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Fermi velocity renormalization and dynamical gap generation in graphene
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We study the renormalization of the Fermi velocity by the long-range Coulomb interactions between the charge
carriers in the Dirac-cone approximation for the effective low-energy description of the electronic excitations in
graphene at half-filling. Solving the coupled system of Dyson-Schwinger equations for the dressing functions in
the corresponding fermion propagator with various approximations for the particle-hole polarization, we observe
that Fermi velocity renormalization effects generally lead to a considerable increase of the critical coupling for
dynamical gap generation and charge-density-wave formation at the semimetal-insulator transition.
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I. INTRODUCTION

Since its synthesis in 2004,1,2 graphene has revealed fasci-
nating electronic properties, such as the anomalous quantum
Hall effect,3,4 Klein tunneling,5,6 or charge confinement7

(comprehensive overviews can be found in Refs. 8–11). It
has been known for a long time from a simple noninteract-
ing tight-binding model12,13 that graphene’s two-dimensional
honeycomb lattice is special in that its quasiparticle dispersion
relation for low-energy excitations around charge neutrality
at two independent Dirac points in the first Brillouin zone
is linear, Ek = ±vF |k|, where vF ∼ 106 m/s ≈ c/300 is the
Fermi velocity and k = (kx,ky) is the momentum of the
fermionic quasiparticle in two dimensions. The tight-binding
Hamiltonian effectively reduces to a free Dirac Hamiltonian.
This quasirelativistic regime for low-energy excitations is
separated from the nonrelativistic excitation spectrum at higher
energies by a van Hove singularity in the density of states.
Thus, already the tight-binding model also serves as a simple
example of an excited-state phase transition14 which in this
case reflects the presence of a topological electronic ground-
state transition when the chemical potential is tuned away
from half-filling and beyond the van Hove singularity, where
the static susceptibility diverges logarithmically, indicative of
a neck-disrupting Lifshitz transition in two dimensions.

Within field theory descriptions of the electronic excitations
in graphene, charge fractionalization and vortex formation
have been described through chiral gauge models15–17 which
include the dynamics of the carbon background and dop-
ing effects. Charge confinement and Klein tunneling were
investigated within such a model in Ref. 18. Cosmological
models were used to describe the electronic properties of
deformed graphene sheets,19 topological defects, and curva-
ture as described by geometric gauge fields that also lead
to an index theorem for graphene.20 The various uses of
gauge fields to model topological defects as well as stress and
strain on graphene sheets are reviewed in Ref. 21. The effects
of additional short-range four-fermion couplings to model
phonon interactions have been investigated at mean-field
level in Ref. 22, and more recently within the functional
renormalization group approach in Refs. 23 and 24.

The importance of many-body interactions in graphene
has been established both theoretically (see Ref. 9 and ref-
erences therein, for example) and experimentally (in a recent

measurement of the Fermi velocity at low energies,25 but also
from the observation of a gap in an ARPES measurement of
epitaxial graphene, upon dosing with small amounts of atomic
hydrogen26). Long-range electron-electron interactions induce
a momentum-dependent renormalization of the Fermi velocity.
If the Coulomb interaction can be made sufficiently strong, one
furthermore expects that a mass gap is dynamically generated,
analogous to chiral symmetry breaking in QCD, such that
graphene undergoes a phase transition from a semimetal to an
insulator by charge-density-wave formation. This expectation
is motivated by the potentially large value of the effective
“fine-structure constant” α = e2/(4πh̄vF ε) ∼ O(1) when the
dielectric constant ε is of the same order as one would expect
for suspended graphene with ε = 1.

The critical coupling for this semimetal-insulator transition
has been estimated theoretically in a variety of ways, generally
yielding values of αc ∼ 1 when no additional screening effects
on the Coulomb interactions between the electrons in the
graphene π bands, e.g., from electrons in the σ band, are
included. A value of αc = 0.92 was obtained in Ref. 22 from
a bifurcation analysis of a simplified gap equation in which
radiative corrections to the Fermi velocity were neglected. A
particular form for a momentum-dependent Fermi velocity
renormalization based on a large-N expansion was used in
Ref. 27 to obtain αc = 1.13. A renormalization group (RG)
calculation at two-loop order yielded αc = 0.833.28 Lattice
studies have reported from Monte Carlo simulations on both
standard square29 and physical hexagonal30 lattices αc =
1.08 ± 0.05 and 0.9 ± 0.2, respectively. All these values are
well below the bare coupling constant of suspended graphene,
α0 = 2.19 with ε = 1, and thus in apparent contradiction with
the experimental observation that suspended graphene remains
in the semimetal phase.11,25

