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Role of screened exact exchange in accurately describing properties of transition metal oxides:
Modeling defects in LaAlO3
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The properties of many intrinsic defects in the wide-band-gap semiconductor LaAlO3 are studied using
the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE) [J. Chem. Phys. 118, 8207 (2003)].
As in pristine structures, exact exchange included in the screened hybrid functional alleviates the band-gap
underestimation problem, which is common to semilocal functionals; this allows accurate prediction of defect
properties. We propose correction-free defect energy levels for bulk LaAlO3 computed using HSE that might
serve as a guide in the interpretation of photoluminescence experiments.
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Defects in LaAlO3 have been studied extensively both
experimentally1 and using computational approaches,2,3

contributing to our understanding of the interplay between
various defects in this material. Photoluminescence (PL)
spectroscopy using subband-gap excitation was recently used
to detect the ground-state defect states within the band gap
of LaAlO3 single crystals.1 In standard photoluminescence,
electrons are pumped to the conduction band, then a photon is
emitted upon relaxation from the conduction band to various
ground-state defect levels. The resulting PL peaks are then
associated with defect levels inside the gap. In subband-gap
excitation, the photon energy is tuned to selectively probe
certain defect levels, revealing more detailed features.
This experiment identified three distinct PL peaks, each
showing doublet splitting, that were localized 2 eV below the
conduction-band minimum (CBM). Defect levels calculated2

using the the generalized gradient approximation density
functional of Perdew, Burke, and Ernzerhof (PBE)4,5 and
corrected with the “scissor operator” were used as a guideline
to partially match the PL peaks. This approach is less than
completely satisfying, however, as (for example) the LaAl

defect level, post-correction, is located 1 eV below the CBM;
this contradicts recent experimental results. A more accurate
theoretical description is thus much needed, especially given
the problems of band-gap underestimation (endemic to
semilocal functionals),6 which is fatal for defect calculations,
and questions about the overall appropriateness of the “scissor
operator.” Put more simply, the typical theoretical methods
which can be used for modeling these sorts of materials are
insufficiently accurate for explaining the effects in question.

Defects in LaAlO3 have been subject to other very
recent theoretical calculations:3,7 Vacancy defect energetics in
rhombohedral and cubic bulk LaAlO3 have been computed
using PBE in Ref. 3, where it was found that the defect
formation behavior in both phases was very similar. That
work also included finite-size scaling using supercells up
to 480 atoms, suggesting that the cell-size dependencies in
modeling neutral vacancies are almost negligible. (This makes
their formation energies almost independent from the supercell
size.) However, it should be noted that formation energies were

modified using a band-gap correction scheme3 to overcome the
well-known band-gap underestimation problem of semilocal
functionals. For this reason, interest has emerged in using
modern (and demonstrably more accurate)8 screened hybrid
functionals to model these defects. While some recent efforts
have been published in this direction,7,9 a complete picture of
all possible defect levels using modern hybrid functionals is
not available.

In the present work, we apply the screened hybrid functional
of Heyd-Scuseria-Ernzerhof (HSE) to a wide array of neutral
defect types in LaAlO3, thus complementing previous HSE
efforts7 that treated only the oxygen vacancies. This work
is motivated by HSE’s agreement with experiment for the
calculation of many of the electronic, structural, and elastic
properties in cubic LaAlO3.10 HSE is expected to give point-
defect formation energies and energy levels in close agreement
with experiment as its direct and indirect band gaps10 as well
as valence-band widths (VBWs)11 are in excellent agreement
with experiment (see Table I); this can be contrasted with
the PBE results, which have been previously used to study
point defects in LaAlO3.2,3 It is worth noting that HSE06
gives an excellent agreement with the results of the global
hybrid PBE0 for the case of the oxygen vacancy in SrTiO3.12

This suggests that hybrid functionals belonging to the 25%
HF exchange family such as PBE0 and HSE06 would yield
a very similar location for the defect level and the splitting
of the conduction-band minimum in the LaAlO3 case as
well.

