PHYSICAL REVIEW B 88, 205425 (2013)

Helium-surface interaction potential of Sb(111) from scattering experiments
and close-coupling calculations
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Helium atom scattering (HAS) was used to study the antimony Sb(111) surface beyond the hard-wall model.
HAS angular distributions and drift spectra show a number of selective adsorption resonance features, which
correspond to five bound-state energies for He atoms trapped in the surface-averaged He-Sb(111) potential.
As their best representation, a 9-3 potential with a depth of 4.4 +0.1 meV was determined. Furthermore,
the charge density corrugation of the surface was analyzed using close-coupling calculations. By using a hybrid
potential, consisting of a corrugated Morse potential (short range) and a 9-3 potential (long range), a peak-to-peak
corrugation of 17% was obtained. The kinematic focusing effects that occurred were in good agreement with
surface phonon dispersion curves from already published density functional perturbation theory calculations.
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I. INTRODUCTION

The semimetal surfaces of antimony have recently attracted
great interest since antimony is one of the basic building
blocks for a number of compounds belonging to the class
of topological insulators.'> Moreover, Sb(111) nanofilms have
proven to be an ideal test bed for the experimental investigation
of topoelectronic phase transitions.> The film thickness and
bonding to the substrate can be used to tune the electronic
and spintronic properties of thin Sb films.*> Hence Sb(111)
films do offer attractive features for potential applications in
spintronics such as a tunable band gap and spin polarization.®

The electronic surface states of antimony have been studied
both experimentally and theoretically,””'* whereas for the
surface dynamics of Sb(111), only theoretical investigations
are available.!® Furthermore, the atom-surface interaction as
observed in scattering experiments has not been addressed,
with the exception of a study of the adsorption of water
on Sb(111).'* A detailed study of the He-Sb(111) atom-
surface interaction is particularly interesting not only from
a fundamental point of view but also as a necessary ingredient
for surface phonon measurements.

In order to understand the atom-surface interaction at
semimetal surfaces helium atom scattering (HAS) is ideally
suited. Experimental information about the detailed shape of
the physical adsorption is most easily gained by analyzing elas-
tic HAS intensities.'> While semimetal surfaces are normally
conducting’”-*!® and therefore possess free surface electrons, in
HAS experiments they are found to be strongly corrugated,'”-!®
unlike the low-index surfaces of ordinary metals, which are
perfectly flat. This may be caused by the concentration of
surface electrons and holes at the Fermi energy into compara-
tively narrow pockets.”>! Hence semimetals are particularly
interesting for HAS studies since corrugation is necessary
for the occurrence of inelastic bound-state resonances which
can enhance certain phonon events.'>? It was recently shown
that inelastic HAS is capable of detecting subsurface phonon
modes which are localized in layers beneath the surface in
the case of metal and semimetal surfaces.'*! The depth to
which these phonons are observable is determined by the range
of the electron-phonon (e-ph) interaction, and inelastic HAS
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intensities can be used to infer the corresponding e-ph coupling
strength.?!??

In a detailed analysis of the intensities on the Bi(111)
semimetal surface, a mechanism for the enhancement of
inelastic HAS intensities from subsurface optical modes was
singled out.”? This mechanism, which is called the surfing
condition,?* is specific to semimetal surfaces and gives rise
to a strong resonance enhancement of the scattered intensities
under certain kinematic conditions.?* It involves the selective
adsorption of the incident He atom into a surface-bound state
due to the atom-surface interaction potential. In the case of the
“surfing” situation the impinging He atom enters the bound
state inelastically by creating a phonon and the trapped atom
then travels at the same speed as the group velocity of the
phonon along the surface. This unusual form of an atomic
polaron gives rise to a strong coupling with otherwise weak
subsurface phonons.??

Semimetal surfaces also hold the possibility of detecting
electron-hole excitations via HAS due to the fact that electrons
on these surfaces are restricted to narrow pockets in the parallel
momentum space.'®?’ Furthermore, e-ph scattering processes
at the Fermi level are likely to cause Kohn anomalies in the
surface phonon dispersion,'®?%23 an effect which has been
observed with HAS for the topological insulator surfaces
Bi,Se; and Bi2T€3.26_28