One possible explanation of this discrepancy might be the
additional screening of the Coulomb interaction due to the
other electrons, notably those in the σ band. In a constrained
random phase approximation, these were indeed found to
reduce the onsite repulsion and the first three nearest-neighbor
Coulomb interaction parameters by successively decreasing
factors between 1.8 and 1.3.31 In a recent Monte Carlo
simulation,32 these parameters were used together with a
corresponding screening of the long-range Coulomb tails
to effectively reduce the interaction strength by an amount
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which was found to be sufficient to place suspended graphene
in the semimetal phase. While the additional screening
of the short-range part of the π -band electrons’ Coulomb
interactions should certainly be included in a more quantitative
calculation, here we focus on qualitative effects of their
long-range Coulomb tails which one would in fact not expect
to be screened by the other, localized electron states. A
realistic description will probably have to include the right
balance of all effects, the correct amount of onsite repulsion,
favoring an antiferromagnetic Mott state,33 the screening of
the nearest-neighbor and short-range interactions which would
otherwise lead to charge-density-wave formation,34,35 as well
as unscreened long-range Coulomb tails which might enhance
the latter. Even if the strengths of these competing effects are all
too weak for an insulating ground state in suspended graphene,
it will be interesting to find out whether it is at least close to
a possible transition into any one of the insulating phases
(gapped spin-liquid36 and topological insulator phases37 have
also been discussed).

Whatever the final answer will be, the experimentally ob-
served reshaping of the Dirac cones in suspended graphene11,25

does indicate that the Coulomb interactions induce a charge-
carrier-density–dependent renormalization of the Fermi ve-
locity. This renormalization peaks at half-filling where it
leads to an increase by about a factor of 3 in the Fermi
velocity and thus a corresponding decrease in the renormalized
effective coupling. A momentum dependence of the Fermi
velocity of a similar kind was in fact already predicted in
an early perturbative RG study,38 long before the synthesis
of graphene. There, it was even concluded that vF should
keep growing logarithmically until retardation effects become
important enough to invalidate the instantaneous Coulomb
approximation.

Lattice simulations certainly have the potential to provide
reliable results also for strongly coupled condensed matter
systems, if the bare interactions are chosen correctly to
describe the physical system. Even if the microscopic theory
is completely specified as in QCD, however, continuum (at
least in the time discretization), infinite volume, and chiral
extrapolations are often difficult and expensive. This is very
much so for the simulations of the electronic properties of
graphene also. Moreover, a chemical potential for charge-
carrier densities away from half-filling, e.g., to study the effects
of interactions on the electronic Lifshitz transition of the free
tight-binding model,14 introduces a fermion sign problem here
as well. Nonperturbative continuum approaches such as the
functional renormalization group or Dyson-Schwinger equa-
tions therefore provide valuable alternatives. Especially when
the necessary truncations are tested against lattice simulations
in finite systems, without massless fermions and sign problem,
the corresponding limits as well as finite density effects are
relatively straightforwardly addressed with these functional
continuum methods. In this paper, we employ the Dyson-
Schwinger approach, which has been successfully applied
to both QCD and three-dimensional QED (see, for example,
Refs. 39–46 and references therein). In particular, we study the
running of the Fermi velocity from Coulomb interactions in
the Dirac-cone approximation, and its influence on the critical
coupling for the semimetal-insulator transition by charge-
density-wave formation in the effective low-energy model. To

this end, we extend the study of Ref. 22 by first calculating
the running Fermi velocity in various approximations for the
particle-hole polarization. The results are qualitatively in line
with the observed reshaping of the Dirac cones. In order to then
determine the corresponding values for the critical coupling,
we numerically solve the coupled system of Dyson-Schwinger
equations for the fermion propagator with and without running
Fermi velocity for comparison. We generally observe that
the resulting critical coupling substantially increases when
the strong renormalization effects in the Fermi velocity are
included, thus favoring the persistence of suspended graphene
in the semimetal phase. This general trend has also been
observed in our preliminary analysis47 in which we employed
a GW approximation, in addition, in order to compute the
Fermi velocity renormalization analytically.

