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Theory of local electric polarization and its relation to internal strain: Impact on polarization
potential and electronic properties of group-III nitrides
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We present a theory of local electric polarization in crystalline solids and apply it to study the case of wurtzite
group-III nitrides. We show that a local value of the electric polarization, evaluated at the atomic sites, can be
cast in terms of a summation over nearest-neighbor distances and Born effective charges. Within this model,
the local polarization shows a direct relation to internal strain and can be expressed in terms of internal strain
parameters. The predictions of the present theory show excellent agreement with a formal Berry-phase calculation
for random distortions of a test-case CuPt-like InGaN alloy and InGaN supercells with randomly placed cations.
While the present level of theory is appropriate for highly ionic compounds, such as III-N materials, we show that
a more complex model is needed for less ionic materials, such as GaAs, in which the strain dependence of Born
effective charges has to be taken into account. Moreover, we provide ab initio parameters for GaN, InN, and AlN,
including hybrid functional values for the piezoelectric coefficients and the spontaneous polarization, which we
use to accurately implement the local theory expressions. In order to calculate the local polarization potential,
we also present a point dipole method. This method overcomes several limitations related to discretization and
resolution which arise when obtaining the local potential by solving Poisson’s equation on an atomic grid. Finally,
we perform tight-binding supercell calculations to assess the impact of the local polarization potential arising
from alloy fluctuations on the electronic properties of InGaN alloys. In particular, we find that the large upward
bowing with composition of the InGaN valence-band edge is strongly influenced by local polarization effects.
Furthermore, our analysis allows us to extract composition-dependent bowing parameters for the energy gap and
valence- and conduction-band edges.
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I. INTRODUCTION

Electrostatic built-in fields arising from discontinuities
of the electric polarization vector significantly modify
the electronic and optical properties of semiconductor
nanostructures.1–4 Of particular interest are systems such
as GaAs-based quantum dots (QDs), whose electronic and
optical properties are affected by the symmetry of strain and
strain-induced piezoelectric fields.5,6 The effect of built-in
electrostatic fields is even more dramatic in III-N-based
heterostructures, where the large piezoelectric response to-
gether with the intrinsic spontaneous polarization give rise to
built-in electrostatic fields far exceeding those encountered
for other III-V materials.1,7–12 Although these effects have
been studied over the last two decades, the possible role
of the local polarization potential has only recently been
considered.4

Theoretical studies that include a treatment of polarization
fields effectively treat the field at a continuum level (even
if the strain itself is obtained from an atomistic calculation),
with the polarization assumed to have a smooth behavior with
local strain and composition, even in the case of alloys. We
have previously shown for InGaN alloys that a local value of
polarization can be obtained, observing large fluctuations in its
value at a microscopic scale.4 In this paper we lay our theory
of local polarization on more solid ground, giving general
equations and providing a direct link with internal strain. We
provide a complete and consistent set of polarization-related
ab initio parameters for the group-III nitrides, which are
needed for the computation of the local and macroscopic
contributions to the total polarization. In order to compute

the electric potential arising from the local polarization, we
also present a “point dipole” method.

When computing the electronic properties of alloyed
materials, it is of vital importance that the supercell used
allows to reproduce the different configurations encountered
in actual material samples. In practice, this implies that the
supercell must be sufficiently large. At present, calculations
for such large systems escape the reach of ab initio techniques,
such as density functional theory (DFT). Moreover, standard
implementations of DFT fail to correctly describe band gaps,13

and those implementations that allow an accurate prediction of
this quantity, such as hybrid approaches,14 are computationally
much more expensive. On the other hand, alternative semiem-
pirical electronic structure methods enable access to the
electronic properties of large systems for which first-principles
approaches cannot be realistically implemented. The tight-
binding approximation allows an accurate description of the
electronic structure in these cases, with the advantage that
polarization potentials and deformation potentials can be
included as on-site corrections to the Hamiltonian matrix
elements.15,16 We therefore apply the tight-binding scheme
in this work in order to get insight into how the strong local
polarization effects influence the electronic structure of InGaN
alloys.

The paper is organized as follows. In Sec. II, we introduce
the theoretical foundations of the present theory of local
electric polarization and discuss its degree of validity. In
particular, we show in Sec. II C by comparing our local
polarization results to DFT calculations that the first-order
level of description presented here works remarkably well in
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the case of group-III nitrides (relevant ab initio parameters for
GaN, AlN, and InN are given in Sec. II C1). In Sec. III, we
present a point dipole method for the computation of the local
polarization potential on an atomic grid, and discuss practical
considerations regarding the implementation of the method.
Practical examples of the calculation of local polarization and
local polarization potential are given in Sec. IV for polar and
non polar InGaN/GaN quantum wells (QWs). In Sec. V, we
present a tight-binding (TB) model for the calculation of the
electronic structure in nitride systems, and discuss how the
local polarization potential affects the band gap of InGaN.
We then extract composition-dependent bowing parameters
for the band gap and for both the conduction band (CB) and
valence-band (VB) edges of InGaN alloys over the whole
composition range in Sec. VI. Finally, we summarize our
conclusions in Sec. VII.

II. THEORY OF LOCAL ELECTRIC POLARIZATION

When treating a periodic crystal, it is usual to work in
terms of the dipole moment per unit volume, that is, the
density of dipole moment, or polarization. Crystals whose
symmetry allows an inversion center cannot present a net
dipole moment.17 For crystals without an inversion center,
except point group 432,18 certain deformations of the crystal
lattice give origin to net dipole moments, known as the
piezoelectric effect. In addition to this, the subset of those
crystals that present an anisotropic direction in the lattice,
called polar, are compatible with the existence of net dipoles
even in the unstrained state, which is referred to as spontaneous
polarization. The wurtzite (WZ) crystal structure belongs
to the latter class and therefore WZ nitrides present both
piezoelectric and spontaneous polarization.17

The piezoelectric response of a material to strain is
modeled, in the linear regime,19 via the piezoelectric tensor
eij :

P
pz
i =

6∑
j=1

eij εj , (1)

where P
pz
i are the components of the piezoelectric polarization

vector and εj are the strains, given in Voigt notation.20 The
symmetry of the crystal determines the non-zero elements
of eij . We shall see further on that, even for a bulk binary
compound, one can define a local piezoelectric tensor e∗

ij

whose average over the unit cell reduces to eij , but that has in
general more nonzero elements than eij . The total polarization
vector is given by

Pi = P
sp
i + P

pz
i , (2)

where P
sp
i are the components of the spontaneous polarization

vector, that will be present only if the crystal symmetry allows,
as previously discussed.

Calculating the polarization of a periodic crystal might
seem at first a trivial problem, with a possible intuitive defini-
tion being given by the charge density of the unit cell. However,
there is no way of unambiguously defining the polarization
vector using such a method, with an array of possible values
arising from different choices of origin.21 A rigorous frame
for the computation of polarization in periodic solids was not

available until as recently as the 1990s. The main developments
were presented in the seminal papers by Vanderbilt and
King-Smith,22,23 building up on an idea originally suggested
by Resta,24 where the foundations of the Berry-phase theory
of polarization, or modern theory of polarization,25 were laid.
This theory allows a calculation of the dipole moment of the
unit cell of a periodic insulating system, which is well defined
modulo eR (where e is the elementary charge and R is a
lattice vector). The latter ambiguity can be removed in different
ways, such that a meaningful value for the polarization can
be obtained.22,23,26 However, the obtainment of a position-
dependent polarization vector, that varies within the unit cell
in which the Berry phase is computed, is beyond the reach of
this technique. Nevertheless, for systems where composition
and/or strain change abruptly within the unit cell (e.g.,
random alloy InGaN QWs), the question of whether a local
value of the polarization vector can be calculated becomes
pertinent.

In the context of the Berry-phase technique, only the
average polarization of the periodic unit cell as a whole
can be calculated formally. In a general calculation, there
may not necessarily be an obvious or straightforward way to
partition the system into subsets for which the polarization can
be easily computed in separate calculations. Any knowledge
of how the polarization varies within the supercell must
therefore rely on a heuristic assumption. This motivates to
find a phenomenological solution to the problem, to gain
access to physical information which would not be accessible
otherwise. We show below that, within the present local
polarization formalism, a position-dependent polarization,
defined down to the unit volume of an ensemble of nearest
neighbors, yields results in good agreement with a formal
Berry-phase calculation, when extrapolated to calculate the
average polarization of the supercell. This agreement provides
strong support that the approach presented here provides
an accurate description of local polarization effects in III-N
heterostructures and alloys.

A. Formal definition of the local polarization

As already discussed, the total macroscopic polarization
has two components: spontaneous and piezoelectric. Because
the spontaneous polarization is a reference state, establishing
a local value for it formally might prove rather nontrivial:
one would need to devise an adiabatic transformation which
keeps the system insulating while moving from an equivalent
centrosymmetric structure to the polar crystal structure that
allows to evaluate the difference in polarization locally (at each
atomic site).21 Therefore, to avoid this complexity, we assume
the spontaneous polarization for a given binary compound to
be position-independent and direct our attention towards the
piezoelectric polarization instead.

Our aim is a reformulation of Eq. (1) that allows an
evaluation of the local and macroscopic contributions to the
polarization separately. For the sake of clarity and conciseness,
we constrain ourselves to changes in P

pz
i that are linear

in the strains. Future work will extend our description to
second-order piezoelectric polarization. As we will see later
on, the linear approximation breaks down quickly for some
III-Vs but is good up to moderate strain for the highly
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ionic III-nitrides. In analogy to elasticity,27 we can generalize
Eq. (1) for arbitrary internal strains as follows:

P
pz
i =

6∑
j=1

eij εj +
Natoms∑
α=1

3∑
k=1

∂P
pz
i

∂tαk︸ ︷︷ ︸
eZα

ik/V

[
tαk − tαk,0(ε)

]
, (3)

where Natoms is the number of atoms in the unit cell, tαk is the
kth component of the internal strain vector for atom α, e is the
elementary charge, V is the volume of the unit cell, and Zα

ik

is the ik component of the Born effective charge tensor28 for
atom α. tαk,0 (ε) are the internal strains that minimize the total
energy of the crystal for any given strain state ε.27 Although
Eq. (3) is general, because we are working in the linear ap-
proximation we will assume that the off-diagonal components
of the Born effective charges are zero. Equation (3) therefore
reduces to

P
pz
i =

6∑
j=1

eij εj +
Natoms∑
α=1

eZα
i

V

[
tαi − tαi,0(ε)

]
, (4)

where we have employed an implicit notation Zα
i ≡ Zα

ii .
Again, in the linear limit, the tαi,0 are linear in ε and we can
write

P
pz
i =

6∑
j=1

(
eij −

Natoms∑
α=1

eZα
i

V

∂tαi,0

∂εj

)
︸ ︷︷ ︸

e
(0)
ij

εj +
Natoms∑
α=1

eZα
i

V
tαi , (5)

where e
(0)
ij is the piezoelectric coefficient obtained from a

“clamped-ion” calculation,26 in which the ionic coordinates
are not allowed to relax. Note that in Eq. (5), the first term e

(0)
ij

is macroscopic, that is, defined for the unit cell as a whole,
while the second one is evaluated locally.