In the present work the elastic diffraction peaks of He
scattered from Sb(111) are analyzed using the exact close-
coupling (CC) method.'> This method goes beyond the simple
hard-wall approximation and has been mainly applied to ionic
and metallic surfaces.”” In doing so a surface corrugation
function of the system He-Sb(111) is obtained. A series of
modulations of the elastic intensities due to the so-called
selective adsorption resonances (SARs) is used to determine
the bound-state energies of the system He-Sb(111). These
energies, usually extracted from drift spectra, allow a reliable
prediction of the elastic resonance conditions and are used
to fit an atom-surface interaction potential. Furthermore, an
enhancement of the inelastic background due to the kinematic
focusing (KF) effect’* has also been observed. The obtained
atom-surface interaction potential not only is a prerequisite
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for surface phonon measurements but also can be exploited to
enhance certain phonon events which would otherwise be too
weak.

II. THEORY

In this section the minimum theoretical background nec-
essary for the successive analysis of our measurements is
presented. Throughout this work, square wave vector quan-
tities are given in energy units, with 22/2m = 1, where m is
the mass of the incident particles (He atoms). Furthermore,
the standard notation in this field is used; that is, vectors
parallel to the surface are written as boldface capital letters,
and three-dimensional vectors as boldface lowercase letters.

A. The atom-surface interaction potential

In the presented experiments He atoms with a well-defined
kinetic energy impinge on the sample surface. Forces originat-
ing from the interaction with each individual surface particle
act on the approaching He atoms. The London dispersion
(van der Waals) force, appearing because of instantaneously
induced dipoles, accelerates the He atom towards the surface.
The interaction between electrons of the surface and the shell
of the He atom acts as a short-range counterpart, the Pauli
repulsion. In contrast to electron or neutron scattering, He
atoms are repelled already by the electron density a few
angstroms above the topmost atomic layer.

1. 9-3 potential

Considering the contribution of these forces, the interaction
between a He atom and a surface particle can be described
by a 12-6 (Lennard-Jones) potential. Since one He atom is
interacting with all atoms of the surface, these Lennard-Jones
potentials must be summed. In the continuum limit the sums
are replaced with integrals along the three space coordinates.
The resulting integration over the whole semiinfinite lattice
provides a 9-3 atom-surface potential given by>3

0] o

with z the normal distance from the surface, D the well depth
of the attractive part, and o the distance at which the potential
is 0.

Using the distorted-wave Born approximation”” the eigen-
values E, (energy of the nth bound state) for this potential are
given by
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As recently shown by Kraus et al.,>® this description of
the bound states is suitable for semimetal surfaces, such as
Bi(111). Therefore, it is also applied for the analysis of bound
states at the Sb(111) surface from HAS measurements of
SARs.
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2. Corrugated Morse potential (CMP)
For the analysis of the electronic corrugation, represented
by the corrugation function £(R), the CMP3! is very often used
in the CC framework. It can be written as

1
VR,z)=D |:_e—2x(z—§(R)) _ 2e‘XZ] ’ 3

Vo

withr = (R,z). x is the stiffness parameter, and v the surface
average over ¢>**® [Eq. (6)] for the reciprocal lattice vector
G = 0]. Since £(R) is periodic, Eq. (3) can be expanded in a
Fourier series with

VR2) = V@) + Y Va()e'“, “)
G0
where Vj(z) is the bare potential and the Fourier coefficients

are denoted V(. They can be expressed analytically through
the corrugation Fourier coefficients vg:

Vo = D28 o2z, (5)
Ug
G # 0 components of Eq. (5) are also called the coupling terms
of the CMP. The coefficients vg are given by

1 ‘
UG = = / e GR2AEMgR, (6)
X s

with X the area of the surface unit cell. The bare potential of
the interaction can be written as

Vo(z) = D[e X — 2774, (7

The bound states of the bare potential are described by an
analytical expression,?

1
E,,:-D+hw(n+%)[1—(n+—2)] ®)

2y

. .. . 2
with n a positive integer, y = %—g, and w = 4/ ZXTD.

3. Hybrid Morse potential (HMP)

To include a more sensible, long-range interaction of the
potential, a hybrid form was introduced,’

{D[e‘z’“’ —2e7 %), z< zp,
0 =

c )
~ L= Zp

where both constants C3 and z, are chosen in a way that
guarantees the continuity of the overall potential and its
derivative at the inflection point z,,. While the bound states of
the Morse potential can be described analytically, the ones for
the HMP must be calculated numerically. Since the short-range
part of the HMP is equal to the CMP, for CC calculations
the same coupling terms, Eq. (5), can be used. The long-
range part takes into account the asymptotic behavior of the
more realistic 9-3 potential, Eq. (1).