The paper is organized as follows: In the next section,
we briefly review the continuum model of graphene which
is a variant of QED3 with instantaneous bare Coulomb
interactions. In Sec. III, we discuss the Dyson-Schwinger
equation (DSE) for the fermion propagator in this model
and present our solutions for the different particle-hole
polarizations. Thereby, we first describe the results from a
bifurcation analysis to find the critical point in Sec. III A. Our
iterative numerical solutions of the full system of coupled
integral equations are then presented in Sec. III B. Thereby we
verify the bifurcation analysis and obtain complete results for
the fermion mass and Fermi velocity renormalization functions
in both phases. We compare our results for αc to the literature
on the DSE approach and assess the validity of the various
approximation schemes. Moreover, we discuss the behavior of
the pseudocritical coupling with explicit symmetry breaking
by a staggered chemical potential, and the dependence of the
critical coupling in the chiral limit on the number of fermion
flavors providing evidence of Miranski scaling. Our summary
and outlook are provided in Sec. IV.

II. DETAILS OF THE MODEL

In this paper, we study a low-energy continuum model
for the long-range Coulomb interactions between the charge
carriers in monolayer graphene, as previously considered in
Refs. 22 and 48–51. In this model, the quasiparticle excitations
at energies well below the van Hove singularity, around
the two Dirac points within the first Brillouin zone of the
honeycomb lattice, are described by massless Dirac fermions
in two spatial dimensions. The honeycomb lattice is built
from two independent triangular sublattices, corresponding
to a triangular Bravais lattice with a two-component basis.
Consequently, four-component Dirac spinors are introduced
for the quasiparticle excitations on both sublattices A and B,
each with momenta close to either of the two inequivalent
Dirac points K (plus sign) and K ′ (minus sign), ψT =
(ψB

+s , ψ
A
+s , ψ

A
−s , ψ

B
−s). The true spin of the electrons formally

appears as an additional flavor quantum number s = 1, . . . ,Nf

with Nf = 2 for monolayer graphene. The graphene model is
then specified by the action (in natural units with h̄ = c = 1)

S =
∫

dt d2r ψ̄(t,�r)[iγ 0∂t − ivF γ i∂i]ψ(t,�r) + Sint,

(2.1)
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where vF ≈ 1
300 is the Fermi velocity (we will return to its

definition in the next section), ψ and ψ̄ = ψ†γ 0 denote the
pseudo-spin- 1

2 fermion field and its Dirac adjoint. The spatial
index is i = 1,2, and the three four-dimensional γ matrices
reducibly represent the Clifford algebra {γ μ,γ ν} = 2gμν in
2 + 1 dimensions. In absence of magnetic fields and with vF �
1, the electromagnetic interactions reduce to the purely electric
coupling with the zero component of the photon field, initially
in 3 + 1 dimensions [with �x = (�r,z)] and Feynman gauge,

Sint =
∫

dt d3x

[
− ρ(t,�x)A0(t,�x) + 1

2
[ �∇A0(t,�x)]2

− 1

2
(∂0A

0(t,�x))2
]
, with

ρ(t,�x) = eψ̄(t,�r)γ 0ψ(t,�r)δ(z). (2.2)

Magnetic interactions with the spatial vector components of
the photon field could be introduced via Peierls substitution
but are O(vF ) suppressed and hence neglected. Consequently,
the bare photon propagator in the z = 0 plane is simply given
by

D00
tl (t,�r,z = 0) =

∫
dω

2π

d2k

(2π )2

dkz

2π

−i

ω2 − �k2 − k2
z + iε

× e−iωtei�k�r . (2.3)

Integration over the perpendicular kz-momentum modes of the
Coulomb photon in the instantaneous approximation38 then
yields the dimensionally reduced, so-called “brane action,”
for the quasiparticles50 with Coulomb interactions as usually
employed in condensed matter systems,

S =
∫

dt d2r ψ̄(t,�r)[iγ 0∂t − ivF γ i∂i]ψ(t,�r)

− e2

8πε

∫
dt d2r d2r ′ ψ̄(t,�r)γ 0ψ(t,�r)

× 1

|�r − �r ′| ψ̄(t,�r ′)γ 0ψ(t,�r ′). (2.4)

Here, we have also introduced a dielectric constant ε = (1 +
κ)/2 to model the screening of the Coulomb interactions on
top of a substrate, typically with κ ≈ 4 for SiO2 or κ ≈ 10 for
SiC, instead of ε = 1 for suspended graphene [neglecting the
additional short-range screening from the localized electron
states in graphene here, which would require a momentum
dependent ε(�k) (Ref. 31)]. As discussed in the following,
the bare Coulomb propagator is further modified due to the
interactions by the particle-hole polarizability �(ω,�k), or
Lindhard function of the electrons in the π bands.

