for the Pbcn structure, there is a clear discontinuity
of the cell parameters at the transition point from the Pnnm

structure to the Fm3̄m structure.
The reverse pathways, i.e., from the Fm3̄m to the

P 42/mnm or the Pbcn structure, were impossible to obtain
using our static minimization procedure. However, both path-
ways could be observed using MD simulations (see Sec. IV C).
This impossibility is certainly related to the anisotropic
features of the tetragonal P 42/mnm and the orthorhombic
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Pbcn structures. Both require in fact specific anisotropic
deformations (see below), along one axis (Pbcn structure) or
along a linear combination of two axes (P 42/mnm structure).
The transitions are hindered within the static minimization
procedure because the three axes of the Fm3̄m structure are
strictly equivalent. In practice this means that the deformation
of one axis with respect to the others is hardly favored when
starting from the highly symmetric Fm3̄m structure.

In the compressive domain, if we start from the Pnma

structure and apply a volume increase (decrease of pressure),
the Pnma structure remains stable and never changes to the
Fm3̄m structure. Similarly, if we start from the Fm3̄m struc-
ture and decrease the volume (pressure increase), the initial
Fm3̄m lattice never turns into a Pnma structure. Identical
behavior was obtained for all the potentials considered herein.

This can be explained by published observations about this
transition,1 which are confirmed with our MD simulations (see
below). Indeed, the transition mechanism seems to be at least
partially reconstructive, involving the melting of a sublattice.
In this case, the simulated system has to be large enough
to represent a structure with fewer symmetry elements and
possibly a larger unit cell than either the primary and secondary
structures. This is consistent with the experiments performed
by Idiri3 in which the transition was observed starting from

FIG. 8. (Color online) Plot of the pressure as the function of the
volume resulting from a uniaxial tensile deformation in the 〈100〉
direction calculated with MD simulation at 300 K. The blue line with
square symbols corresponds to the tensile loading and the orange
line with sphere symbols corresponds to the unloading. The crystal
structures corresponding to each regime are displayed underneath
the plot: Fm3̄m structure (regime I), phase coexistence (regime II),
and pure Pbcn structure (regime III). The interface in the regime II
corresponds to the {100} plane of both Fm3̄m and Pbcn phases.

42 GPa, although the transition was not complete for all the
samples by 69 GPa.

C. Dynamic transformation pathways

The calculation of the static transformation pathways
presented above was only possible from high volume structures
(Pbcn or P 42/mnm) towards the ground-state structure
(Fm3̄m). Moreover, this procedure leads to discrete step
transformation at the transition volume. In order to capture
the dynamics and investigate the transitions in both directions,
MD simulations at a finite temperature were performed with
the Morelon potential by applying uniaxial tensile loading and
unloading. The details of the MD simulations are described
in Sec. III. Two different uniaxial deformations were applied
on urania in the Fm3̄m structure, respectively along the 〈100〉
and the 〈110〉 directions. These directions correspond to the
most deformed axes along the static pathways related to both
transitions, as can be seen in Figs. 4 and 6.

The pressure-volume curves resulting from these sim-
ulations are shown in Figs. 8 and 9. Both figures differ
quantitatively, but the overall behavior is the same. At first,
the response of the material is elastic, with a small deviation

FIG. 9. (Color online) Plot of the pressure as the function of the
volume resulting from a uniaxial tensile deformation in the 〈110〉
direction calculated with MD simulation at 300 K. The blue line with
square symbols corresponds to the tensile loading and the orange
line with sphere symbols corresponds to the unloading. The crystal
structures corresponding to each regime are displayed underneath the
plot: Fm3̄m structure (regime I), phase coexistence (regime II), and
pure P 42/mnm structure (regime III). The interface in the regime
II corresponds to the {110} plane of the Fm3̄m phase and the {100}
plane of the P 42/mnm phase.
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FIG. 10. (Color online) Successive snapshots of a crystal in a Fm3̄m structure, after an uniaxial compression to a pressure of 47 GPa:
(a) initial structure showing heavy distortion of its {110} planes and the beginning of a disordered phase; (b) disordered phase occupying the
whole simulation box; (c) final structure after a relaxation of 2 ns. The relaxation was a constant volume and at 300 K.