Consider now that V0 is the volume comprising an atomic
site and all of its nearest neighbors (in the context of the four-
fold coordinated ZB and WZ lattices this would correspond
to each of the tetrahedra that make up the crystal). We label
the central atomic site 0 and each of its nearest neighbors by
α = 1,2,3, . . . ,N0

coor. Then, the relevant quantity in Eq. (5) to
be evaluated locally (at the atomic site 0) is

P
pz
i,local(0) ≡ e

V0

⎛
⎝Z0

i t0
i +

N0
coor∑

α=1

Zα
i

Nα
coor

tαi

⎞
⎠ , (6)

where Nα
coor is the number of nearest neighbors of atom α. By

dividing the contribution of each of the nearest neighbors Zα
i

by their own number of nearest neighbors Nα
coor we ensure no

double counting when extending the evaluation of Eq. (6) to
the whole crystal.

The internal strains can be obtained in a relatively straight-
forward manner for binary compounds.27,29 However, for an
irregular material, such as an alloy, establishing a reference
lattice structure with respect to which the internal strains
could be calculated would carry a high degree of arbitrariness.
Furthermore, an exact evaluation of Eq. (6) would rely on
knowing the value of Zα

i for all the atoms present in the

1

2

3

40
1

FIG. 1. (Color online) First nearest-neighbor environment in a
tetrahedrally bonded crystal. The vector pointing from atom 0 (the
central atom) towards atom α is denoted �α .

crystal. For an irregular material, Zα
i would differ, in general,

for each atom, even (by a small amount) for atoms of the same
species. Therefore our choice is to deduce an approximation
to Eq. (6) valid for a representative reference system (such
as a binary), and use that approximation to estimate the local
polarization in irregular systems. We propose the following
spherical approximation for the local environment of the
central atom (atomic site 0):

N0
coor∑

α=1

Zα
i

Nα
coor

tαi ≈ − Z0
i

N0
coor

N0
coor∑

α=1

tαi . (7)

The approximation given by Eq. (7) would be exact if all
the nearest neighbors (α = 1,2,3, . . . ,N0

coor) of atom 0 were
piezoelectrically equivalent, that is, if all of them have the
same Born effective charges. This is the case for binary ZB and
WZ compounds. Further on, we will deal with how different
approximations work out for alloys.

We can characterize the bonds between atom 0 and atoms
α = 1,2,3, . . . ,N0

coor by a vector �α as indicated in Fig. 1. If
�α

0 is the bond vector of the unstrained case, we can write �α

in terms of the macroscopic and internal strains:

�α
i =

3∑
j=1

(δij + εij )�α
j,0 + tαi − t0

i , (8)

where εij are the components of the strain tensor in Cartesian
notation and δij is the Kronecker delta function. With the
approximation of Eq. (7) and the definition given by Eq. (8)
we rewrite Eq. (5) as

P
pz
i =

6∑
j=1

e
(0)
ij εj

− e

V0

Z0
i

N0
coor

⎡
⎢⎢⎢⎢⎣

N0
coor∑

α=1

�α
i︸ ︷︷ ︸

μi

−
3∑

j=1

(δij + εij )
N0

coor∑
α=1

�α
j,0︸ ︷︷ ︸

μj,0

⎤
⎥⎥⎥⎥⎦ , (9)

where μ, defined as a summation over nearest-neighbor
distances, is the bond asymmetry parameter.4 μ0 is the bond
asymmetry parameter of the unstrained system, that would
be zero for binary ZB materials and would have a nonzero
component along the polar axis μ3,0 for WZ materials.4
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Finally, we write for the total polarization at atomic site 0:

Pi =
6∑

j=1

e
(0)
ij εj

︸ ︷︷ ︸
macroscopic

+ P
sp
i − e

V0

Z0
i

N0
coor

⎡
⎣μi −

3∑
j=1

(δij + εij )μj,0

⎤
⎦

︸ ︷︷ ︸
local

. (10)

Equation (10) is a central result of this paper, which separates
the contributions to the polarization arising from macroscopic
effects, given by the clamped-ion piezoelectric coefficient e

(0)
ij ,

and local effects, dominated by internal strain.

B. Validity of the model

We have made a number of approximations in the previous
section. Depending on the nature of the compound at hand,
each of them will have a different impact on the results, and will
limit the accuracy that can be achieved. These approximations
are the following. (1) We have assumed that Psp is constant
throughout the crystal for binaries. However, we have defined
it as a local quantity (this will prove helpful when dealing
with alloys). (2) For the piezoelectric part, we have truncated
our description to first order in both macroscopic and internal
strain. (3) We have assumed that the off-diagonal terms of the
Born effective charge tensor are zero. (4) We have performed
a spherical approximation for the Born effective charge of the
nearest neighbors of the atom where the local polarization is
evaluated.

As discussed in Sec. II A, it is not trivial to establish whether
approximation (1) is good or not. It is possible to separate the
contributions to Psp into that arising from the initial bond
asymmetry parameter μ0 that we have defined previously
(which in WZ is related to the internal parameter u), and the
purely electronic contribution of the ideal WZ lattice.4,30,31 In
this context, it is possible to assign a local value for the initial
bond asymmetry contribution, which in the case of WZ would
be equal in both cation and anion sites. It seems therefore
that assuming the electronic part to be also constant between
different atomic sites for the binaries might be reasonable.

Approximation (2) is indeed the main limitation to the
model introduced here, but possibly the most straightforward
one to overcome. The theory can be extended to include
second-order piezoelectric effects at the expense of complicat-
ing the formulas. We opt here to limit ourselves to a first-order
description to emphasize the conceptual implications of the
theory. The linear limit should be valid for highly ionic
compounds, such as group-III nitrides, as will be shown
in the next section. For the nitrides, although the second-
order effects are large, the first-order terms dominate up to
strain values that are typically found in realistic alloys and
heterostructures (up to 5%).1,10,32,33 However, for other III-V
materials, second-order piezoelectric coefficients are relatively
much larger compared to the linear ones. For instance, for the
Al compounds AlP, AlAs, and AlSb, Beya-Wakata et al.3 found
that the first-order piezoelectricity can practically be neglected
and second-order effects dominate even for small strains. For

GaAs, the situation is intermediate and the present level of
theory should be accurate for small strains below 1 or 2%.
This complication is also present when computing the Born
effective charges. As we show in Fig. 2 for the hydrostatic
and biaxial strain dependence of Z (see the figure caption
and next section for details of the calculation), the linear
approximation for the Born effective charge gets worse as
one moves from highly ionic AlN to the less ionic materials
GaAs and AlAs. Note that strain-dependent Born effective
charges also have an impact on the clamped-ion piezoelectric
coefficient, as given by Eq. (5). Therefore a more complete
and accurate treatment for general materials should eventually
include the dependence of the Born effective charge Zi on
strain. Note that within this linear model, the contributions
of clamped-ion terms and Born effective charges are assumed
linear in the strains in the formal derivation of the formulas.
However, the formalism does not impose a linear dependence
of internal strain upon macroscopic strain when calculating the
μi : this dependence is determined by the specific theoretical
framework used for the computation of the atomic geometry
of the system, e.g., DFT, a valence force field, etc. In the case

1.6

2

2.4

2.8

-0.05 -0.025 0 0.025 0.05
Hydrostatic strain h

1.6

2

2.4

2.8

-0.05 -0.025 0 0.025 0.05
Parallel biaxial strain b,

1.6

2

2.4

2.8

-0.05 -0.025 0 0.025 0.05
Perpendicular biaxial strain b,⊥

AlN AlAs GaAs

(a)

AlN AlAs GaAs

(b)

AlN AlAs GaAs

(c)

FIG. 2. (Color online) Born effective charges of the correspond-
ing cation for ZB AlN, AlAs, and GaAs, as a function of (a)
hydrostatic and (b) and (c) biaxial strain. “Parallel biaxial strain”
means that the inequivalent strain axis coincides with the axis along
which the Born effective charge is calculated, that is ε1 = ε2 = εb,‖,
ε3 = −2εb,‖, and Z ≡ Z3. “Perpendicular biaxial strain” refers to the
opposite situation: ε2 = ε3 = εb,⊥, ε1 = −2εb,⊥, and Z ≡ Z3. Open
symbols are the results of LDA-DFT calculations (see Sec. II C for
details) while solid lines are quadratic fits to the data. The missing
points for GaAs within this strain range cannot be calculated because
the LDA predicts a conducting state which is not compatible with the
Berry-phase formalism (see discussion for InN in Sec. II C).22,23
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of nitrides, Prodhomme et al.33 have found relatively large
nonlinear effects on binary and ternary compounds. As will
be shown in the next section, the present local model succeeds
at computing the polarization in nitride ternaries because its
main non-linear contribution arises from nonlinearities of local
internal strain itself, including the effect of disorder.

Approximation (3) is generally good, since for binary
compounds the off-diagonal components of the Born effective
charge are typically zero, and in any case the ratio Zij /Zii

(i �= j ) is usually small.
The validity of approximation (4) relies greatly on the

specific crystalline structure and whether the nearest neighbors
of the central atom where the polarization is being calculated
are equivalent (that is, have the same Born effective charge)
or not. For this reason, in the case of binary tetrahedrally
bonded compounds, where all the nearest neighbors for one
given site are of the same atomic species, this approximation
should be good for small strains. As observed in Fig. 2 for
biaxial strain, lattice distortions that change the symmetry of
the bonds have a large impact on the Born effective charge for
some compounds. Therefore the validity of Eq. (10) would be
limited for low ionicity and the more general form, Eq. (5),
should be used. On the other hand, for ionic compounds such
as nitrides, Eq. (10) retains its validity and offers an accurate
description of the local effects, as will be shown in Sec. II C.
In both cases (low and high ionicity in tetrahedrally bonded
binaries), the approximation is exact for the linear piezoelectric
limit (see Sec. II C2).

C. Testing the theory for group-III nitrides

As a first validation test and application of the theory,
we have chosen group-III nitrides. The III nitrides are
technologically important semiconductors for a wide range
of optoelectronic applications.34–36 The strong piezoelectric
response of nitride compounds, together with the existence
of the spontaneous polarization, has a large impact on the
electromechanical properties of devices that incorporate them.
The large difference in bond lengths between the nitride
binaries leads to considerable local strains in these alloys,
with measurable effects such as large band-gap bowings.37,38

We have previously shown how these local strain fields
affect the electric polarization for InGaN alloys, retrieving the
macroscopic limit with the advantage of giving a description
of the local effects at the same time.4 We have now presented
in Sec. II a refined and more general form of that model. In
the following, we will thoroughly apply this theory to test its
validity for III-N materials.