The Feynman rules for the model are specified by the tree-
level electron propagator and the fermion-photon vertex. These
can be read off from the action as specified by Eqs. (2.1) and
(2.2) to have the usual form with dimensionless charge despite
the reduced dimensionality of the brane action

S−1
tl (p0, �p) = −i(γ 0p0 − vF γ ipi), (2.5)

�0
tl(k,p) = −ieγ 0. (2.6)

In addition to the tree-level quantities, we will also require
the general decomposition for the fermion propagator S(p).

Because of the anisotropy introduced by the Fermi velocity,
we need to treat temporal and spatial components separately:

S(p) = i[Z(p) γ 0p0 − vF A(p) γ ipi + �(p)]

Z2(p) p2
0 − v2

F A2(p) �p 2 − �2(p) + iε
, (2.7)

where Z(p) is the wave-function renormalization, A(p) is the
Fermi velocity dressing function, and �(p) is the quasiparticle
gap or mass function. These quantities can be obtained by
solving numerically the Dyson-Schwinger equation for the
fermion propagator. The determination of the critical point,
along with the corrections introduced by the Fermi velocity
renormalization, will be discussed in the next section.

III. DYSON-SCHWINGER EQUATIONS

Starting from the action in Eq. (2.4), the fermion Dyson-
Schwinger (gap) equation follows with standard techniques:

S−1(p0, �p) = S−1
tl (p0, �p) + ie

∫
d3k

(2π )3
γ 0S(k0,�k)�0(k,p)

×DC(p0 − k0, �p − �k), (3.1)

where �0(k,p) is the fully dressed fermion-photon vertex
depending on the incoming and outgoing fermion momenta.
DC(q0,�q) is the dimensionally reduced, instantaneous
Coulomb propagator with frequency-dependent Lindhard
screening via the inclusion of the collective particle-hole
polarizability. In the random phase approximation (RPA),
with the one-loop expression for the polarization function
�(q0,�q), it is given by48

DC(q0,�q) = i

2|�q| + �(q0,�q)
with

(3.2)

�(q0,�q) = e2Nf

8ε

�q 2√
v2

F �q2 − q2
0

.

Note, however, that by definition this one-loop expression
for �(q0,�q) does not include radiative corrections to the
Fermi velocity due to the renormalization function A(p). As
we will demonstrate explicitly below, strong Fermi velocity
renormalization effects indeed tend to suppress the Lindhard
screening, whose effect on the bare Coulomb interaction is
hence overestimated by the one-loop polarizability �(q0,�q)
in Eq. (3.2). In the static limit q0 → 0, the fully instantaneous
RPA Coulomb propagator simply reduces to the bare one with
constant Lindhard screening

�(0,�q) = e2Nf

8ε

|�q|
vF

= 2g|�q| and DC(0,�q) = 1

1 + g

i

2|�q| ,
(3.3)

where g = αεNf π/4 and αε = e2/(4πvF ε).
We now proceed with Dirac projection and Wick rotation

to Euclidian space (k0 → iω). With the fully instantaneous
Coulomb interaction, both the Fermi velocity and mass
renormalization functions remain frequency independent, A ≡
A( �p) and � ≡ �( �p). One then furthermore has Z = 1 and,
hence, as a consequence of the Ward-Takahashi identity, also
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�0 = �0
tl. As long as the frequency dependence in the Lindhard

screening remains weak, one may therefore assume that, as
a good first approximation, wave-function renormalization,
vertex corrections, and the frequency dependencies in A and

� can still be neglected. In this approximation, setting p0 = 0
in the DSE (3.1), one obtains the following system of coupled
integral equations for the fermion dressing functions A( �p) and
�( �p) (Ref. 22):

A( �p) = 1 + αεvF

∫ ∞

−∞

dω

2π

∫
d2�k

(2π )2

�p �k
�p 2

A(�k)

ω2 + v2
F A2(�k)�k2 + �2(�k)

[−4π i DC(iω, �p − �k)], (3.4)

�( �p) = αεvF

∫ ∞

−∞

dω

2π

∫
d2�k

(2π )2

�(�k)

ω2 + v2
F A2(�k)�k2 + �2(�k)

[−4π i DC(iω, �p − �k)]. (3.5)

The temporal integration with the RPA Coulomb propagator in Eq. (3.2),

I ( �p,�k) =
∫ ∞

−∞

dω

2π

−4π i DC(iω, �p − �k)

ω2 + v2
F
�k2A(�k)2 + �(�k)2

, (3.6)

has already been performed in Ref. 22. It is given by [note the explicit inclusion of the bare Fermi velocity vf here, as compared
to Ref. 22 in which vF = 1 was used in both the fermion DSE (3.1) and the RPA Coulomb propagator (3.2)]

I ( �p,�k) = J (z,g)

| �p − �k|
√

v2
F
�k2A2 + �2

, with z =
√

�k2A2 + �2
/
v2

F

| �p − �k| , (3.7)

and J (z,g) as a piecewise-defined function

J (z,g) = (z2 − 1)[π − gc(z)] + zg2c(g)

z2 + g2 − 1
, with c(x) =

⎧⎪⎨
⎪⎩

2 arccosh(x)/
√

x2 − 1, x > 1

2 arccos(x)/
√

1 − x2, x < 1

2, x = 1.