from the perfect linear behavior for deformation in the 〈110〉
direction [regime I, Figs. 8(a) and 9(a)]. At around 46 Å3/UO2,
the negative tensile pressure is the highest and is equal to
−12 and −11 GPa for deformation in the 〈100〉 and 〈110〉
directions, respectively. This elastic regime finishes in both
cases with an abrupt jump in the pressure, reaching −8 and
−8.5 GPa for deformation in the 〈100〉 and 〈110〉 directions,
respectively. In the case of the deformation in the 〈100〉
direction, this jump is followed by a plateau until a volume
of 49.5 Å3/UO2, whereas in the case of the deformation in
the 〈110〉 direction, the pressure slowly decreases to −10 GPa
for a volume of 50.5 Å3/UO2. After analyzing the structures
in this last regime, we found in both cases that it corresponds
to the nucleation of secondary phases in the crystal, which
coexists with the initial Fm3̄m phase separated with clear
interfaces [see Figs. 8(b) and 9(b)]. These phases have been
identify as the Pbcn structure for deformation in the 〈100〉
direction and as the P 42/mnm structure for the deformation in
the 〈110〉 direction. Therefore, since both tensile structures are
energetically degenerate (see Fig. 3), the deformation direction
is crucial to determine which of the two phases will be formed.
For this last deformation, we point out that a thin layer of
urania in the Pnnm phase is observed between the Fm3̄m and
the P 42/mnm phases. However, this phase is transient and
transforms quickly by rotation of the UO6 octahedra to the
P 42/mnm structure as the elongation along the 〈110〉 direction
increases as shown in the static transformation pathway in
Sec. IV B. The formation of these new phases dissipates some
of the internal stresses and causes brutal pressure change for
both directions of deformation. After this transition regime
at around 49.5 and 50.5 Å3/UO2 for the 〈100〉 and the
〈110〉 directions, respectively, the systems show again a linear
decrease corresponding to the elastic regime of the secondary
phases [regime III, Figs. 8(c) and 9(c)]. Beyond a volume of
around 52 Å3/UO2 for both 〈100〉 and 〈110〉 directions, the
pressure collapses abruptly due to the rupture of the secondary
phases.

It is important to state here that the coexistence of two
phases during the transition and the brutal change of the

internal parameters shown in Sec. IV B are indicative of a
first-order transition. Therefore, the highest negative tensile
pressure (−12 and −11 GPA) can be considered as the dynamic
transition pressure. These values are in good agreement with
the thermodynamic transition pressures calculated from the
equations of state. Just before the rupture, both systems are
unloaded by reducing the volume with the same strain rate
in the same direction as for the tensile load. The results
of the unloading trace are displayed in the same figures
(Figs. 8 and 9) for direct comparison with the tensile load.
First, reverse transformation was possible with this dynamic
procedure. Both systems showed again the same three regimes.
First, elastic unloading of the secondary phase appears,
until a transition point at which the Fm3̄m phase nucleates
(regime III). Interestingly, the nucleation of the ground phase
during unloading does not occur at the same volume than it
appeared during loading: 47.5 instead of 49.5 Å3/UO2 for
the 〈100〉 deformation and 49.5 instead of 50.5 Å3/UO2 for
the 〈110〉 deformation. Therefore, a hysteresis loop clearly
appears between regimes II and III. Similar hysteresis appears
between regime II and I. However, both phase transformations
are completely reversible without any plastic deformation,
indicating a perfect reversibility of both transitions.

Compressive tests were also carried out using the same
procedure to try to trigger a dynamic transition to a Pnma

structure. These tests ran up to a pressure of 100 GPa without
showing the transition. However, some simulations showed a
different behavior during a relaxation following the compres-
sion. The relaxations were done at constant volume to prevent
the crystal from simply shrinking to the ground state of the
Fm3̄m structure. The temperature was also controlled using
a Berendsen thermostat. In these cases, the initial structure
was not the most favorable one, as shown previously by
the energy-volume relations. The initial structure disappeared
after undergoing heavy distortion, leaving a disordered phase
(see Fig. 10). This secondary phase started disappearing after
about 0.5 ns, replaced by a growing, more ordered phase. After
a few nanoseconds of relaxation, the third phase occupied
the whole simulation boxes. This phase still contained many
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FIG. 11. (Color online) Comparison of the structure obtained
after a relaxation at an initial pressure of 47 GPa (on the left) and
that of a perfect Pnma crystal (on the right). Some similar features
in both configurations are visible, although there are many remaining
defects that prevent the formal structure identification.