Here we restrict our study to neutral defects to avoid
introducing errors due to spurious electrostatic interactions,
and the corrections associated with it. Nevertheless, perform-
ing HSE calculations with the high-numerical-accuracy set-
tings detailed below remains quite expensive, thus precluding
the use of the largest supercells. This is acceptable, however,
as finite-size scaling and previous investigations3,7 using larger
supercells have shown that the neutral defects considered here
suffer least from finite-size effects. Consequently, despite the
limited number of atoms that can be treated with HSE, this
approach promises increased physical accuracy compared to
the less expensive semilocal functionals.
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TABLE I. Comparison of calculated fundamental electronic
properties of bulk cubic LaAlO3 from this work and previous studies.
VBW stands for the valence-band width. Calculated enthalpies of
formation in eV/atom for idealized materials with phases containing
La, Al, and O are compared to previous PBE calculations2 and
experiment.

This Work Previous Work

HSE PBE PBE Expt.

Direct gap (eV) 5.0 3.54
Indirect gap (eV) 4.74 3.26 3.1e

VBW (R→R)(eV) 8.00 7.50

�Hf

Al2O3
3.82 3.6 3.30a 3.47b

�Hf

La2O3
4.24 4.00 3.71a 3.71c

�Hf

LaAlO3
3.78 4.21 3.60a 3.45d

aReference 2.
bReference 19.
cReference 20.
dReference 21.
eReference 9.

All calculations presented in this paper were performed
using the development version of the GAUSSIAN suite of
programs,13 with the periodic boundary condition (PBC)14

code used throughout. The Def2-15 series of Gaussian basis
sets were optimized following our procedure described in
Ref. 16 for bulk LaAlO3. As in Ref. 16, we use the notation
SZVP to differentiate these optimized PBC basis sets from the
molecular Def2-SZVP basis sets. The functionals applied in
this work include PBE4,5 and HSE.17

The use of HSE imposes limitations on the size of the
supercell that can be efficiently computed and fully relaxed,
so a LAO supercell of 2 × 2 × 2 replica of the 5 atoms cubic
unit cell (40 atoms) was used with a dense k-point mesh of
6 × 6 × 6, including the � point. Also, we modeled a larger
supercell of 2 × 3 × 3 (90 atoms), with the same density of
k points, in order to discuss the importance of defect self-
interactions and the effect of varying the defect concentration
on the electronic properties of LAO.

Most numerical settings in GAUSSIAN were left at the
default values, e.g., geometry optimization settings, integral
cutoffs, k-point meshes, and SCF convergence thresholds.
Unless otherwise noted, crystal structures used in the chemical
potential calculations on La, Al, Al2O3, and La2O3 were down-
loaded as crystallographic information files (CIF) from the
inorganic crystal structure database (ICSD),18 and then fully
relaxed/optimized. Isolated, neutral vacancies were introduced
to the crystal structure of cubic LAO by removing one atom
of either O, La, or Al, while La and Al antisites occupied
the crystalline position. All structures containing the above
defects were then fully relaxed using HSE06. In order to avoid
imposing a certain oxygen interstitial position, the oxygen
atom was inserted far from the well-known interstitial sites
followed by relaxation to the nearest minimum. At this point,
we cannot be completely sure whether or not the configuration
we obtained has the lowest formation energy; only a full energy
landscape exploration method can reveal that.

The calculations of neutral defect formation energies
used the formalism of Zhang and Northrup,22 namely, the

equation

Ef = ET − [ET (perfect) − nLaμLa − nAlμAl − nOμO],

(1)

where ET and ET (perfect) are the calculated total energies
of the supercells containing the point defect and the perfect
bulk host materials, respectively. The number of each element
removed from the perfect supercell is represented by nx , while
μx corresponds to the atomic chemical potentials in an LaAlO3

crystal. Assuming that LaAlO3 is always stable, the chemical
potentials of the these elements can vary in the following
correlation:

μLa + μAl + 3μO = μbulk
LaAlO3

. (2)

Obviously, atomic chemical potentials are determined by
the sample composition and cannot be ascertained exactly.
However, they can be varied to cover the whole phase diagram
of LAO splitting into Al2O3 and La2O3 bulk phases. Hence
the calculated formation energies for the neutral point defects
vary according to equilibrium positions such as “O-rich” and
“O-poor” conditions.