1. Parameters involved in the calculation of the local polarization

The first step in setting up the theory is to derive the
necessary parameters for the WZ III-N binaries GaN, AlN,
and InN: piezoelectric tensor eij , spontaneous polarization
P

sp
i , Born effective charges Zi , lattice parameters a0 and

c0, internal parameter u0, and internal strain parameters ζi .
For our calculations, we have used the plane wave imple-
mentation of density functional theory (DFT) available from
the VASP package,39,40 within the projector augmented-wave
(PAW) method.41,42 We perform calculations using both the
local density approximation (LDA) and the Heyd-Scuseria-

Ernzerhof (HSE) screened-exchange hybrid functional.29,43,44

For the LDA calculations, we use VASP’s implementation
of the Perdew-Zunger parametrization,45 while the settings
for the HSE functional correspond to HSE06, with mixing
parameter α = 0.25 and screening parameter μ = 0.2. In all
calculations, the cutoff energy for plane waves is 600 eV. All
the quantities involving a calculation of the polarization have
been obtained using Martijn Marsman’s implementation of
the Berry-phase technique23 available in VASP. We use HSE
to obtain high-quality parameters for the binaries and LDA to
perform test calculations for larger supercells and for statistical
evaluation of the accuracy of the theory. In our experience,
LDA-DFT gives a good description of elastic properties and
internal strain, while at the same time being computationally
affordable. Also, LDA-DFT seems to give results in better
agreement with experiments than generalized-gradient ap-
proximations (GGAs) for the calculated electric polarization,
at least for III-V compounds.3 The more computationally
demanding HSE functional, on the other hand, reduces the
band-gap problem existent in standard Kohn-Sham DFT,46

that potentially leads to a conducting phase being incorrectly
predicted for narrow gap semiconductors, such as InN. HSE
also provides lattice parameters and elastic properties in better
agreement with experiment.29

The calculated structural and polarization-related parame-
ters of the III-N binaries are summarized in Table I. In the
context of the Berry-phase approach, a meaningful value for
the polarization can only be calculated if the system remains
insulating.22,23,25 As already discussed, in the case of the III-N
compounds this is not a problem for the HSE functional,
which predicts a positive gap.47 Using the LDA, AlN and
GaN are predicted to have (underestimated) positive gaps.
However, our settings lead to the prediction of a band crossing
at the � point for InN, and therefore an incorrect metallic
phase that renders the calculation of a meaningful value of
the polarization uncertain. Previous data have been given for
InN by Fiorentini and collaborators in a series of papers on
the piezoelectric properties and spontaneous polarization of
group-III nitrides.26,30,48 While their LDA calculations obtain
the correct insulating phase of InN,49 ours must rely on a
different approach. Because the band crossing occurs only at
the � point and immediate surroundings, we skip this area in
the k-point integration by shifting the k mesh away from �. The
resulting LDA values of the polarization-related quantities in
Table I show almost perfect agreement with Fiorentini et al.’s
LDA data,30,48 although InN remains technically a metal in our
case. The good agreement with the HSE calculation further
supports that our LDA values should be correct.

It should be noted that our calculations yield a negative
sign for e15 in both the LDA and HSE schemes. Initial
measurements50 and calculations51 reported a positive value
for e15, as included in Vurgaftman and Meyer’s widely
cited review paper.52 Our value here is in line with more
recent studies and analyses which show that a negative
value is required both for agreement with experiment and
for internal consistency among the different piezoelectric
coefficients.6,53–55 Very recent LDA calculations of second-
order polarization of III-nitrides and ZnO by Prodhomme
et al.33 show good agreement with our linear coefficients of
Table I. The agreement between HSE and LDA highlights
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TABLE I. Parameters involved in the calculation of polarization-related quantities for WZ group-III nitrides, obtained from DFT calculations
as explained throughout the text. The HSE lattice parameters a0, c0, internal parameter u0, and internal strain parameters ζi are taken from
Ref. 29. The k grids are 6 × 6 × 4 �-centered for a four-atom hexagonal cell in all cases except for the calculation of eij , e

(0)
ij , P sp and Zi for

InN in the LDA scheme. For those quantities, we use an orthorhombic-equivalent 16-atom supercell and the sampling in k space is 4 × 4 × 4,
following the standard Monkhorst-Pack scheme implemented in VASP, which does not include � in the integration (see text for details).39 Note
that in all cases, the positive sign for Zi implies a displacement of the cation sublattice: the corresponding Born effective charge of the anions is
−|Zi |. P sp

idWZ is the spontaneous polarization of the ideal WZ lattice (lattice parameters and internal parameter extrapolated from the ZB phase).

AlN GaN InN

HSE LDA HSE LDA HSE LDA

a0 (Å) 3.103 3.092 3.180 3.154 3.542 3.507
c0 (Å) 4.970 4.947 5.172 5.141 5.711 5.668
u0 0.3818 0.3820 0.3772 0.3765 0.3796 0.3787
ζ1 0.138 0.145 0.156 0.168 0.193 0.204
ζ2 0.086 0.091 0.083 0.089 0.107 0.112
ζ3 0.191 0.200 0.159 0.168 0.218 0.226
ζ4 0.199 0.224 0.201 0.210 0.337 0.339
ζ5 0.143 0.140 0.141 0.148 0.107 0.118
e15 (C/m2) −0.39 −0.43 −0.32 −0.36 −0.42 −0.47
e31 (C/m2) −0.63 −0.69 −0.44 −0.49 −0.58 −0.63
e33 (C/m2) 1.46 1.59 0.74 0.83 1.07 1.09
P

sp
3 (C/m2) −0.091 −0.096 −0.040 −0.029 −0.049 −0.041

P
sp
3,idWZ (C/m2) −0.031 −0.033 −0.019 −0.016 −0.019 −0.016

e
(0)
15 (C/m2) 0.28 0.28 0.43 0.45 0.39 0.35

e
(0)
31 (C/m2) 0.26 0.25 0.40 0.41 0.37 0.38

e
(0)
33 (C/m2) −0.51 −0.47 −0.87 −0.87 −0.87 −0.95
Z1(=Z2) 2.53 2.52 2.64 2.58 2.85 2.83
Z3 2.68 2.67 2.77 2.72 3.02 3.00

the fact that LDA provides reliable values for the electric
polarization provided that it also succeeds at predicting reliable
band gaps and structural parameters: the largest discrepancies
are for the spontaneous polarization of GaN and InN, which
are influenced by the discrepancy between HSE and LDA for
the calculated value of u0.

2. Local piezoelectric tensor

We have previously obtained the relation between macro-
scopic and internal strain for the WZ lattice and provided
the definition of the five WZ internal strain parameters ζi

in Ref. 29. To obtain the relation between piezoelectric
coefficients eij and internal strain parameters ζi , one can apply
Eq. (5) to the internal strain vectors for the WZ geometry. The
results can conveniently be expressed in the following compact
form:

e15 = e
(0)
15 − 2eZ1√

3a0
2
ζ1,

e31 = e
(0)
31 − 4eZ3√

3a0
2
ζ2, (11)

e33 = e
(0)
33 + 4eZ3√

3a0
2
ζ3.

We have incorporated in Eq. (11) none of the assumptions
leading to Eq. (10). Therefore Eq. (11) is an exact result for
WZ crystals in a linear piezoelectric model. It is thus initially
surprising that ζ4 and ζ5, although breaking the cell symmetry,
do not appear in the expressions for the eij . The reason for this

will become clear when obtaining the eij as ∂Pi

∂εj
, calculated

from Eq. (10). Following the convention of Fig. 3, the local
piezoelectric tensor, notated e∗

ij , can be calculated at the atomic
sites A and C, corresponding to the two cations present in the
unit cell, as the derivative of Eq. (10) with respect to the strains:

e
∗,X
ij = e

(0)
ij − eZX

i√
3a0

2c0

(
∂μX

i

∂εj

−
3∑

k=1

∂εik

∂εj

μX
k,0

)
, (12)

where X indicates A or C. For a WZ structure, the only non-
zero component μk,0 is μ3,0 = 4(u0 − 3/8)c0.4 Expressing μ

in terms of macroscopic strains, lattice parameters and internal
strain parameters, each of the nonzero components of e∗

ij

A

B

C

D

x

yz

aWZ

cWZ

FIG. 3. (Color online) Standard four-atom WZ unit cell. A and C
are cations, B and D are anions.
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can be obtained (an example calculation for e
∗,A
15 is given in

Appendix A):

e
∗,A
15 = e

∗,C
15 = e

(0)
15 − 2eZ1√

3a0
2
ζ1,

e
∗,A
16 = −e

∗,C
16 =

√
3eZ1

2a0c0
ζ4 + eZ1√

3a0
2
ζ5,

e
∗,A
21 = −e

∗,C
21 = e

∗,A
16 ,

(13)
e
∗,A
22 = −e

∗,C
22 = −e

∗,A
16 ,

e
∗,A
31 = e

∗,C
31 = e

(0)
31 − 4eZ3√

3a0
2
ζ2,

e
∗,A
33 = e

∗,C
33 = e

(0)
33 + 4eZ3√

3a0
2
ζ3.

That is, the expressions for e15, e31 and e33 are retrieved exactly,
but additional piezoelectric components appear, that change
sign going from A to C. To elucidate the effect of this on the
symmetry of the piezoelectric tensor, we write e∗

ij in matrix
form:

e
∗,A/C
ij ≡

⎛
⎜⎝ 0 0 0 0 e15 ±e∗

16

±e∗
16 ∓e∗

16 0 e15 0 0

e31 e31 e33 0 0 0

⎞
⎟⎠ . (14)

When averaging e
∗,A
ij and e

∗,C
ij within a given unit cell, one

retrieves the WZ macroscopic limit:

1

2

(
e
∗,A
ij + e

∗,C
ij

) ≡

⎛
⎜⎝ 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

⎞
⎟⎠ . (15)

The anion sites B and D have the same expressions for e15, e31

and e33 and slightly different expressions for e∗
16:

e
∗,B
16 = −e

∗,D
16 = −

√
3eZ1

2a0c0
ζ4 − 2eZ1√

3a0
2
ζ5. (16)

The macroscopic limit is of course also retrieved when
averaging for the anion sites. Note that the values of e∗

16 are
comparable to those of the macroscopic piezoelectric tensor
coefficients. For instance, for GaN, |e∗

16| amounts to 0.79 and
1.13 C/m2 for cation and anion sites, respectively.

Equation (14) is the (site-dependent) local piezoelectric
tensor for a WZ lattice. It reflects the fact that there exist two
sets of inequivalent tetrahedra in a WZ lattice, and that the
macroscopic strain affects the nearest-neighbor environment
of each of them differently.27,29 This is a priori an unexpected
result, and implies that crystals that are non-polar and non-
piezoelectric on average could nevertheless present a local,
perhaps measurable, piezoelectric-like polarization.

Finally, note the similarity between the local piezoelectric
tensor of WZ and that of ZB in a (111)-oriented description [see
Eq. (27) of Ref. 6]. This reflects that (111)-oriented ZB systems
present a threefold symmetry,6 where all cation (anion) sites
have an equivalent environment, contrary to the WZ case,
where there are two inequivalent cation (anion) sites.29

3. Local polarization in InGaN alloys: strategies and testing

We have seen so far that for wurtzite nitride binaries there
is an exact correspondence between local and macroscopic
polarization that is retrieved when averaging the local part
over the unit cell. Although some solid-state devices might
operate employing binary compounds, the most interesting
applications of the nitrides arise through the use of their
alloys for controlled variation of properties (e.g., band-gap
tunability).

The main problem facing a local polarization calculation for
an alloy is the increased complexity of the atomic environment
of each of the sites where the local polarization is to be
evaluated. This is due to the fact that the Born effective charges
of all the atoms involved in the calculation are affected by
the interaction with all the other atoms present in the crystal.
In a periodic cell calculation, this number would be reduced
to the number of atoms in the supercell. Since there is an
arbitrarily large number of possible configurations depending
on alloy composition and supercell size, establishing an exact
correspondence between local and macroscopic polarization
in the fashion of Sec. II A then becomes virtually impossible.
To overcome this limitation, we will assume for the nitrides,
and InGaN in particular, that the Born effective charge of the
cations in the alloy remains the same as for the binary, and
that the spherical approximation still holds.4 We have devised
two tests in order to establish how good this approximation is.
First, we will use the smallest alloy cell, which is a CuPt-like
(CP-like) InGaN unit cell consisting only of four atoms,4,30 and
will perform random distortions of the atomic positions within
the unit cell. The result of the averaged local polarization,
calculated using Eq. (10), will be compared to the formal
Berry-phase result. Second, 32- and 128-atom In0.5Ga0.5N
supercells will be considered and the cation sites occupied
randomly with either a Ga or an In atom, with the only
requirement that the stoichiometric ratio of 1/1 be preserved
(i.e. the nominal composition of all cells is the same). The
internal atomic positions will then be allowed to relax by
minimizing the supercell LDA-DFT total energy, and the result
of the averaged local polarization will again be compared to
that of a Berry-phase calculation. The statistical treatment of
both tests will reveal the validity of the approximation for
InGaN alloys.