(3.8)

With bare (� = 0) and fully instantaneous RPA [� = 2g|�q|,
cf., Eq. (3.3)] Coulomb interactions, one has

J (z,g) = π and J (z,g) = π

1 + g
, (3.9)

respectively. In both these cases, J is independent of the
fermion dressing functions A and �. We will also use these
two simple special cases in our analysis of the critical coupling
for comparison in the following.

A. Critical point analysis

For studying the dynamics at the critical point, an ap-
propriate mathematical tool is bifurcation theory.52 In this
framework, the nonlinear equations simplify such that the
critical coupling αc, where the nontrivial solution of the gap
equation bifurcates away from the trivial one, can be evaluated.
Explicitly, applying bifurcation theory amounts to expanding
Eqs. (3.4) and (3.5) to leading order �. This means using
� = 0 in (3.4), i.e., to solve for A in the symmetric phase,
and expanding the right-hand side of Eq. (3.5) to linear order
in �. In the Dirac-cone approximation, we furthermore have
rotational invariance, and we can hence write A( �p) = A(p)
and �( �p) = �(p) from now on with the notation p ≡ | �p| for
the magnitude of the spatial quasiparticle momentum

A(p) = 1 + αε

2π2

1

p

∫ �

0
dk k

∫ π

0
dθ

cos θ√
p2 + k2 − 2 p k cos θ

× J (z0,g), (3.10)

�(p) = αε

2π2

∫ �

0
dk

∫ π

0
dθ

1√
p2 + k2 − 2 p k cos θ

× �(k)

A(k)
J (z0,g). (3.11)

Here, J (z,g) is either given by Eq. (3.8) and now z0 =
A(k) k/| �p − �k| for � = 0, or simply with either of the two
constant values in (3.9). In the symmetric phase up to and,
at a continuous transition, including the critical point, the
integral equation (3.10) for the Fermi velocity renormalization
A can be solved independently. In the broken phase, this
solution for � = 0 will of course not be the thermodynamically
favored one. For the bifurcation analysis it can, however,
be inserted into Eq. (3.11), in order to evaluate the critical
coupling numerically, by a variant of the so-called power
method.53

We emphasize that we solve all angular integrals numeri-
cally, thus avoiding further angle approximations as used in
many previous studies. Moreover, it is also worth mentioning
that the linearized equations can be solved much faster than the
full nonlinear ones because the critical slowing down observed
for the latter ones as the critical coupling is approached
does not occur in the linearized problem. In order to obtain
sufficiently precise values for αc, it is crucial to use an
extremely low-momentum cutoff in the infrared. It has been
shown in Refs. 54 and 55 that the critical number of fermion
flavors in ordinary QED3, for example, is very sensitive to finite
volume effects and thus to the infrared cutoff of the theory.
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TABLE I. Critical couplings in various approximations for the
particle-hole polarizability � with and without Fermi velocity
renormalization A(p).

αc � = 0 �inst. �one-loop

A = 1 0.457(3) 1.63(2) 0.81(1)
A(p) 1.21(1) ∞ 7.65(5)

We observe a similar phenomenon in the graphene version
of QED3 considered here. In our numerical integrals, we
need infrared cutoffs of the order of p2 ∼ 10−10�2 to obtain
reliable values of αc, with controllable systematics. In the
� = 0 case, we could furthermore compare our numerical cal-
culation with an analytical result of α�=0

c = 8π2/�4(1/4) ≈
0.457 by Gusynin and collaborators56,57 which then yielded
very good agreement, with errors below the 1% level (see
following).