B. Selective adsorption resonances

SARs are observed when an impinging He atom enters one
of the bound states of the atom-surface interaction potential.
After a short lifetime, typically 107! s, the atom leaves the
surface.** Due to the phase shift of its wave function,
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the interference with other scattered atoms gives rise to a
modulation of the scattered intensity. Several types of resonant
scattering processes exist;>*>® the most important for the
present work are described below.

In the first type, a particle with an initial state (E;, ©;)
is elastically scattered into a bound state of energy —|E,|.
Thereafter, it leaves the surface potential elastically into a
final state. Due to the phase shift obtained during this process,
these atoms interfere with directly elastically scattered atoms
and result in intensity modulations of the elastic peaks.?

In the second type, an incident He atom, which has
elastically entered a bound state, is scattered inelastically
into a final state. Due to the obtained phase shift relative
to directly inelastically scattered particles, interference and
hence features between the elastic peaks of the angular scans
can also be observed. For this resonance type, interaction with
a phonon is necessary. This scattering is also known as the
phonon-assisted SAR process.34

By using the conservation laws for energy and parallel
momentum, the condition for an elastic SAR can be obtained
from36:37

k?:(k, sin@,-—}—G”)z—i-Gi— |En|, (10)

where k; denotes the incident wave vector and ©®; is the
incident angle with respect to the surface normal. G and G |
are the parallel and perpendicular components of the reciprocal
lattice vector G of the surface with respect to the plane of
incidence. Resonances that have a nonzero G, component
are referred to as out of plane; resonances with G = 0, as
in plane. To fulfill condition (10) in the experiment, either
®; or k; can be varied, while the other is held constant. A
geometrical representation of the resonance condition together
with the reciprocal lattice of the first Sb(111) layer is depicted
in Fig. 1.

C. Close-coupling calculations

In the CC formalism, helium atoms are considered to
be structureless and nonpenetrating, while the surface is
considered to be statically corrugated and periodic. In a purely
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FIG. 1. (Color online) A geometrical representation of the res-
onance condition, Eq. (10), is shown in reciprocal space together
with the first Brillouin zone for the first-layer atoms of Sb(111). The
sum of the vectors K; = k; sin ®; and G, which leads to a resonant
transition, lies on a circle with the radius r2; = k? + | E,|.
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elastic scattering scheme, an impinging particle with wave
vector k; is described by the time-independent Schrodinger
equation,

[-V2+ V(r) — K ]¥(r) = 0. (1)

While the potential is given by Eq. (4), the Fourier expanded
wave function reads

‘-IJ(I') — Z "IIG(Z) . ei(KmLG)'R. (12)
G

If both expressions are substituted into Eq. (11), the following
set of coupled equations for the diffracted waves is obtained:

D Ve a@Ve(2), (13)

d2
|: + k. Vo(z)] Yg(z) =
G'#£G

d2

with K¢ ;, the z component of the particle wave vector after
scattering, given by

kg, =k’ — (K + G~ (14)

Each of Egs. (13) includes a characteristic effective potential
Vo + (K; + G)?, where the second term is the asymptotic
energy, which is dependent on G and the incident scattering
conditions. All of these effective potentials have a continuous
as well as a discrete spectrum. The wave functions associated
with the continuum are usually expressed as |K; + G,sz’z).
|IK; + G,n) denotes discrete wave functions, with n the
number for the nth bound state of the He-surface interaction
potential. In this study the term channel is used for each
effective potential and is usually denoted by the corresponding
G[=(h,k)] vector: the (h,k) channel. Since in a fixed-angle
apparatus the angle of incidence, and thus also K;, must be
changed to measure a full angular spectrum, the asymptotic
energies of the respective channels move. This phenomenon is
usually called moving thresholds.">*' Two elementary kinds
of scattering channels can be distinguished. For k; . > 0, the
channels are called open; they are energetically access1ble
In the case of ké < 0, the channels are called closed; they
are energetically forbldden channels. Though they do not
produce observable features directly, a number of closed
diffraction channels must be included in the simulations to
achieve numerical convergence for the outcome. The higher
the expected surface corrugation, the stronger are the Fourier
components of the interaction potential V_q (z) and the more
channels must be included in the calculations.'> Nevertheless,
the number of channels N has to be restricted since the
computational time scales with N3.4?