The results of the first test are depicted in Fig. 4. The figure
shows a comparison of the average polarization of the CP-like
InGaN cell calculated both within the present local polarization
model and with the Berry-phase technique. We have performed
random displacements of up to ±0.2 Å (which is equivalent
to approximately 10% of the equilibrium bond lengths) to
each of the Cartesian coordinates of each of the four atoms
in the unit cell. For the local polarization model, we have
computed the local polarization contributions at the Ga and In
sites using Eq. (10) and then obtained its average for the whole
cell. Since only differences in polarization are meaningful
within the Berry-phase formalism,22,23 we compare in Fig. 4
the difference 	P between the polarization of the equilibrium
CP-like InGaN structure and the distorted one. As can be
seen, the agreement between the two methods is excellent,
with all the data points lining up against the dashed line that
corresponds to perfect agreement 	Pmodel = 	PBerry phase.
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FIG. 4. (Color online) Comparison between the polarization
predicted by the present model and a Berry-phase calculation for
a large number (1000) of randomly distorted CP-like InGaN cells
(four-atom unit cell). 	P is the difference in polarization between the
equilibrium and distorted structures, where the lattice vectors are fixed
but the coordinates of each atom in the unit cell are varied randomly
up to ±0.2 Å in each Cartesian direction. The Berry-phase values
are LDA-DFT results. The dashed line indicates perfect agreement
between the two methods, that is 	Pmodel = 	PBerry-phase. A few
random distortions within the range lead to a metallic phase being
predicted by LDA, and were left out of the comparison.

Even more enlightening is the comparison between the
present model and the Berry-phase results depicted in Fig. 5
for random In0.5Ga0.5N orthorhombic supercells. In that figure,
	P is the difference between the polarization of the supercell
before and after internal strain relaxation. The supercells are
constructed with either 32 or 128 atoms and the In and Ga
atoms are placed randomly at the cation sites. The lattice
vectors of the supercells are kept fixed and chosen as the
average between the LDA values for the binaries. The “site
count” panels show the number of cation sites that present
a particular local polarization value within different ranges,
for the combined supercells. We note two main features.
The first observation is that the local polarization model
succeeds at very accurately predicting the average supercell
polarization even though the latter is calculated from a sum
over many local contributions whose values vary within limits

which are approximately one order of magnitude higher.
Second, our results show that the average polarization is highly
dependent on the specific atomic arrangement, even for a large
number of atoms. Bernardini and Fiorentini30 have previously
calculated the spontaneous polarization for the same material
using a 32-atom special quasirandom structure (SQS),56 and
have proposed that disorder plays only a secondary role in
the calculation of the polarization, both spontaneous and
piezoelectric.1,30,32,57 We have found that this is indeed the
case for the spontaneous polarization of the supercells studied
before the optimization of the atomic degrees of freedom: all
the 128-atom configurations studied yielded the same value
of ∼−0.009 C/m2 within less than 0.001 C/m2 of each other.
However, our results suggest (i) that a 32-atom supercell might
not be large enough to study the effect of disorder (see, e.g.,
clustering of calculated values for P2 in Fig. 5) and (ii) that
internal strain relaxation introduces large corrections to the
polarization value, even for supercells containing as many
as 128 atoms. Note, for instance, that the average in-plane
components of the polarization P1 and P2, which are not
symmetry-allowed for the binaries, do not vanish for the alloys
in the case of finite-size supercells. All of these considerations
not only support the validity of the local model discussed here,
but also highlight the need for one, in order to be able to treat
the effects of disorder and associated internal strain accurately.

III. POINT DIPOLE METHOD FOR THE CALCULATION
OF THE POLARIZATION POTENTIAL

When trying to calculate the local polarization potential
by solving Poisson’s equation ∇ · (ε∇φ) = ∇ · P in the same
atomic grid where the polarization is given, one encounters
two main difficulties. The first arises from the discretization
of the medium, which is irregular given the arrangement
of the atoms in the strained crystal. The second, and most
important, is a problem of resolution: because Poisson’s
equation needs to be solved in a finite difference or polynomial
interpolation schemes, and its solution involves the calculation
of several derivatives (see, for instance, Ref. 58), approximate
interpolations have to be made and the effects of abrupt local
discontinuities are lost in the process. In order to compute the
local polarization potential and overcome these limitations,
we have previously used a point dipole model.4 Here, we give
the details of our model and extend it, as well as assess its
limitations and degree of validity for calculations involving a
position-dependent value of the polarization.

The point dipole model is a solution to the challenge of
solving Poisson’s equation on an atomic grid where abrupt
changes in the polarization vector occur.4 This is achieved with
a method that computes at any arbitrary position the potential
contribution due to each dipole individually, without involving
the interpolation of quantities between neighboring grid sites
that would lead to loss of resolution. However, before the
polarization potential can be obtained from the point dipoles,
a remapping of polarization density into dipole moment on
the system’s grid has to be performed. The latter is dealt
with in Sec. III A. The general solution for the polarization
potential arising from the ensemble of point dipoles is obtained
in Sec. III B in an image dipole scheme, for a QW system
(or layered structure, in general) where a different arbitrary
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FIG. 5. (Color online) Comparison between the spontaneous polarization calculated using the present local model and the Berry-phase
technique for a series of In0.5Ga0.5N random supercells with 32 and 128 atoms. 	P is the difference between the polarization of the supercells
before and after internal strain relaxation. The Berry-phase values and the relaxed atomic positions are LDA-DFT results. The dashed line
indicates perfect agreement between the two methods, that is 	Pmodel = 	PBerry phase. The supercells are orthorhombic, with the lattice vectors
given by the average of the InN and GaN lattice parameters. In terms of cation layers, the 32-atom supercells have a 2 × 4 × 2 arrangement
while the 128-atom supercells are 4 × 4 × 4. The “site count” panels for each series refers to the number of cation sites that registered a local
polarization value within the ranges shown (of width 0.01 C/m2), for the combined supercells.

dielectric constant is allowed for all three neighboring layers
of material. The effect of different levels of approximation
for this general solution is also treated in Appendix B. In
Sec. III C, we present a comparison between the solution of
Poisson’s equation for a problem with an available analytical
solution and different levels of implementation of our method.
Further material complementary to this section, including
computational aspects, is given in Appendix B.

A. From polarization to dipole moment

Before establishing the form of the potential due to a point
dipole ensemble, we focus our attention on the transformation
between polarization density P, which is the quantity usually
calculated in strained crystals, and dipole moment p, which is
the quantity involved in the equations that will be presented in
the next section.

The polarization P can be understood as a “density of dipole
moment.” Indeed, the total dipole moment of a finite size
sample in which the polarization density is constant is simply
the product of P and the volume of the sample. Therefore,
when dealing with constant polarization in a continuum-based

description, a standard cubic discretization of the material,
with step size 	, is well suited to the representation of P
as an ensemble of dipoles of magnitude p = P	3 located at
each of the mesh points. However, our main interest is the
representation of the material as an ensemble of point dipoles
in an atomistic scheme. For tetrahedrally bonded compounds
this involves the discretization in a mesh with either cubic
(zinc-blende) or hexagonal (wurtzite) coordination, in the
ideally undistorted lattice. After strain is applied, the former
grids will suffer a deviation from cubic and hexagonal
symmetries and the assignment of a finite volume to each
mesh point becomes cumbersome.

In the description of local polarization that we have
previously employed, the values of P were given at the sites of
each of the cations present in the crystal.4 The latter is a useful
description, in the sense that the representation of the whole
crystal as a collection of deformed tetrahedra can be done via
the relative positioning of the nearest neighbors: each cation
and its four neighboring anions unambiguously define each
tetrahedron. Labeling the anions immediately surrounding a
cation as 1, 2, 3, and 4 (see Fig. 1), we refer to the volume of
the corresponding tetrahedron as V1234. If the positions of the
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anions are r1, r2, r3 and r4, then V1234 is given by

V1234 = 1
6 |(r1 − r4) · [(r2 − r4) × (r3 − r4)]|. (17)

However, it can be easily shown that V1234 only accounts for
the volume of the tetrahedron itself and that a summation
of the volumes of all the tetrahedra contained within a
material sample would underestimate the volume of the sample
by exactly a factor of 6. Therefore we define the volume
corresponding to a tetrahedron as

Ṽ1234 = 6V1234. (18)

Now, the value of the dipoles can be easily obtained once a
map of the polarization is available. For simplicity, we denote
each grid point by i and the volume of the corresponding
tetrahedron, as given by Eq. (18), as Ṽi :

pi = Pi Ṽi , (19)

with pi being located at the position ri of cation i.
Our choice for a cation-based description stems from

convenience. In a nitride alloy, all the anions are nitrogen
atoms and therefore applying the spherical approximation of
Eq. (7) (which is based on nearest neighbors only) leads to
one Born effective charge definition per cation atomic species:
Ga, In, and Al for conventional III-N. Using an anion-based
description would lead, in the case of nitrides, to defining 15
different Born effective charges for N, which correspond to
the 15 possible combinations of Ga/In/Al atoms that can be
nearest neighbors to N (e.g., four Ga, three Ga and one In, two
Al and two In, etc.).

B. Solution for materials with different dielectric constant

Given the multipole expansion of a distribution of electric
charge (see, for example, Ref. 59), the contribution to the
electrostatic potential φp calculated at r due to a point dipole
p is given by

φp (r) = 1

4πε0εr

p · (r − rp)

|r − rp|3 , (20)

where rp is the position of the dipole p, ε0 is the permittivity
of the vacuum, and εr is the dielectric constant of the material.
Equation (20) is only valid when both the dipole p at rp and
the point r where the potential is calculated are contained
within an infinite (or big enough to neglect surface effects)
sample of a dielectric material with dielectric constant εr . For
the more general case in which there are boundaries between
materials with different dielectric constants, e.g., a quantum
well, it is appropriate to use the method of images to obtain
a form of Eq. (20) that accounts for the discontinuity of εr

across the different interfaces. The details of the method and
the treatment for the case of up to three material layers with
different dielectric constants are given in Appendix B.

C. Comparison to the solution of Poisson’s equation
for simple structures

Before applying the model to calculate the local polariza-
tion potential in realistic structures, it is necessary to test its
accuracy against well established methods. An excellent test is
the calculation of the polarization potential in a capacitor-like
structure. In such an example, a layer of dielectric material (1)
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FIG. 6. (Color online) Potential obtained at different levels of
approximation for a QW of width h = 30 Å for which P0 = 0.1 C/m2

and εr = 8.4. In the barrier, P = 0 and εr = 9.6. (a) Analytic solution
[Eq. (21)], (b) direct application of the present dipole method,
(c) dipole method with cutoff radius rcutoff = 1 Å and (d) dipole
method with Gaussian smearing implementation, rsmear = 1.5 Å and
σ = 1 Å (see Appendix B).

of thickness h, in which the polarization P = P0 ẑ (where ẑ is
a unit vector along the z axis) is constant and perpendicular to
the neighboring interfaces, is surrounded by two infinite layers
of a dielectric material (2), with a different dielectric constant,
in which the polarization is zero. An exact analytical solution
to Poisson’s equation can be obtained for the latter case. If we
assume the first interface is located at z = 0, the potential is
given by

φ(r) = P0

2ε0ε
(1)
r

(|z| − |z − h|), (21)

where ε(1)
r is the dielectric constant of material (1).