The calculated enthalpies of formation in idealized ma-
terials (nonrelaxed structures) for phases containing La, Al,
and O are summarized in Table I and are compared to
previous calculations2 and experiments. As a general trend,
the formation enthalpies computed with HSE are close to
the results from semilocal functionals such as PBE (this
work), although the HSE values are slightly higher. The only
exception is LaAlO3, where PBE tends to overestimate the
formation enthalpies and exceed the HSE value.

The formation energies of defects in LAO as a function
of its composition are plotted in Fig. 1.23 Under oxidizing
conditions (points A and B), we identify the oxygen interstitial
(OI ) as having the lowest formation energy; this is contrary
to previous PBE results2 which predicted OI to be less stable
than VLa and other vacancy complexes. It is worth noting that
we introduced the oxygen atom at a random position in the
supercell avoiding well-known interstitial sites followed by
a full relaxation of the system. The resulting configuration
consists of a 110 split interstitial (dumbbell) with an O-O
bond of 1.38 Å. Since Luo et al.2 did not report their interstitial

FIG. 1. (Color online) Defect formation energies of isolated
defects in cubic LAO computed using HSE at each equilibrium point
based upon the phase diagram in Ref. 2.
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configuration, we could assume that our differences arise from
different interstitial sites considered rather than computational
differences.

Focusing specifically at point A, VLa is the next most
stable defect. Our formation energy is about 3 eV higher than
previously published results obtained using the PBE functional
in rhombohedral and cubic LAO.2,3 In terms of competition
between VLa and VAl, we find (using HSE) the same behavior

seen using PBE in Refs. 1 and 2. Next in order of stability is VAl

and AlLa with equal formation energies at point A, followed
by VO, a behavior not reported previously.2,3

Moving from point A to point B, the order of increasing
stability of defect types remains unchanged, except for AlLa,
which has become less stable than VO. We report a formation
energy of 8 eV for VO, which is in excellent agreement with a
recently computed HSE value of 8.3 eV in rhombohedral LAO

FIG. 2. (Color online) Band structures and PDOS calculated with HSE/SZVP for the 2 × 2 × 2 LaAlO3 supercell containing intrinsic
defects. The top figures represent OI and VLa introducing bands with a valence-band character. AlLa and VO (middle row) have bands above
the midgap. The bottom row contains LaAl and VAl having defect bands below midgap. The Fermi energy EF is indicated by a solid black line.
The red bands indicate the occupied defect bands, while the unoccupied defect bands are shown in blue.

214102-3



EL-MELLOUHI, BROTHERS, LUCERO, AND SCUSERIA PHYSICAL REVIEW B 88, 214102 (2013)

using a supercell of up to 135 atoms;7 note that in this study
other vacancy types and substitutions were not modeled.

Under reducing conditions (points C, D, and E), VO

dominates the spectrum, in qualitative and quantitative agree-
ment with previous uncorrected PBE calculations,2 having an
average formation energy of 1.3 eV. The formation energy
of VO calculated with HSE is lowered by 0.1 eV when the
supercell size increases from 40 to 90 atoms. Although not
negligible, this remains smaller than the differences reported
in the charged states,2,3,7 which are due to both the strong
elastic and electrostatic self-defect interactions. Obviously,
calculations using larger fully relaxed supercells are required
to determine at what size defect self-interactions (elastic
effects) become negligible.

Our results do not agree, however, with the recent formation
energies computed by Yamamoto et al.3 who applied a band-
gap correction (a 2.48 eV shift) to the PBE formation energies
of VO. Applying the band-gap correction in this case led to the
conclusion that Schottky-type vacancy complexes are more
stable than VO. We believe this to be an artifact of the correction
they applied.

It should be noted that interstitials such as LaI and AlI
are not addressed in the present study because their neutral
charge state was not identified to be stable according to the
PBE calculation of Luo et al.2 Also, our formation energy
spectrum computed with HSE reveals that they exhibit very
high formation energies.

The various defects we will first discuss induce changes to
the electronic properties of cubic LaAlO3, introducing defect
levels within the band gap and/or lifting the degeneracy of the
CBM and VBM as shown in Fig. 2.