III. EXPERIMENTAL DETAILS

A. Sb(111) surface structure

Bulk antimony exhibits a rhombohedral crystal structure
(space group R3m). An important feature of this structure
is the puckered bilayers of atoms perpendicular to the (111)
direction. In contrast to the strong covalent bonding within
these bilayers, the interbilayer bonds are of van der Waals
character. Thus, the (111) surface of Sb is its natural cleavage
plane,*** which results in easily available Sb(111) crystal
samples. The topmost layer has a hexagonal structure with
an atomic spacing of a = (4.3084 £ 0.0002) A.*> Including
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second-layer atoms, the sixfold symmetry of the first layer
is broken to a threefold symmetry. Nevertheless, in the HAS
measurements in this study, the energy of the incident helium
atoms was low enough to neglect influences of other-than-first-
layer atoms. !’

Thorough investigations of the electronic properties of
Sb(111) revealed metallic surface states of the otherwise
semimetallic properties of the bulk.”® At the T point a
hexagonal-like cut through the Fermi surface was observed.
Anisotropies of the Fermi surfaces due to an anisotropy of
the spin-orbit interaction led to a threefold symmetry of
the intensity of six lobes surrounding this central pocket.
Furthermore, at the M points oval-shaped electron pockets
were detected.”® Although a flat surface electron density was
expected due to the Fermi surface electronic states found in
all directions, with HAS measurements a surprisingly high
peak-to-peak corrugation of the electron density was recently
observed.!”

B. Experimental setup

The measurements presented in this work were conducted
on a HAS apparatus (H.AN.S.) with a fixed source-target-
detector geometry Ogsp = 91.5°. By varying the temperature
of the nozzle which was used for the creation of the He beam,
the energy of the He atoms could be tuned between 11 and
35 meV. More details about the apparatus and its dimensions
are given in a previous paper.*® The Sb(111) single crystal used
in the study was a disk with a diameter of approximately 15 mm
which was cleaned by Ar™ sputtering and annealing to 475 K
prior to the measurements. The cleanliness and surface order
were checked by Auger electron spectroscopy and low-energy
electron diffraction, respectively.!” All HAS measurements
were performed with the crystal at room temperature (300 K).
For angular scans the incident angle ®; of the monoenergetic
He beam with respect to the surface normal was altered
by rotating the sample. The angular resolution in these
measurements was 0.1°. Drift spectrum measurements were
obtained by varying the incident energy of the He atoms while
the incident angle was held constant.

IV. RESULTS
A. He-Sb(111) potential

Angular HAS scans were performed and the observed
resonance features were used to extract bound-state energies.
Figure 2(a) displays the data resulting from a measurement
along the TK direction. The increased intensity (solid line)
of the measured He signal is plotted versus the incident angle
of the He beam. The dashed curves depict the resonance con-
ditions given by our experimental geometry, the experimental
parameter k;, and for a given G vector. If this line intersects
the energy of a bound state, the condition, Eq. (10), for SARs
is fulfilled and maxima or minima may be observable in the
measured signal. These features between the angular positions
of the Bragg peaks originate from phonon-assisted SAR.

To determine the He-Sb(111) interaction potential, in the
first step the bound-state energies have to be estimated. For
that purpose, these energies (solid horizontal lines in Fig. 2)
were varied until the angular positions of their intersections
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FIG. 2. (Color online) (a) Angular distribution of the HAS inten-
sity (left-hand ordinate scale) from Sb(111) along the T'K surface
direction at a beam energy of 15 meV. In addition to the specular
peak (45.75°) and the two closest Bragg peaks, further features
corresponding to selective adsorption processes are identifiable. The
five bound-state energies that were found with our measurements
are depicted as horizontal lines (right-hand ordinate scale). The
two dashed lines correspond to the resonance conditions for two
G vectors [(1,0), (1,1)] in our experimental geometry and are labeled
accordingly. Two additional peaks are attributed to kinematic focusing
(KF) effects, which are discussed in Sec. IV D. (b) Same as (a), for
an angular scan along the T M direction with resonance conditions
for three G vectors [(1,0), (0,1), (1,1)].

with the resonance conditions were in good agreement with the
features in the measured signal. In the measurement along T' K
the distinct peak at ®; = 36° and the modulations around ®; =
30° were assigned to the in-plane resonance with the G vector
(1,1) [(1,1) channel], whereas the high peak at ®; = 50.5°
and the small enhancements around ®; = 59° were associated
with the out-of-plane (1,0) channel. This procedure resulted
in five bound-state energies, E;—o. 4, which are listed in
Table I.