defects, preventing a formal structure detection to be carried
out (like using the FINDSYM code). However, visual exami-
nations showed many symmetry elements similar to those of
the Pnma structure, as is shown on Fig. 11. This mechanism
is similar to the one previously proposed for the Fm3̄m

structure,1 the main difference being that in our case both sub-
lattices are disordered, whereas the other description involves a
disorder mainly contained on the anion sublattice. In our study,
uniaxial, biaxial, and hydrostatic compression were tested,
but another kind of loading may lead to the transition more
easily.

V. CONCLUSIONS

A combination of atomistic simulation methodologies were
used to study the relative stability and the transitions between
some urania polymorphs under tensile and compressive de-
formations. Based on previous experimental and theoretical
works, we have considered four possible polymorphs: the
ground Fm3̄m structure, the high-pressure structure Pnma,

as well as the not yet experimentally observed Pbcn and
P 42/mnm structures.

The energy-volume relationships were calculated for these
four structures with first-principles calculations using the DFT-
GGA approximation as well as with four of the most widely
used empirical potentials for UO2 (Morelon, Arima, Basak,
and Yakub). The transition pressures were also established
from the calculated equations of state. As expected, Fm3̄m is
the most stable of the four studied structures under ambient
conditions. All the models predicted Pnma to be more stable
at lower volumes. The transition between the Fm3̄m and the
Pnma structures occurs at 28 GPa, which is in relatively
good agreement with the experimental data. In the tensile
deformation domain, urania is more stable in either the Pbcn

or the P 42/mnm structure. These two phases are almost
energetically degenerate; hence it is impossible to distinguish
which phase is the most favorable. For both phases, the
transition occurs at around −10 GPa.

From comparison between the four empirical potentials,
we have selected the Morelon potential as the most reliable
to capture the deformation-induced transitions. It was used to
carefully follow the transition pathways between the ground-
state and the tensile metastable structures (P 42/mnm or
Pbcn), by means of a dedicated static energy minimization
procedure. Although all the tested potentials as well as the
DTF-GGA calculations give very close transition pressures for
Fm3̄m-P 42/mnm and Fm3̄m-Pbcn transitions, the transition
pathways exhibit very different behaviors. In the case of the
Fm3̄m-Pbcn transition, there is almost a discrete change
for two of the lattice parameters, whereas in the case of
the Fm3̄m-P 42/mnm transition, the variation is smoother
with an intermediate unstable phase identified as the Pnnm

structure.
The static pathways describe the transitions in terms of

symmetry and parameter changes, and are not representative
of a transition in a large crystal. Indeed, the intermediate states
are unstable, and the transition would involve a nucleation and
a growth mechanism that should be studied using dynamic
methods, rather than a direct transition.

MD simulations were also carried out to capture the dynam-
ics of the Fm3̄m-Pbcn and Fm3̄m-P 42/mnm transitions.
We discovered that the transition is highly dependent upon
the tensile direction: strain in the 〈100〉 direction leads to the
Pbcn structure whereas strain in the 〈110〉 direction drives
the system to the P 42/mnm structure. It has been found
also that both transitions occur with a two-step mechanism
contrary to what has been observed with static calcula-
tions. The first step is the creation of an interface between
the Fm3̄m and the secondary phases, leading to the coexis-
tence of two or three phases. This step is followed by the
complete transformation into the Pbcn or the P 42/mnm

structure according the deformation direction. Similarly to the
static pathways, dynamic calculations show a transient Pnnm

structure between Fm3̄m and P 42/mnm structures. These
dynamic transitions were completely reversible, showing only
a hysteresis loop at the nucleation point of the different
phases. Dynamic simulations under compressive loads have
shown that the Fm3̄m crystal would turn into a Pnma-like
structure, but that this involves a transient, high-disorder
phase.
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