The oxygen split interstitial configuration (OI ), which is
the most stable under oxidizing conditions, induces a strong
distortion to the lattice, which in turn significantly impacts the
electronic structure. The CBM splits at the � point by 440 meV,
while the VBM also splits into three distinct bands. The fully
occupied defect band composed of O 2p states is located
on average at 0.13 eV above the VBM, has valence-band
character, and induces a gap of 4.66 eV. VLa, the second
most stable defect under oxidizing conditions, creates three
empty nondegenerate valence bands, dominated by O 2p

orbitals originating from the O dangling bonds. Both HSE

and PBE agree about the nature and the location of these
bands. However, our OI level is shallower than the previously
reported PBE results,2 which is probably due to differences in
the interstitial configuration.

Next to be evaluated are defects having in-gap states,
namely, AlLa, VO, LaAl, and VAl, which show a localized elec-
tronic density around the defect region. The AlLa antisite defect
might play a role under oxidizing conditions due to its rela-
tively low formation energy. With HSE, we find that it induces
an empty defect band in the gap at 2.93 eV above the VBM and
2.0 eV below the CBM. This band might become populated
upon doping or under excitation, and is dominated by O 2p

and Al s orbitals [q.v. the partial density of states (PDOS)].
The bulk degeneracy of the VBM and CBM are not affected
and remain three- and twofold degenerate, respectively. This
is an indication that this defect does not introduce noticeable
distortion or octahedral rotation into the lattice, which is further
confirmed by a structural analysis. However, using PBE, we
find that the AlLa defect band is located at 1.22 eV above
the VBM and 2 eV below the CBM, which is well below
the midgap (1.6 eV). Following a typical band-gap correction
procedure, this PBE defect band does not need to be shifted
using the scissor operator,2 which would result in keeping its
VB character, which contradicts the HSE results above.

The next defect of interest is VO, which is arguably the most
important defect under reducing conditions and suspected to
be systematically introduced during the growth of metal oxide
superlattices.24 After introducing VO , the supercell shrinks
along the y axis, leading to a tetragonal distortion of the lattice
with a ratio a/b = 1.0057 (a and b being the resulting lattice
parameters) and a slight rotation of AlO6 octahedra. This
strongly impacts strongly the electronic structure by splitting
the doubly degenerate CBM by 258 meV, while leaving the
VBM triply degenerate. Another defect band also appears
at 2.77 eV above the VBM from the combination of O 2p,
Al d, La d, and p orbitals. Here again, major differences
with previous PBE data emerge: the uncorrected PBE level
computed recently by Chen et al.1 was located 2.23 eV above
the VBM. Luo et al. applied the scissor operator to this defect
level, predicting it to lie at about 3.8 eV above the VBM.

Last to be examined is LaAl, which in the neutral state would
rarely form under either oxidizing or reducing conditions. It

FIG. 3. (Color online) Schematic representation of the average location of the defect bands in the band gap of LAO calculated with
HSE/SZVP (left) and PBE from Ref. 2 (right) shifted using a scissor operator. Numbers in gray boxes refer to the location of the defect bands
with respect to the valence-band maximum (VBM). The dashed line refers to the midgap.

214102-4



ROLE OF SCREENED EXACT EXCHANGE IN ACCURATELY . . . PHYSICAL REVIEW B 88, 214102 (2013)

introduces a fully occupied, triply degenerate defect band
located 2.06 eV above the VBM and 2.60 eV below the
CBM. However, the PBE defect level is at that method’s
midgap, lying 1.6 eV from the VBM and CBM. If a scissor
operator was to be used, one could argue that this level
should be shifted, placing it as close as 1 eV to the CBM
(see Fig. 3).

To conclude, there are fundamental differences between our
HSE defect level spectrum and the one published earlier using
corrected PBE2 data regarding the nature of the defect bands
(see Fig. 3). We believe these differences originate from the
criterion used to judge whether the “scissor operator” should be
applied. For example, HSE finds that AlLa and VAl have defect
bands near midgap, thus removing the PBE’s prediction of
valence-band character, which were reported previously. The

same issue leads to significant differences in the conclusions
regarding VO. Overall, our defect levels calculated with HSE
lie 2 eV below the CBM (see Fig. 3), which is in better
agreement with recent experiment.1 This HSE defect level
spectrum that we propose here is correction free and may be
used to interpret experimental photoluminescence data which
place defect levels at 3.1, 2.1, and 1.7 eV.1,25
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