The angular scan along T'M is shown in Fig. 2(b). Also
in this direction several features from SAR effects appear,
which were included in the fitting procedure described above.
The peaks at ®; = 30° and ®; = 32° were associated with
the (1,1) channel. The shoulders of the specular (0,0) peak
arise from resonances with the (1,0) channel; the shoulders
of the (1,0) peak, from the (0,1) channel. Around ®; = 55°
narrow oscillations appear, which may be produced by either
the (1,0) or the (0,1) channel.

It is remarkable that features originating from resonance
effects with E( seem to result in quite small, broad intensity
enhancements in the angular scans, in contrast to features with
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TABLE 1. Bound-state energies experimentally determined from
HAS measurements and analytically calculated for the fitted 9-3 He-
Sb(111) interaction potential with D = (4.41 £ 0.09) meV and 0 =
(6.3£0.3) A.

Energy (meV)

Bound 9-3 potential,
state Experiment 2)

Ey —3.74+0.2 —-3.74+0.1
E, —2.6+0.2 —2.6+0.2
E, —1.86+0.02 —1.84+0.2
E; —1.17 £ 0.02 —1.240.1
E, —0.70 £ 0.02 —-0.8+0.1

bound-state energies E;| to E4, which yield narrower shapes
with higher intensities.

With the determined energies of the bound states, the
laterally averaged He-Sb(111) interaction potential was de-
rived. Therewith, the model potential was optimized and its
analytically calculated eigenvalue spectrum was compared
to the measured values with a least-squares fit. As it is a
good representation of the surface, the 9-3 potential, Eq. (1),
was used, whose eigenvalues are given by Eq. (2). The best
fit resulted in a potential with D = (4.41 = 0.09) meV and
o = (6.3 £0.3) A. This well depth is in the expected range of
4-10 meV? and is in good agreement with values estimated in
previous studies by our group.'”#’ It must be mentioned that
the positions of the bound-state features are not given explicitly
through this zeroth-order approximation. Nevertheless, the
influence of other channels is much smaller and the bare
9-3 potential and its eigenvalues have proven to be good
estimations.

In Fig. 3 the obtained potential (solid black line) and its
corresponding eigenvalues [dashed (blue) lines] are shown,

o

Potential energy V (meV)

_5_ .................... ......... I_ _I AnaIyticaI bound state energies 4
: : - Measured bound state energies

1

1 1
0.6 0.8 1.0 1.2 1.4 1.6
Normal distance z (nm)

FIG. 3. (Color online) Best-fit 9-3 potential, (1), for the
He-Sb(111) atom-surface interaction with D =4.41 meV and
o = 0.63 nm. Lighter solid (red) lines correspond to the experimen-
tally determined bound-state energies; dashed (blue) lines indicate the
analytical bound-state values calculated with Eq. (2). Uncertainties
are shown as vertical bars at the intersections with the potential.
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and they agree very well with the measured values [lighter solid
(red) lines]. Both experimentally and theoretically determined
eigenvalues are listed in Table I, which also points out the
excellent agreement. Although only 5 bound-state energies
were observed in HAS measurements, the obtained potential
has an eigenvalue spectrum of 14 bound states. The energies
of the additional states E;_s_j3 are in the region between
—0.48 and —0.001 meV. Because of these closely spaced
levels, a distinct assignment of features in the angular HAS
scans (Fig. 2) would require a much higher resolution of
the measured data. Nevertheless, in Fig. 2(b) the structures
at ®; = 41° and ®; = 53° may arise from resonances with the
bound-state energies Es to E3.

Compared to the well depth of 8.3 meV for the He-Bi(111)
interaction potential,>® the value found for He-Sb(111) is
much smaller. This is most likely caused by the higher
polarizability of Bi, which causes stronger London dispersion
(van der Waals) forces. In contrast to the SAR features in HAS
measurements on Bi(111), the observed peaks for He-Sb(111)
have both a higher absolute intensity and a much better
signal-to-noise ratio. Although the measurement times were
longer with HAS from Sb(111), the high intensities were far
beyond expectation and should be the subject of an inelastic
CC analysis.