Figure 6(a) shows the potential profile as calculated exactly
and analytically using Eq. (21) for the special case in which
P0 = 0.1 C/m2, ε(1)

r = 8.4, and h = 30 Å, which would be
typically the situation in an InGaN QW surrounded by GaN
barriers in which, for simplicity, the polarization has been
switched off in the barriers. Within this simplified continuum
picture, a spatial discretization of the current problem in a
cubic grid of steps 	 ≈ 2 Å, as discussed in the previous
section, creates an ensemble of point dipoles, which are of
similar size to the ones encountered in typical InGaN QW
situations. The application of our dipole method to first-order
reflections (see Appendix B) leads to a potential profile as in
Fig. 6(b). In that figure, it can be observed how the potential
changes brusquely in the surroundings of the dipoles (the
plane of the figure has been deliberately chosen to be one
that contains dipoles in it to dramatize this effect). This is due
to the fact that Eq. (20) is a valid solution for a distribution of
charge only if the position where the potential is calculated is
sufficiently far away from the location of the point dipole that
represents that distribution. We acknowledged this limitation
in our previous work and proposed a cutoff radius around r for
which only the dipoles that obey the condition |r − r′| > rcutoff

are taken into account.4 The potential profile for the present
example and rcutoff = 1 Å is shown in Fig. 6(c). Although
this solution certainly improves the results and leads to a
much better agreement with the analytical solution, it has
the inconvenience of creating sharp transitions at the cutoff
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distances around the dipoles. To complement this treatment,
we have now substituted the elimination of dipoles below
the cutoff radius by a Gaussian smearing of dipoles that
obey the condition |r − r′| < rsmear, as detailed in Sec. B 2
of Appendix B. This solution leads to smoother potentials and
a much better agreement with the analytic solution for this test
case, as observed in Fig. 6(d).

IV. SELECTED RESULTS FOR InGaN QUANTUM WELLS

Once the method for calculating the local polarization
potential has been established, we can turn our attention
towards achieving a local description of that quantity in
relevant nanostructures. In the present example, we look
at InGaN/GaN QWs grown along polar and nonpolar60

directions. Polar structures are grown along the c axis, whereas
in the case of nonpolar structures the c axis lies within the
growth plane. In a macroscopic picture of the polarization,
there are no discontinuities in P between the well and barriers
in the nonpolar case. However, as we shall see, in a microscopic
description discontinuities occur locally, depending on local
strain and composition.

Although we used in Sec. II C DFT to optimize the atomic
positions of the supercells studied, such an approach is
unaffordable for large supercells, given both the computer
time and memory usage required. The usual approach to
relax the atomic degrees of freedom in such cases is to use
a classical interatomic force method. For tetrahedrally bonded
compounds, Keating’s valence force field (VFF) model61 is by
far the most popular.62,63 Camacho and Niquet have previously
used a modified version of Keating’s model, adapted to the
WZ crystal structure, to account for the deviation of the c/a

ratio of lattice parameters with respect to its ideal value.63 We
have instead chosen an approach based on Martin’s VFF64

that includes the electrostatic interaction explicitly.4 At a
higher computational cost, this model succeeds at predicting
the deviation of the c/a ratio while maintaining the correct
symmetry of the interatomic interactions. For instance, the
two-body interactions directed along the WZ c axis have the
same functional form, including the equilibrium bond length,
as the other ones. This allows to obtain a much more flexible set
of potentials that are transferable between similar polymorphs
of the same compound, i.e., WZ and ZB in this case. With our
model we are able to predict elastic and structural properties
of binary and ternary nitrides in excellent agreement with
first-principles DFT calculations, therefore providing solid
grounds for using the supercells relaxed using this method
as high-quality input for the subsequent local polarization
calculation. An extensive article with the details and validity
of our method is currently in preparation and will be published
elsewhere.

Making use of the expressions derived throughout this
chapter, and the VFF just outlined, we have calculated
the local polarization for InGaN/GaN QWs with 30% In
content in both polar and nonpolar orientations, as shown in
Figs. 7(a) and 7(b), respectively. Note that the component
shown in the color code is the component of the polarization
along the c axis. The corresponding polarization potential is
shown in Figs. 7(c), for the polar case, and (d), for the non-polar
situation. The polar structure shows a potential profile with the
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(Å

)

z –c-axis (Å)

(0.1 C/m2 = )

x
(Å
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FIG. 7. (Color online) Sections in a plane parallel to the c axis
of In0.3Ga0.7N/GaN QWs in polar and nonpolar orientations. The
component of the polarization along the c axis, Pz, for the polar
and nonpolar structures is shown in (a) and (b), respectively. The
corresponding polarization potential is shown in (c) and (d). The
dashed lines indicate the approximate location of the interfaces
between well and barriers. The arrows in (a) and (b) give the direction
of the polarization in the xz plane, as well as its magnitude in the
same units as the arrow in the legend, which indicates 0.1 C/m2.
Solid circles are Ga atoms and open circles are In atoms.

main features of a capacitorlike structure, although significant
fluctuations can also be observed. For a constant value of the
polarization, i.e., with no local effects taken into account, the
isolines in Fig. 7(c) would be perfectly parallel to each other,
as seen already in Fig. 6. In the nonpolar case [see Fig. 7(d)],
there are no main features in the potential but only local effects.

Note that the nonpolar QW situation is similar to a
bulk calculation in the sense that there are no macroscopic
polarization discontinuities, and the polarization potential
landscape is only affected by local effects. The importance
of these local effects will be highlighted in the next section
where we present tight-binding calculations of the electronic
structure of bulk InGaN alloys.

V. TIGHT-BINDING MODEL FOR ELECTRONIC
STRUCTURE CALCULATION

In this section, we outline the ingredients for our electronic
structure calculations. We begin in Sec. V A by introducing the
tight-binding (TB) model used to study the band-gap bowing
in InGaN alloys. We first introduce the TB model employed
to describe the binary bulk materials InN and GaN. We then
outline how strain and built-in potential are included in the
description as well as how the TB model is implemented to
describe the ternary material InGaN.

A. Binary bulk systems

To investigate the band-gap bowing of ternary materials, a
microscopic description of the system is required. An ideal
solution to this problem would be to perform DFT-based
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calculations. However, standard DFT approaches fail to
provide an accurate description of the band gaps, especially
for systems with a small band gap.65 As we have seen,
standard calculations within LDA or GGA tend to predict a
metallic phase for InN, while experiments show a band gap of
0.6–0.7 eV.37 As we have previously discussed, HSE hybrid
functional DFT calculations43,44 have attracted considerable
attention since within this framework one reduces these band-
gap problems.65 Even though standard HSE-DFT calculations
circumvent problems with the band gap, in general, these
methods still underestimate the band gaps of InN, GaN,
and AlN.65 Especially, if one aims for a comparison with
experimentally determined transition energies and band-gap
bowing parameters, an accurate description of the band gaps
of the binary compounds becomes important. Therefore an
approach is required which reproduces effective masses,
energetic positions of the different valence bands (VBs) and
conduction bands (CBs) and additionally gives band gaps of
the binary compounds in agreement with experiment. On the
other hand, this approach must also allow for a microscopic
description of the alloys. Such a description can be achieved
by pseudo-potential66 or TB calculations.67 In the following,
we apply the TB method to analyze the band-gap bowing in
wurtzite InGaN alloys.

More specifically, we use a microscopic sp3 TB model.
In this TB model, the relevant electronic structure of anions
and cations is described by the outermost valence orbitals,
s, px , py , and pz, and the overlap of these basis orbitals is
restricted to nearest neighbors. Being only of the order of
a few meV, we neglect the spin-orbit (SO) coupling in the
model. The inclusion of the SO coupling is straight forward
and detailed for example in Ref. 68. However, the crystal field
(CF) splitting 	cf must be included in the model since it is of
significant importance for the accurate description of the VB
structure of III-N compounds. Values of 	cf lie in the range
of 19–24 and 9–38 meV for InN and GaN, respectively, while
for AlN 	cf = −230.69

To include the CF splitting in our TB model, we proceed
in the following way. As discussed in Ref. 70, the small CF
splitting 	cf in a WZ crystal differentiates the pz orbital from
the px and py orbitals. LDA pseudopotential calculations
suggest that for the studied materials the bulk CF splitting
should be modeled when using the TB method by taking a spe-
cific third-nearest-neighbor interactions into account.71 The
TB model we are using here considers only nearest-neighbor
hopping matrix elements and treats the four nearest-neighbor
atoms as equivalent. To account for the CF splitting within
the empirical sp3 TB model with nearest-neighbor coupling,
we introduce the additional parameter E(pz,a) on the anion
sites for the on-site matrix elements of the pz orbitals. This
additional term is used to reproduce the splitting of the valence
bands at the zone center (� point). Such an approach has also
been applied for CdSe QDs with a wurtzite structure.72 With
four atoms per unit cell, the resulting Hamiltonian is a 16 × 16
matrix for each k point. This Hamiltonian parametrically
depends on the different TB matrix elements, as, for example,
shown in Ref. 70.

In general, the TB matrix elements are treated as parameters
and are determined by fitting the bulk TB band structure to DFT
band structures. In doing so, the TB parameters are designed
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FIG. 8. (Color online) Bulk band structure of wurtzite (a) GaN
and (b) InN obtained using HSE-DFT (dashed line) and our sp3 TB
model (solid line).

to reproduce the characteristic features of the DFT band struc-
tures, such as energy gaps and splittings between different VBs
and CBs. Here, we have performed HSE-DFT band structure
calculations for InN and GaN according to the guidelines
given in Ref. 47. We used a �-centered 6 × 6 × 4 k mesh,
and cutoff energy of 600 eV for plane waves. These are
the same settings as have been used in Sec. II C1 for the
calculation of the polarization-related parameters for the III-N
compounds. Recently, we have used the same settings to
perform HSE-DFT based calculations for elastic constants in
wurtzite InN, AlN, and GaN.29 These calculations gave elastic
constants in very good agreement with available experimental
data.29,73 The HSE-DFT band structure serves as the reference
for the TB fitting procedure, for which we use a least-square
fitting at the � point and k points along the �-A and �-M
directions, following the guidelines given in Ref. 74. This
ensures that the energetic positions near the CB and VB edges
as well as the curvature of the different TB bands in the vicinity
of the � point are in good agreement with the HSE-DFT
calculations. Furthermore, using the guidelines of Ref. 74,
chemical trends are also taken into account. The resulting
TB band structures in comparison with the HSE-DFT band
structure for InN and GaN are shown in Fig. 8.

However, as discussed above, and for example in more
detail in Ref. 65, even HSE-DFT calculations underestimate
the bulk band gap. Since this quantity is of central importance
for a detailed comparison with experimental data, we adjust
our TB model to reproduce the experimental band gap. In
order to do so, here we shift the on-site cation s-orbital
energies. This procedure affects mainly the CB edge and
bands energetically further away from the VB and CB edges.
These bands are of secondary importance for the description
of the band-gap bowing in InGaN alloys. Table II summarizes
the resulting TB parameters.

B. Tight-binding description for alloys

In the framework of a TB model, the InGaN alloy is
modeled on an atomistic level. The TB parameters at each
atomic site R of the underlying wurtzite lattice are first set
according to the bulk values of the respective occupying atoms.
While for the cation sites (Ga, In) the nearest neighbors are
always nitrogen atoms and there is no ambiguity in assigning
the TB on-site and nearest neighbor matrix elements, this

214103-12



THEORY OF LOCAL ELECTRIC POLARIZATION AND ITS . . . PHYSICAL REVIEW B 88, 214103 (2013)

TABLE II. Tight-binding parameters (in eV) for the nearest
neighbor sp3 model of wurtzite InN and GaN. The notation of Ref. 70
is used.