The resulting values of the critical couplings for chiral
symmetry breaking with Nf = 2 for monolayer graphene
in the various approximations are summarized in Table I:
the error bars reflect our numerical error estimated from
comparison with our results from solving the set of nonlinear
equations detailed in the following. Compared are the results
from the three different approximations for the particle-hole
polarization. For each of them we furthermore compare the
solutions with self-consistent A(p) and without Fermi velocity
renormalization, i.e., A = 1. The difference between the upper
and the lower rows in the table thus serves as a measure
of the importance of including the nontrivial Fermi velocity
renormalization function A(p). Clearly, the effects are huge.
Whereas for � = 0 the critical coupling increases by a factor
of about 2.5, there is no finite solution in the fully instantaneous
approximation at all when A(p) is dynamically included. This
can be verified analytically because the instantaneous and bare
Coulomb couplings α0 and αinst. from Eqs. (3.9) are simply
related by

αinst.(α0) = 2α0

2 − πα0
. (3.12)

Hence, αinst.(0.457) = 1.62, but αinst. diverges at α0 = 2/π ≈
0.64 and there is no positive value for αinst. above that, in
particular at α0 = 1.21 with Fermi velocity renormalization.
This is in agreement with our numerical analysis which fails
to find a bifurcation point in this case. With the full RPA
Coulomb interaction in (3.2) we obtain αc ≈ 0.81 for A = 1 as
compared to αc ≈ 0.92 obtained in Ref. 22 from an analogous
computation but with an additional angle approximation.
Again, this value dramatically increases to αc ≈ 7.65 when
the self-consistent Fermi velocity renormalization A(p) is
included. The general trends can be understood as follows:
static Lindhard screening increases the critical coupling too
much because it clearly overestimates the screening effects by
the particle-hole polarizability. These effects are somewhat re-
duced by including the frequency dependence in the Lindhard
screening with the full RPA polarization. The strong Fermi
velocity renormalization observed in all cases effectively
weakens the Coulomb interaction and thus increases the
critical coupling again. At the same time, however, one

would expect that large deviations of A(p) from A = 1 would
effectively reduce the particle-hole polarizability again in a
fully self-consistent solution of the fermion DSE together
with that for the particle-hole polarization function �, which
would clearly be an important effect beyond RPA. In such a
fully dynamic computation, one might expect two competing
effects: A very large Fermi velocity renormalization would on
one hand effectively switch off the Lindhard screening and
hence tend to restore the bare Coulomb interactions. This,
on the other hand, would in turn reduce the Fermi velocity
renormalization to some degree again, not entirely though
because it is still rather strong in our � = 0 computation.
Therefore, one might expect that the fully dynamical result
should be somewhere between αc ≈ 1.21 for � = 0 and
αc ≈ 7.65 with the largely overestimated Lindhard screening
in the RPA Coulomb interaction (3.2), when strong Fermi
velocity renormalization effects occur.

In all approximations, we do observe a significant increase
of A(p) in the vicinity of the corresponding critical αc such that
A(p) is significantly larger than one in the relevant momentum
regime (see following). If plugged into the particle-hole
polarization function, such large values of A would drastically
suppress the polarization effects in the low-momentum region.
As a result, the simple approximation � = 0 might even be
closer to the correct answer than the one-loop expression
in Eq. (3.2). The final answer will have to await a fully
dynamical and self-consistent simultaneous solution to both,
the fermion DSE and the particle-hole polarization function
(i.e., the Coulomb photon DSE).

The various results from Monte Carlo simulations within
lattice gauge theory mentioned in the Introduction are all
somewhat below our lower bound. Especially those by Drut
and Lähde who obtained αc = 1.08 ± 0.05 (Ref. 29) should
be comparable to our results because they essentially use a
discretized version of the same Dirac-cone approximation
as the effective description for the low-energy electronic
excitations of graphene, however, with full QED interactions.
Quite obviously, retardation effects might become impor-
tant with strong Fermi velocity renormalization.38 These
are beyond the instantaneous Coulomb interactions with
frequency-dependent but nonrelativistic screening used here.
For a more precise comparison between Dyson-Schwinger
and lattice results, we should first include the photon po-
larization dynamically and self-consistently, however. Finite
volume and finite mass effects could then be analyzed in
more detail also in the DSE approach in order to be used
for infinite volume and chiral extrapolations. (For a corre-
sponding comparison in “ordinary” QED3, see e.g. Refs. 54
and 55.)

B. Nonlinear equations

Having performed the bifurcation analysis which is appro-
priate precisely at the critical coupling, we now return to the
original system of coupled (nonlinear) integral equations for
the fermion propagator [Eqs. (3.4) and (3.5)]. To illustrate
the potential effects of a large-A function, here we focus
on the frequency-dependent RPA Coulomb interaction with the
one-loop photon polarization function of Eq. (3.2). Explicitly,
the equations then read as [with z now as given in (3.7), and
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g = αεNf π/4 as before]

A(p) = 1 + αε

2π2

1

p

∫ �

0
dk k

∫ π

0
dθ

cos θ√
p2 + k2 − 2 p k cos θ

× A(k)√
A2(k) + �2(k)

k2v2
F

J (z,g), (3.13)

�(p) = m + αε

2π2

∫ �

0
dk

∫ π

0
dθ

1√
p2 + k2 − 2 p k cos θ

× �(k)√
A2(k) + �2(k)

k2v2
F

J (z,g), (3.14)

where we have also included a small bare mass m via the
tree-level propagator in the gap equation which acts as an
external field for explicitly breaking the extended U (2Nf )
flavor symmetry of the low-energy theory down to U (Nf ) ×
U (Nf ) as discussed below.