B. Close-coupling calculations

In a previous study, the electronic surface corrugation of
Sb(111) was determined from HAS by using the approximative
GR method.!” This approach is based on the hard corrugated
wall (HCW) model, which neglects the actual shape and,
especially, the attractive part of the atom-surface potential. For
a thorough characterization of the Sb(111) surface and the He-
Sb(111) interaction potential, an analysis beyond this method
is required. Therefore, exact CC calculations, which are based
on the determined interaction potential, were performed.

1. Kinematic analysis

For numerical convergence in terms of channels, a kine-
matic analysis must be carried out first. The perpendicular
component of the final energy was calculated for different
channels. This energy E . is a function of the incident energy
E;, the azimuthal angle, and the incident angle ®;. The latter is
depicted in Fig. 4 for both high-symmetry directions and E; =
15.3 meV. If E;, is positive, the corresponding channel is
open; otherwise, it is closed. It is obvious that the specular (0,0)
channel (solid black line) is always open. The figure also shows
channels with a (1,0) radius (green lines), a (1,1) radius (blue
lines) and a (2,0) radius (red lines). To preserve the clarity of
the illustration, further channels are not shown. For the sixfold
geometry of the topmost Sb(111) layer, there are always six
channels at a certain radius. As shown in Fig. 1, they are partly
degenerated. Further degeneracies appear due to crossing
of different channels. Both degeneracies are broken by the
coupling coefficients of our CC calculations. Furthermore, the
zero-order positions of SAR are given with the interceptions of
the channels with the bound-state energies (dashed horizontal
lines). The vertical lines indicate the positions of the Bragg
peaks for the fixed-angle geometry of our apparatus. This
particular geometry causes moving thresholds (see Sec. 11 C);
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FIG. 4. (Color online) (a) Perpendicular kinetic energy E as a
function of the incident angle ®; with the Sb(111) crystal oriented
in the T K direction and an incident energy E; = 15.3 meV for He
atoms. The black curve indicates the specular (0,0) channel. Green,
blue, and red lines depict channels with (1,0), (1,1), and (2,0) radii,
respectively. The Bragg peak positions for the experimental setup
used are represented by the vertical lines. (b) Same as (a), for the T M
direction.

i.e., a certain channel can cross the positions of the Bragg
peaks at different energies. Usually in the CC calculations all
open channels as well as closed channels with an energy close
to 0 have to be included. However, for numerical convergence
often more channels are taken into account, although at the
cost of longer computational times.

2. Potentials

For further calculations, the potential V) and the couplings
Vi ¢ have to be specified in the coupled equations, (13). They
should represent the atom-surface interaction as precisely as
possible while keeping the set of equations solvable. Usually
a CMP, (3), is used for CC calculations, because the coupling
terms, (5), have been derived analytically for this potential
type. Since the long-range part of the HMP, (9), is similar
to the more realistic 9-3 potential, the analysis of the HAS
measurement was done with both the CMP and the HMP. For
both types the same coupling terms, which are given by Eq. (5),
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TABLE II. Fitted potential parameters (well depth D, stiffness
parameter yx, and inflection point z,) for the Morse as well as the
hybrid (Morse/9-3) He-Sb(111) interaction potential.

Type D (meV) x (A zp (A)
CMP 4.196 0.380 =
HMP 4252 0.395 3.0

were used. The parameters of these potentials were obtained
in the same way as for the 9-3 potential (see Sec. IV A) and
are listed in Table II. The corresponding bound-state energies
are listed in Table III. As an estimation for the uncertainty, the
parameter og given in Table III is defined as

s)

with N the number of bound states included. For both
potentials the calculated energies of the fitted potentials are in
very good agreement with the experimentally obtained values.
However, the values for E3 and E4 are better represented by the
HMP than by the CMP due to the superior asymptotic behavior.

3. Electronic surface corrugation

After these initial considerations, CC calculations were per-
formed to obtain the effective electronic surface corrugation.
The corrugation function £(R) that we used for our model
potential, (3), is given by

= (20 )

2T y 2w 2y
*C"S[?(”%)D”O'C"S[?'ﬁ}'
(16)

It takes into account the sixfold symmetry of the topmost layer
of the surface, which is the only important layer when consid-
ering the energies of the He atoms used in our experiments.'” x
and y are rectangular coordinates and & denotes the amplitude
of the corrugation to be optimized. Therewith, the amplitudes
of the outgoing waves were calculated by solving the CC
equations using a Numerov algorithm with a Fox-Goodwin
integrator. The square moduli of these resulting amplitudes

TABLE III. Bound-state energies experimentally determined
from HAS measurements and calculated analytically for the CMP
and numerically for the HMP.