InN GaN

E(s,a) −11.92 −10.62
E(p,a) 0.49 0.82
E(pz,a) 0.46 0.79
E(s,c) 0.48 0.91
E(p,c) 6.53 6.68
V (s,s) −1.61 −5.97
V (x,x) 1.79 2.34
V (x,y) 4.83 5.47
V (sa,pc) 1.89 4.09
V (pa,sc) 6.14 8.67

classification is more difficult for the nitrogen atoms. In this
case, the nearest-neighbor environment is a combination of In
and Ga atoms. Here, we apply the widely used approach of
using weighted averages for the on-site energies according to
the number of neighboring In and Ga atoms.75–77 The hopping
matrix elements are chosen according to the values for InN or
GaN.

In setting up the Hamiltonian, one must also include the
local strain εij (r) and the total built-in potential φ to ensure an
accurate description of the electronic properties of the InGaN
alloy. Several authors have shown that this can be done by
introducing on-site corrections to the TB matrix elements
HlR′,mR,78,79 where R and R′ denote lattice sites and l and
m are the orbital types. Therefore, we proceed in the following
way. The strain dependence of the TB matrix elements is
included via the Pikus-Bir Hamiltonian80,81 as a site-diagonal
correction:

H str
lR,mR =

⎛
⎜⎜⎜⎝

Ss 0 0 0

0 Sx Sxy Sxz

0 Sxy Sy Syz

0 Sxz Syz Sz

⎞
⎟⎟⎟⎠ , (22)

with

Ss = act (ε11 + ε22) + acpεzz,

Sx = (D2 + D4)(ε11 + ε22) + D5(ε11 − ε22)

+ (D1 + D3)ε33,

Sy = (D2 + D4)(ε11 + ε22) − D5(ε11 − ε22)

+ (D1 + D3)ε33, (23)

Sz = D2(ε11 + ε11),

Sxy = 2D5ε12,

Sxz =
√

2D6ε13,

Syz =
√

2D6ε23,

where the Di denote the VB deformation potentials, while
acp and act are the CB deformation potentials.82 With this
approach, the relevant deformation potentials for the highest
VB and lowest CB states are included directly without any
fitting procedure. In the work described below, the deforma-
tion potentials for InN and GaN are taken from HSE-DFT
calculations.47 Again, on the same footing as in the case of

the on-site energies for the nitrogen atoms, we use weighted
averages to obtain the strain-dependent on-site corrections for
InxGa1−xN. Our approach is similar to that used for the strain
dependence in an eight-band k·p model,80 but has the benefit
that the TB Hamiltonian still takes the correct symmetry of the
system into account, and is sensitive to In, Ga, and N atoms.

To obtain the local strain tensor εij (r) at each lattice
site, we perform in a first step a relaxation of the atomic
positions in InxGa1−xN supercells based on the VFF outlined
in Sec. IV. From the relaxed atomic positions, we calculate
εij (r) according to the method in Ref. 62 via83

⎛
⎜⎝ εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎟⎠ =

⎛
⎜⎝R0

12,x R0
23,x R0

34,x

R0
12,y R0

23,y R0
34,y

R0
12,z R0

23,z R0
34,z

⎞
⎟⎠

−1

×

⎛
⎜⎝R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,z

⎞
⎟⎠ − 1, (24)

where R12, R23, and R34 are the distorted tetrahedron edges,
while R0

12, R0
23, and R0

34 are the ideal tetrahedron edges. 1 is
the 3 × 3 identity matrix. The built-in potential φ is likewise
included as a site-diagonal contribution in the TB Hamiltonian.
This is also a widely used approach.84–86

VI. RESULTS

In the following, we use our TB model, including local
strain and built-in potentials to analyze the band-gap bowing of
InGaN. We outline the procedure for TB supercell calculations
in Sec. VI A, while in Sec. VI B, we compare our theoretical
results for transition energies and band-gap bowing parameters
against experimental and other theoretical data. The impact of
local alloy composition, local strain and local built-in potential
on the CB and VB edges of InGaN alloys is discussed in
Sec. VI C.

A. TB supercell calculations for InGaN

In the following, all calculations are performed on super-
cells containing approximately 12 000 atoms, with periodic
boundary conditions applied. A large number of atoms are
included in the supercell to suppress the influence of finite-
size supercell effects. We assume that InGaN is a random
alloy, following recent experimental indication.87,88 For each
In concentration, we have performed calculations with five
different microscopic configurations, where the In atoms are
placed randomly in the supercell. We calculate the band gap
Eg(x) as a configurational average, i.e.,

Eg(x) = 1

N

N∑
i=1

[
Ei

CB(x) − Ei
VB(x)

]
, (25)

where i denotes the microscopic configuration and Ei
CB

(Ei
VB) is the corresponding CB (VB) edge. The number of

configurations is given by N .
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FIG. 9. (Color online) Band gap Eg of InxGa1−xN as a function
of the In content x. Our TB supercell calculations (TB SC) are
compared with experimental and theoretical data. The dashed dotted
line indicates the quadratic fit, Eq. (26), to the TB data. Experimental
data are taken from Sakalauskas et al.91 and Schley et al.90 (Exp. 1)
and from McCluskey et al.89 (Exp. 2). Theoretical HSE-DFT data
taken from Moses et al.65

B. Band gap bowing in InGaN: Comparison with experiment

Figure 9 shows TB supercell calculation results (open blue
circles) for the band gap Eg of InxGa1−xN as a function
of the In content x. The TB results are compared to recent
experimental data89–91 and HSE-DFT calculations.65 From
Fig. 9, one can infer that our TB results are in excellent
agreement with the HSE-DFT results for In contents above
15%–20% (x > 0.15–0.2). For values below 15%, the fact
that the HSE-DFT calculations underestimate the band gap of
GaN becomes important. However, in this composition regime
(x < 0.2), our TB results are in very good agreement with
the experimental data, cf. Fig. 9. Also in the high In content
regime (x > 0.5), the TB data is in very good agreement with
the experimental data. We have applied this model to AlInN
too, also showing an excellent agreement with recent experi-
mental data.92

For the design of InxGa1−xN based optoelectronic devices,
knowledge about the behavior of the band gap Eg with com-
position x is of central importance. Usually the dependence of
Eg on x is described by a quadratic function in x, involving
the energy gaps of InN (EInN

g ), GaN (EGaN
g ) and a bowing

parameter b:

Eg = xEInN
g + (1 − x)EGaN

g − b(1 − x)x. (26)

Commonly, the band-gap bowing parameter b of InGaN is
assumed to be composition independent.52 We start with this
assumption and denote the composition independent bowing

parameter by b̃. In doing so we find a bowing parameter
b̃ ≈ 2 eV. Experimentally determined bowing parameters
scatter quite significantly, ranging from 1.43 to 2.8 eV.
Theoretical values for b̃ range from 1.36 to 5.14 eV. Compared
to both theory and experiment our reported value of b̃ ≈ 2 eV
is therefore within the range of the reported literature values.
However, it has been suggested93,94 that the bowing parameter
of InxGa1−xN alloys is composition dependent. Based on
HSE-DFT calculations for special quasirandom structures
(SQSs), Moses et al.65 found that b ranges in InxGa1−xN
from 2.29 eV (x = 0.0625) to 1.14 eV (x = 0.875). Gorczyca
et al.95 used LDA + C calculations to analyze b in InxGa1−xN
alloys. The authors considered two types of alloys, i.e., (i)
alloys with uniformly distributed In atoms in a 32-atom
supercell and (ii) alloys with all In atoms clustered. In case
(i) Gorczyca et al.95 reported that b ranges from 1.7 eV (large
x) to 2.8 eV (small x). For x = 0.5, the authors found for
the uniform case b(0.5) = 2.1 eV. Looking at case (ii), the
clustered alloy, band-gap bowing values between 2.5 eV (large
x) and 6.5 eV have been reported, with b(0.5) = 3.9 eV. Based
on our random TB supercell calculations, we find that our
bowing parameter shows a strong composition dependence.
The TB results for b are summarized in Table III. Here, the
values for b range from 1.78 eV (large x) to 2.77 eV (small
x). At x = 0.5 we find b = 1.94 eV. Therefore our results are
close to the results obtained from the LDA + C calculations in
the case of an uniform alloy (see above).

To shed more light on the composition dependence of b, we
investigate in a second step how the CB and VB edge behave as
a function of the In content x. These quantities are also of great
interest for the design of InGaN/GaN based optoelectronic
devices, since the CB and VB edge energies in InGaN affect
the confinement energies of electron and hole wave functions.
Here, to calculate the bowing parameters bCB(x) and bVB(x)
for the CB and VB edges, respectively, we use

ECB = (
EInN

g + 	EVB
)
x + EGaN

g (1 − x) − bCB(1 − x)x,

EVB = 	EVBx − bCB(1 − x)x, (27)

where ECB and EVB are the CB and VB edges, respectively.
These quantities are obtained from our TB SC calculations.
The VB offset is denoted by 	EVB and taken from HSE-DFT
data in Ref. 65. Here, bCB(x) and bVB(x) are composition-
dependent fitting parameters to reproduce ECB and EVB,
respectively. The resulting composition-dependent values for
bCB(x) and bVB(x) are summarized in Table III. From this table
one infers that, while bVB is almost composition independent,
bCB varies significantly with x. Consequently, the composition
dependence of the band-gap bowing b arises mainly from
the composition dependence of the CB edge. This result
is in agreement with the HSE-DFT findings of Ref. 65.
Therefore, when modeling InGaN based heterostructures in

TABLE III. Band-gap bowing parameter b(x) of InxGa1−xN as a function of the In content x.

x 5% 10% 15% 25% 35% 50% 65% 75% 85%

b (eV) 2.77 2.6 2.42 2.28 2.13 1.94 1.82 1.78 1.82
bCB (eV) 1.74 1.56 1.43 1.26 1.13 0.92 0.85 0.81 0.78
bVB (eV) −1.03 −1.04 −0.99 −1.02 −1.00 −1.02 −0.97 −0.97 −1.04
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FIG. 10. (Color online) CB (left) and VB (right) edges of
InxGa1−xN as a function of the In content x. Dotted line: fit to data
without strain and built-in potential (VB/CBε=0,φ=0); dashed line: fit
to data with strain but without built-in potential (VB/CBε �=0,φ=0);
dashed-dotted line: fit to data with strain and built-in potential
(VB/CBε �=0,φ �=0).

the framework of a continuum description, such as k·p theory,
the composition dependent bowing of the band edges should
be taken into account in order to achieve a realistic description
of these systems.

To extend the analysis of the band edges in InGaN alloys
further, we focus in the next section on the impact of local
composition, local strain and local built-in potentials on the
CB and VB edges, respectively.

C. Impact of local composition, strain and built-in potential
on CB and VB edges in InGaN

In the previous section, we have discussed the composition
dependence of the bowing parameters bCB(x) and bVB(x)
of the CB and VB edges, respectively. These calculations
included local strain and built-in potential effects due to
alloy fluctuations. Here, we analyze in more detail how the
different contributions from pure alloy fluctuations, local strain
and built-in potential effects influence the CB and VB edge
energies. Figure 10 shows the CB (left) and VB (right) edge
energies as a function of the In content x.