In the nonlinear case, the critical coupling is obtained from
evaluating the numerically determined mass function at zero
momentum, in the chiral limit m = 0, which serves as an
order parameter for chiral symmetry breaking together with
an extrapolation towards the critical point using appropriate
fit functions. Our numerical results together with the fits are
shown in the left diagram of Fig. 1. Numerically, we seem to
find an exponential decrease of the order parameter close to
the critical coupling indicating Miransky scaling similar to the
case of ordinary QED3.43,58,59 Indeed, a corresponding fit of
the Miransky-type form

�(0)/� = a0 exp

⎛
⎝ a1√

1
αc

− 1
α

⎞
⎠ (3.15)

delivers excellent results with the parameters a0 = 6.4 × 10−4,
a1 = −0.138, and a critical coupling of αc = 7.68. However,

we also note that the fit form

�(0)/� = |α − αc|[
ln

(
a

α−αc

)]3 (3.16)

extracted from analytical results using an angular
approximation56 works equally well with the parameter a =
345 061 resulting in αc = 7.70. The two values for the critical
coupling obtained in this way are within the range αc ≈
7.65(5) obtained from the bifurcation analysis in the last
section.

To demonstrate the effects of the dynamical mass gener-
ation, we show in the right panel of Fig. 1 our numerical
results for the Fermi velocity renormalization function at
the couplings α = 6 and 7 as well as α = 7.8 and 9, below
and above the critical coupling αc. We notice that in the
symmetric phase the self-consistent numerical solution for
A(p) contains a logarithmic divergence at p2 → 0 as in the
GW approximation.47 The slope of this logarithmic increase
grows with α until the logarithmic infrared divergence gets
suppressed due to the dynamical generation of a mass gap
when the broken phase is reached such that A(p) approaches
a finite value for α > αc in the infrared. While a logarithmic
behavior with further increasing slope persists for a certain
range of intermediate momenta also in the broken phase above
αc, the saturation value in the infrared decreases with α from
there on, and the momentum scale for this saturation hence
increases. From an experimental point of view, the function A

plays a very important role, as the Fermi velocity enters the
mass function, and many other graphene observables. In fact,
recent measurements25 provide evidence that the spectrum
of suspended graphene is indeed approximately logarithmic
instead of linear near charge neutrality. This logarithmic in-
crease would eventually invalidate the instantaneous Coulomb
approximation for the electron interactions in graphene as
pointed out in Ref. 38 already. Phenomenologically, on the
other hand, the smallest momenta reached in experiments are
limited by the finite size of realistic graphene sheets. For
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FIG. 1. (Color online) Left: fermion mass function at zero momentum over the inverse coupling 1/α together with two fits for values of the
coupling close to the critical one (see text for details). Right: momentum dependence of the Fermi velocity dressing function, exemplified for the
couplings α = 6.0,7.0,7.8 and α = 9.0, below and above the corresponding critical coupling αc ≈ 7.65(5), respectively. Note the logarithmic
infrared divergence in the results for α = 6.0,7.0, whereas for α = 7.8,9.0 this infrared divergence is screened by the dynamically generated
mass. All results are for Nf = 2 here (see text for further details).
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FIG. 2. (Color online) Left: mass dependence of the order parameter for Nf = 2. Right: large-Nf dependence of the critical coupling.

those, one observes an increase of the Fermi velocity by a
factor (e.g., of the order of 3 in Ref. 25). With our present
results for the semimetal phase, it would typically take sheets
that are larger by several orders of magnitude to increase this
logarithmic Fermi velocity renormalization factor from 3 to
say 10. With the bare vF /c ≈ 1

300 this would still justify the
instantaneous approximation with Z = 1, as explained below
Eq. (3.3), reasonably well.