In a first step, to study the impact of the alloy fluctuations
only, we neglect the local strain and built-in field effects
in the TB SC calculations of the band edges (ECB

ε �=0,φ �=0,
EVB

ε �=0,φ �=0). As Fig. 10 shows, in the absence of strain and
built-in potential, EVB

ε=0,φ=0 varies almost linearly with the In
content x, while ECB

ε=0,φ=0 shows a strong nonlinear behavior.
Using Eq. (27), we can determine b̃CB and b̃VB for the case
of ε = 0,φ = 0. The results for the composition-independent
bowing parameters b̃CB and b̃VB are summarized in
Table IV. When including local strain effects but neglecting the
local built-in potential, ECB

ε �=0,φ=0 is shifted to higher energies
over the whole composition range due to hydrostatic strain in
the system, (cf. Fig. 10). This reduces the CB edge bowing
parameter b̃CB by a factor of two compared to the situation
without strain and built-in potential effects (cf. Table IV).

TABLE IV. Overall band gap (b̃full), CB (b̃CB), and VB b̃VB

bowing parameters. The results are shown in the absence of strain and
built-in potential (ε = 0,φ = 0), in absence of the built-in potential
but in the presence of strain (ε �= 0,φ = 0), and finally, with strain
and built-in potential included (ε �= 0,φ �= 0).

b̃ (eV) b̃CB (eV) b̃VB (eV)

ε = 0,φ = 0 2.24 2.01 −0.23
ε �= 0,φ = 0 1.70 1.01 −0.69
ε �= 0,φ �= 0 2.02 1.03 −0.99

When looking at the behavior of EVB
ε �=0,φ=0 in comparison

to EVB
ε=0,φ=0 we find also a shift to higher energies resulting

from biaxial compressive strain. However, in this case, the
magnitude of the VB edge bowing parameter b̃VB is increased
by a factor of three compared to the situation without strain
and built-in potential (cf. Table IV). When including both local
strain and built-in potential effects, ECB

ε �=0,φ �=0 in comparison
to ECB

ε �=0,φ=0 is almost unaffected. This is also reflected in
the data for the CB edge bowing parameter b̃CB shown in
Table IV. For the VB edge, this is not the case. Here, the
local built-in potential significantly modifies the VB edge,
as seen in Fig. 10. Moreover, due to local built-in potential
effects, EVB

ε �=0,φ �=0 exceeds the InN/GaN VB offset 	EVB. The
consequence of this behavior would be that InxGa1−xN on InN
would be a type-II heterostructure for x � 0.6.

This difference in the behavior of the CB and VB edges
can be attributed in part to the differences in the effective
masses. Compared to the VB, the effective mass of the CB
edge is small.81,96 Therefore, in the regime of large x (high In
content), the randomly distributed In atoms can form QD-like
regions that lead to a localization of VB wave functions since
the local compressive strain favors this behavior.97 Therefore
we observe a strong increase in the magnitude of b̃VB when
including strain effects, cf. Fig. 10 and Table IV. In contrast,
the compressive hydrostatic strain in these regions leads to a
weaker localization of the CB wave functions and a shift to
higher energies,97 as observed in Fig. 10. However, since the
CB wave functions are only weakly localized in the QD-like
regions due to strain effects and the low effective masses,
the local built-in potential is of secondary importance for the
CB edge. However, originating from the much stronger VB
wave function localization, as in a “real” nitride-based QD, the
built-in potential further increases the localization and leads to
a pronounced shift to higher energies.12 As seen for example
in experiments on c-plane GaN/AlN QDs, due to the presence
of the built-in potential the measured photoluminescence (PL)
energy drops below the GaN band gap value.98

VII. SUMMARY

We have presented a complete theory of local electric
polarization in the linear piezoelectric limit. The connection
between the local polarization and local internal strain is
obtained in an elegant manner through the use of Born effective
charges and internal strain parameters. We have validated
the theory for the highly ionic III-N wurtzite compounds,
demonstrating a high degree of agreement between our model
and Berry-phase calculations. We have cast these local effects
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in the form of a local piezoelectric tensor, which helps
to highlight the importance of local strain and tetrahedron
orientation on the polarization field and potential. In addition
to this, we have obtained a consistent series of polarization-
related ab initio parameters for the group-III nitrides.

We have also presented a point dipole method for the
calculation of the local polarization potential that overcomes
resolution problems encountered when solving directly Pois-
son’s equation. The method involves the discretization of the
polarization field as a series of point dipoles. The accuracy of
the method has been tested against a well known problem with
analytical solution. As an example, we have applied our theory
and methodology to study the local polarization and local
polarization potential in polar and nonpolar InGaN/GaN QW
structures, where we have observed large local fluctuations in
both quantities.

Finally, we have presented a tight-binding model that
allows us to take into account local alloy effects, including
local strain and the local polarization potential discussed
throughout the paper. With this model we have calculated
the composition dependence of the band gap of InGaN
and provided composition-dependent bowing parameters for
the band gap and both the conduction- and valence-band
edge energies. Furthermore, we have shown that the local
polarization potential has a strong influence on wave function
localization effects in the valence band of this material.
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APPENDIX A: EXAMPLE OF THE CALCULATION
OF A LOCAL PIEZOELECTRIC COEFFICIENT

To illustrate how the calculation of the local piezoelectric
tensor in terms of the internal strain parameters is done, we
give here the details of the calculation for e

∗,A
15 . The expression

of e
∗,X
ij for e

∗,A
15 is simplified to

e
∗,A
15 = e

(0)
15 − eZA

1√
3a0

2c0

(
∂μA

1

∂ε5
− 1

2
μA

3,0

)
, (A1)

where we have made use of the Voigt relation ∂ε13/∂ε5 = 1/2.
μA

3,0 = 4(u0 − 3/8)c0 is given by the WZ internal parameter,
and ZA

1 ≡ Z1 for A being a cation. We need to calculate μA
1 .

Looking at Fig. 3, it is clear that the nearest neighbors of A are
B, which we label 1, and three periodic replicas of D contained
in a plane below A, which we label 2–4. If A is fixed at the
origin, rA = (0,0,0), then the distances of the different nearest
neighbors from A are given by

�1 = rB, �2 = rD − c,
(A2)

�3 = rD − c − a, �4 = rD − c − b,

where a, b, and c are the (strained) lattice vectors of the unit
cell. Since for this example we are interested in e

∗,A
15 only,

we set all the strain components to zero except for ε5 = 2ε13.
Following all the definitions given in Ref. 29 (with exchanged
notation ε13 ↔ εxz), we can write

rB = [u0c0ε13,0,u0c0] + [ζ1c0ε13,0,0] ,

rD =
[
a0

2
+

(
1

2
+ u0

)
c0ε13,

√
3a0

6
,

(
1

2
+ u0

)
c0 + a0

2
ε13

]
+ [ζ1c0ε13,0,0] , (A3)

a = [a0,0,a0ε13] , b =
[
a0

2
,

√
3a0

2
,
a0

2
ε13

]
,

c = [c0ε13,0,c0] .

To obtain μA
1 we sum over nearest-neighbor distances:

μA
1 =

4∑
α=1

�α
1 = 4u0c0ε13 − 3

2
c0ε13 + 4ζ1c0ε13. (A4)

The last term of Eq. (A1) therefore reduces to

∂μA
1

∂ε5
− 1

2
μA

3,0 = 2

(
u0 − 3

8

)
c0 + 2ζ1c0 − 2

(
u0 − 3

8

)
c0

= 2ζ1c0, (A5)

which leads to the final result:

e
∗,A
15 = e

(0)
15 − 2eZ1√

3a0
2
ζ1. (A6)

APPENDIX B: POINT DIPOLE METHOD FOR THE
CALCULATION OF LOCAL POLARIZATION

POTENTIALS

Proceeding in a similar manner to the one employed by
Jackson for a point charge,59 we can obtain the exact analytic
solution for the potential due to a point dipole when only one

z

x

y

ε2 ε1

Region (2) Region (1)

p (p̃)

d

p

d

FIG. 11. Schematic representation of the two media with different
dielectric constant and point dipole p problem. The image dipoles p′

and p̃ are needed in order to solve it.
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FIG. 12. (Color online) Potential profiles for three dipole orienta-
tions in the case of only one planar interface (indicated by the vertical
line) and two different dielectric constants. The potential isolines are
chosen so they decay exponentially.

interface is present, as schematically shown in Fig. 11:

φ(1)
p (r) = 1

4πε0ε1

p · (r − rp)

|r − rp|3 + 1

4πε0ε1

p′ · (r − rp′)

|r − rp′ |3 ,

φ(2)
p (r) = 1

4πε0ε2

p̃ · (r − rp̃)

|r − rp̃|3 , (B1)

with

p′ = ε1 − ε2

ε1 + ε2
[px,py, −pz], rp′ = [xp,yp,zp − 2d],

p̃ = 2ε2

ε1 + ε2
[px,py,pz], rp̃ = rp, (B2)

where p′ is the image dipole used, together with the original
dipole p, for the calculation of the potential φ(1)

p (r) in region (1)
and p̃ is the image dipole used for the calculation of the
potential φ

(2)
p (r) in region (2). Their positions are given by rp′

and rp̃, respectively. The results for a test dipole of arbitrary
magnitude when one of the materials has a dielectric constant
twice as big as that of the material in which the dipole is
contained are shown in Figs. 12(a)–12(c) for three different
orientations of the dipole.

The calculation of the potential when a second interface
is included is more complicated, as additional mirror images
have to be added to balance the two initial image dipoles about
each interface. As a result, an infinite number of reflections
(and hence, image dipoles) have to be considered in order to
obtain the exact form of the potential. These reflections up to
third order are shown in Fig. 13. The treatment for a point
charge in such a situation has been already done by Barrera.99

For the case of a point dipole, we find the expressions to
be similar although the transformation of the point dipole
is somehow different compared to the point charge due to
the vector nature of the former. Details of our treatment and
expressions for the three-media case are given in the next
section.