In order to study explicit symmetry-breaking effects,
we have also determined the zero-momentum limit of the
mass function for a range of bare fermion masses m. The
corresponding results are plotted as a family of functions over
the inverse coupling in the left panel of Fig. 2. The general
pattern is similar to the one seen in the lattice simulations.29

The critical scaling is quite different, however. While infinite
volume extrapolations of lattice results have provided evidence
of a second-order phase transition with associated critical
exponents, here we observe the typical Miransky scaling of
QED3 in the continuum approach as mentioned above and
discussed in more detail in Ref. 22. Consequently, the magnetic
scaling of the order parameter with the mass at the critical
coupling is different from that in Ref. 29. Whether the infinite
volume and chiral limit extrapolations are reliable in such a
case is not clear to us.

The explicit symmetry breaking by m �= 0 could be due
to a staggered chemical potential with opposite signs on
the two sublattices as induced by a sublattice-dependent
substrate, for example. It would then be a seed for site-centered
charge-density-wave formation and as such break parity.
There are other Dirac mass terms which lead to the same
general breaking pattern of the extended flavor symmetry
U (2Nf ) → U (Nf ) × U (Nf ), but rather correspond to bond-
ordered phases,15 however. The main difference is whether
the residual U (Nf ) × U (Nf ) mixes the two Dirac points or
not.23,60 This can not be distinguished on the level of the gap
equation because it depends on the particular choice of the
basis used for the reducible four-dimensional representation
of the γ matrices which we did not have to specify in the
derivation of Eq. (3.14). (Yet another realization of the same
symmetry-breaking pattern is possible when the sign of the
mass term is made spin dependent as it is actually done in

lattice simulations to avoid the sign problem.32 It then acts as
an external field for antiferromagnetic order. To describe this,
we would have to treat the Nf = 2 flavors separately here.)

Finally, let us shortly comment on the dependence of
the critical coupling on the number of flavors Nf . The
corresponding curve displayed in the right panel of Fig. 2
can be fitted with an expression of the form

f (Nf ) = 12.7 e

Nf

3

√
Nf c

Nf c−Nf − 14.4 N0.25
f (3.17)

from which we may read off a value for the critical number
of (pseudo)fermion species of about Nf c ∼ 1200 for which
the critical coupling diverges. While this particular number
is certainly not reliable for the reasons discussed above, the
general finding of the very existence of a finite value for Nf c

would confirm a conjecture of Son in Ref. 61. It remains to
be seen, however, whether this result survives a self-consistent
treatment of the particle-hole polarization function.

IV. SUMMARY AND OUTLOOK

In this study, we have determined critical couplings for
the chiral phase transition from the fermion Dyson-Schwinger
equation (DSE) with long-range Coulomb interactions in a
low-energy model for monolayer graphene at half-filling. As
compared to previous DSE studies of this model, we have
dynamically included a nontrivial Fermi velocity dressing
function in our self-consistent solutions for the fermion
propagator. We have thereby compared the effects of static as
well as fully frequency-dependent Lindhard screening with the
bare Coulomb interaction. In all three cases, the self-consistent
inclusion of the nontrivial Fermi velocity dressing function had
dramatic effects, indicating that a substantial renormalization
of the Fermi velocity should occur at strong coupling in
agreement with experimental evidence from cyclotron-mass
measurements in suspended graphene.25 At the same time,
such large Fermi velocity renormalizations also indicate that
RPA Coulomb interactions with one-loop polarization function
considerably overestimate the screening effects. Whether
the screening is nevertheless strong enough for suspended
graphene to remain in the semimetal phase remains to be
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seen from a fully dynamical inclusion of the particle-hole
polarization in a simultaneous solution of both the fermion
and the Coulomb photon DSEs in the future.

Including the running Fermi velocity renormalization func-
tion, here we obtained αc ≈ 1.22 for the critical coupling of the
semimetal-insulator transition without screening as compared
to αc ≈ 7.7 with the fully frequency-dependent Lindhard
screening in the RPA Coulomb interaction. We have argued
that a self-consistent treatment of the particle-hole polarization
should lead to a critical coupling between these two extremes
with an expected tendency towards values closer to the lower
bound. This leaves open the possibility that the critical cou-
pling is larger than the bare coupling α0 = 2.16 for suspended
graphene. Quite likely, however, additional screening from the
electron states in the σ bands of graphene might have to be
included in a more realistic calculation to achieve this.31

Although our study is indicative, a number of caveats
remain. First of all, we need to include the particle-hole
polarization effects dynamically and self-consistently to study
their effect on αc. When comparing with lattice results it will
also be important to take finite volume effects into account.

Finally, when comparing with experiment, other types of
interactions such as four-fermion couplings might also be
important and need to be included in the model. The first im-
portant steps in this direction have been discussed in Refs. 22
and 23.

Note added in proof. Recently, we have been made aware
by G. Z. Liu of their related study in Ref. 62.
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