1. Point dipole solution for the three-dielectric problem

Building on the description made by Barrera for point
charges in a three-dielectric configuration,99 we give here the
analogous solution for point dipoles. The reflections necessary
to construct the image point dipoles are illustrated in Fig. 13.
Following the convention of Fig. 13, where d is the distance
from the dipole to the left side interface and h is the distance

z

x

y

ε2 ε1 ε3

Region (2) Region (1) Region (3)

pp(1) p(1)p(2) p(2)p(3) p(3)

02d 2h − 2d2h 2h2h + 2d 4h − 2d

d h − d

FIG. 13. (Color online) Reflection of image dipoles up to third order in a three-dielectric setup. Each of the reflection sequences is denoted
by a different color: the sequence starting to the left and originating the series p′

(n) is coloured in red, whereas the sequence starting to the right
and originating the series p′′

(n) is in blue. Solid lines indicate first-order reflections, dashed lines indicate second-order reflections and dotted
lines indicate third order reflections.
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between the two interfaces, we can obtain a set of rules for
the form of the image charges p′

(n) and p′′
(n), being the nth

reflections of p starting at left and right, respectively. These
rules can be written as the following expressions. For the
position of the image dipoles:

zp′
(2n−1)

= zp − [n 2d + (n − 1)(2h − 2d)],

zp′
(2n)

= zp + [n 2d + n(2h − 2d)],
(B3)

zp′′
(2n−1)

= zp + [n(2h − 2d) + (n − 1)2d],

zp′′
(2n)

= zp − [n(2h − 2d) + n2d],

and for the value of the image dipoles:

p′
(2n−1) = [px,py, −pz]

(
ε1 − ε2

ε1 + ε2

)n (
ε1 − ε3

ε1 + ε3

)n−1

,

(B4)

p′
(2n) = [px,py,pz]

(
ε1 − ε2

ε1 + ε2

)n (
ε1 − ε3

ε1 + ε3

)n

,

for the first series and

p′′
(2n−1) = [px,py, −pz]

(
ε1 − ε2

ε1 + ε2

)n−1 (
ε1 − ε3

ε1 + ε3

)n

,

(B5)
p′′

(2n) = p′
(2n),

for the second series, with n ∈ N. Finally, the expression of
the potential in all three regions can be written as

φ(1)
p (r) = 1

4πε0ε1

⎧⎨
⎩p · (r − rp)

|r − rp|3 +
∞∑

n=1

⎡
⎣p′

(n) · (
r − rp′

(n)

)
∣∣r − rp′

(n)

∣∣3 + p′′
(n) · (

r − rp′′
(n)

)
∣∣r − rp′′

(n)

∣∣3

⎤
⎦

⎫⎬
⎭ ,

φ(2)
p (r) = 1

4πε0ε2

⎧⎨
⎩p · (r − rp)

|r − rp|3 +
∞∑

n=1

⎡
⎣p′

(2n) · (
r − rp′

(2n)

)
∣∣r − rp′

(2n)

∣∣3 + p′′
(2n−1) · (

r − rp′′
(2n−1)

)
∣∣r − rp′′

(2n−1)

∣∣3

⎤
⎦

⎫⎬
⎭ 2ε2

ε1 + ε2
, (B6)

φ(3)
p (r) = 1

4πε0ε3

⎧⎨
⎩p · (

r − rp
)

∣∣r − rp
∣∣3 +

∞∑
n=1

⎡
⎣p′

(2n−1) · (
r − rp′

(2n−1)

)
∣∣r − rp′

(2n−1)

∣∣3 + p′′
(2n) · (

r − rp′′
(2n)

)
∣∣r − rp′′

(2n)

∣∣3

⎤
⎦

⎫⎬
⎭ 2ε3

ε1 + ε3
.

It is implicit in Eq. (B6) that for the calculation of the potential
φ

(2)
p in region (2) only the image dipoles in region (3) (together

with the original dipole) are taken into account, and vice versa.
Given the form of Eq. (B6) it is clear that an exact solution
to the problem of three media cannot be obtained for a finite
number of terms in the summation. However, approximate
solutions can be obtained whose accuracy will depend mostly
on the difference in the values of the dielectric constants of
the different materials. In Fig. 14, we show approximations
up to third order reflections, for different orientations of the
dipole, in the case of three materials for which ε2 = 2ε1 and
ε3 = 3ε1. This is an extreme case in the context of III-V
compounds, for which the differences in εr between materials
do not usually go beyond 50%. For clarity of interpretation,
the potential isolines shown decay as a power of 2, which
allows to visualize the fine effects of the interfaces far from
the dipole. As can be seen, the second order correction
[see Figs. 14(d)–14(f)] is already very well converged for
this extreme case and we expect first-order corrections to be
sufficient for the materials of interest, group-III nitrides, in
particular.

2. Gaussian smearing of point dipoles

As mentioned in the paper, the potential solution for a point
dipole is an approximation to the potential due to the dipole
moment of a charge distribution.59 This approximation is only
valid in the limit when the potential is calculated sufficiently
far away from the charge distribution. How far is “sufficiently
far” depends on the particular problem at hand, basically on
the value of the dipole and the volume over which the charge
density giving rise to the dipole moment spread originally.
A Gaussian smearing of the dipoles that are close to the
position where the potential is calculated, is a straightforward
manner to deal with this problem, as the parameters controlling
the smearing can be tuned easily at need. We propose the
implementation of this smearing controlled by two parameters:
(1) rsmear is the cutoff radius for which all the dipoles that obey
|r − rp| < rsmear are smeared, where r is the position where the
potential is calculated and rp is the position of the dipole under
consideration. (2) σ is the standard deviation of the Gaussian
function that produces the smearing. It gives a measure of
the volume over which the dipole is smeared. Therefore the
expression for the potential φp(r) at r due to a dipole p located
at rp can be rewritten, in spherical coordinates, as

φp(r) =
⎧⎨
⎩

1
4πε0εr

p·(r−rp)
|r−rp|3 , for |r − rp| � rsmear,

1
4πε0εr

1

(2πσ 2)
3
2

∫ 2π

0 dϕ
∫ π

0 dθ
∫ ∞

0 dρ sin θρ2e
− |r−r′p |2

2σ2
p·(r−r′

p)
|r−r′

p|3 , for |r − rp| < rsmear,
(B7)
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FIG. 14. (Color online) Differ-
ent approximations for the three me-
dia problem shown schematically in
Fig. 13 for different orientations of
the dipole. (a)–(c) include up to first-
order reflections, (d)–(f) second-
order reflections, and (g)–(i) include
up to third-order reflections. The red
lines indicate the interfaces between
different materials: the central ma-
terial has an (arbitrary) permittivity
of ε = 1, the material on the left
has ε = 2 and the material on the
right has ε = 3. It can be seen
that third-order reflections are suf-
ficient to converge the potential for
that particular set of relative values
of ε.

where r′
p is given by

r′
p = rp + [ρ sin θ cos ϕ, ρ sin θ sin ϕ, ρ cos θ ] . (B8)

Typically, the integration in ρ can be done up to a certain
cutoff since the value of the integrand will decay rapidly.
For example, our current implementation sets 3.4σ as the
upper limit for the integration, which comprises a volume that
contains about 99% of the total original dipole moment p. The
extension of Eq. (B7) to the case in which different dielectric
constants are present is straightforward and done in the same
way as explained in the paper and Sec. B 1 of this Appendix.

3. Computational aspects: method of layers
and application to quantum wells

It is clear that when dealing with real-size structures, for
which the polarization is sampled at a very elevated number
of sites, the calculation of the potential φ(r) becomes very
expensive. In particular, for each r, a summation over all the
dipoles present in the system has to be carried out:

φ(r) =
∑

p

φp(r). (B9)

In a system where the density of dipoles np is approximately
constant, for instance one dipole located at each cation
site in Ref. 4, the number of dipoles δNp contributing to
Eq. (B9) located at distances between R and R + δR from
r is proportional to the surface area of a sphere of radius R:

δNp ∝ 4πR2npδR, (B10)

where δR is an infinitesimal increment in R. Because the
contribution to φ(r) from each dipole decreases like 1/R2, as
given by Eq. (20), Eq. (B10) implies that the contribution to
φ(r) due to the dipoles located at rp for which R < |r − rp| <

R + δR is of the same order of magnitude as the contribution

due to dipoles for which R′ < |r − rp| < R′ + δR, for any
arbitrary R′ > R. In other words, in principle, the sum in
Eq. (B9) does not converge. In practice, for real structures
such as InGaN/GaN QWs, the fact that there is a dot product
involved in the calculation of the potential due to each dipole,
and also that the dipoles in the barrier typically point in the
same direction, give rise to opposite contributions that tend to
cancel each other as R increases, as schematically shown in
Fig. 15. In that case, the sum does converge although rather

z

x

y
Barrier Well Barrier

rR

R + δR

p1

p2

r−
rp1

r−
r p 2

FIG. 15. Schematic representation of the dipoles present in a
typical nitride QW structure. In a sphere of radius R from r there
exist a certain number of dipole pairs for which p1 · (r − rp1

) =
−p2 · (r − rp2

) and therefore tend to neutralize each other (they do
not exactly cancel each other due to the image dipole effect that
depends on how far r and rp are from each interface). For large R,
this cancellation effect is bigger as the polarization is usually constant
in the barrier.
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FIG. 16. (Color online) Section in the xz plane of (a) the
polarization potential due to an ensemble of 10 dipoles randomly
placed inside a cube of side 10 Å with origin at (0,0,0). The
boundaries of the cube within the xz plane is indicated by the red
line. The dipoles components are given by a Gaussian probability
distribution with px centered at 10−31 Cm, py and pz centered at
zero, and standard deviation 5 × 10−32 Cm for all three components;
(b) the polarization potential due to a single dipole obtained from the
ensemble in (a) calculated by means of Eq. (B11); and (c) difference
between the potentials shown in (b) and (a). Note that the potential
isolines shown follow an exponential behavior to exaggerate the
results: the lines escaping the plots correspond to zero and the outer
lobe-shaped isolines indicate ∼6 μV.

slowly. We have implemented two different methods to speed
up the convergence of the sum in Eq. (B9), one of which can

be applied to any system, the “method of layers.” The other
method can be applied to systems where some assumption can
be made about the value of the polarization being constant
in the greatest part of the system, as is the case in QWs. An
outline of these methods is given next.

a. Method of layers

In the same way that a point dipole is an approximation for
a charge density distribution valid far away from the location
of the dipole, it can be shown that a point dipole can be a
valid approximation for a given ensemble of neighboring point
dipoles at a certain distance from the ensemble. Figure 16(a)
shows the potential due to an ensemble of N dipoles pi ,
of typical magnitude in nitride QWs, that are localized in a
restricted region in space, each at position rpi

. This ensemble
can be approximated by a single dipole P whose magnitude
equals the summation of all the original dipoles and whose
position rP is given by the weighted average of the dipoles in

the ensemble [see Fig. 16(b)]:

P =
N∑

i=1

pi , rP = 1

|P|
N∑

i=1

rpi
|pi |. (B11)

As shown in Fig. 16(c), the difference between an ensemble of
dipoles and its correspondent approximation calculated as in
Eq. (B11) decays rapidly away from the ensemble. Applying
Eq. (B11) recurrently, one can construct, around the point r
where the potential φ is being calculated, a system of “layers”
in which the density of dipoles decreases as one moves away
from r.

b. Simplification for quantum wells

A simplification can be made for QW systems, or even
a quantum dot (QD) system, if a constant value for the
polarization can be assumed for the greatest part of the system.
Since only differences in polarization are meaningful for the
calculation of polarization potentials, an arbitrary constant
shift of the polarization of the whole system will not have any
effect on the calculated value of the polarization potential. This
shift can be chosen in such a way that the resultant polarization,
at least on average, is zero in the barrier in the case of a QW, or
in the unstrained barrier in the case of a QD.62,100 In that case,
all the dipoles arising from that region, once the discretization
described in the main paper is made, will have value zero.
Therefore the dipoles contained within that region can be left
out of the calculation.
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Phys. Rev. B 84, 085211 (2011).
32V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett.

80, 1204 (2002).
33P.-Y. Prodhomme, A. Beya-Wakata, and G. Bester, Phys. Rev. B

88, 121304 (2013).
34S. Nakamura, S. J. Pearton, and G. Fasol, The Blue Laser Diode:

the Complete Story (Springer-Verlag, Berlin, Heidelberg, 2000).
35M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller,

L. Zhou, G. Harbers, and M. G. Craford, J. Disp. Technol. 3, 160
(2007).

36U. K. Mishra, L. Shen, T. E. Kazior, and W. Yi-Feng, Proc. IEEE
96, 287 (2008).

37J. Wu, J. Appl. Phys. 106, 011101 (2009).
38T. Aschenbrenner, H. Dartsch, C. Kruse, M. Anastasescu, M.

Stoica, M. Gartner, A. Pretorius, A. Rosenauer, T. Wagner, and
D. Hommel, J. Appl. Phys. 108, 063533 (2010).

39Vienna ab initio simulation package (VASP), http://www.vasp.at,
see also on line documentation.

40G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
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