Energy (meV)

Bound CMP,

state Experiment Eq. (8) HMP
Ey —3.7 —3.7 —3.7
E, —2.6 =27 =27
E, —1.86 —1.82 —1.82
E; —1.17 —1.13 —1.17
E, —0.70 —0.60 —0.72
oE 0.03 0.02
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TABLE IV. Results of CC calculations for the CMP and HMP
at different incident energies E;. Peak-to-peak values are given for
the obtained corrugation function, Eq. (16), as well as the effective
corrugation function, (19), relative to the lattice constant a.

Type  E;(meV) &, () R(%) &p/a (%) &g, /a (%)
CMP 153 0.59 6.1 13.7 9.5
CMP 21.9 0.63 7.2 14.6 9.8
HMP 153 0.76 4.5 17.7 124
HMP 21.9 0.74 3.8 17.1 115

are proportional to the diffraction intensities (probabilities)

18115 The geometry of our sample determines the Fourier

coefficients vg—pa++ip+ Of the coupling terms, (5), to be*®
V3atl &

Upk = (7 — =

2 T2

i=—

Li(@) i p ()] () + Li—p (@) iy x ()],

a7

with /; (@) the modified Bessel functions and o = 2 x &.

To account for the influence of surface vibrations at non
zero surface temperatures on the intensity of the diffraction
peaks, the Debye-Waller (DW) factor was included in our CC
results. Its application in the analysis of HAS results has been
discussed elsewhere.!” The Debye temperature used, 155 K,
was measured with HAS recently.*’

To find the best fit between measured (P ") and calculated
diffraction probabilities, a measure of deviation R,

1 2
R= N\/; (PGP — 1), (18)

was calculated, where N is the number of experimentally ob-
served diffraction peaks.?® This approach was used for both in-
cident energies E;, resulting in the best-fit coefficients & listed
in Table IV. The peak-to-peak corrugation &,, was calculated
for a comparison with the values obtained with the GR method
in a previous analysis'” and is also given as a percentage of the
lattice constant. Especially in the case of the HMP, where
the diffraction possibilities found are reproduced very well,
the corrugation determined within this study is significantly
higher. Since the shape of the obtained potential was included
in the calculations, in particular, the results for the HMP are
more accurate than the results obtained with the GR method,
which uses an HCW model. Besides the fact that the CC calcu-
lations are quantum mechanically correct if convergent, they
are preferable to HCW models when dealing with such high
peak-to-peak corrugations as observed in this investigation.
In Fig. 5(a) the results of angular HAS scans are shown
along the surface directions TM and T'K at an incident beam
energy of E; = 15.3 meV (black line). For comparison with
CC results, the areas of the experimentally measured Bragg
peaks were determined (black crosses). The peak area was
used instead of the intensity to account for effects such as
the different widths of the Bragg peaks due to the nonzero
energy width as well as the angular spread of the incident
He beam. While the (red) squares in Fig. 5 indicate the
best-fitting CC results that were obtained with the CMP, the
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FIG. 5. (Color online) (a) Angular distributions of HAS intensity
along the TM and TK surface directions at a beam energy of
15.3 meV. The peak areas (black crosses) determined from mea-
surements (black line) are in good agreement with the best-fit results
from CC calculations including the HMP [(green) circles]. Best-fit
diffraction probabilities calculated with the CMP [(red) squares]
show a larger deviation from the measured values. Especially when
modeling the diffraction in T K, the HMP is superior to the CMP.
(b) Same as (a), with abeam energy of 21.9 meV. Again, the CC results
for the HMP are, in contrast to the CMP, in very good agreement with
the measured values.
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resulting probabilities of CC calculations with the HMP are
represented by (green) circles. Figure 5(b) depicts results
obtained experimentally and theoretically at E; = 21.9 meV.
As shown in the figures and the R values in Table IV, the best fit
was obtained with the HMP in CC calculations. Although there
are deviations between theoretical and experimental findings,
the corrugation found gives a good prediction of the measured
intensities and their agreement is much better than for the
CMP. Particularly, the calculations for the CMP failed to
reproduce the diffraction probabilities along TK as well as
the second-order probabilities along T M. When the fit was
adjusted to get a better agreement at these positions, the fit
for the first-order diffraction peaks in T M got much worse.
Hence, these values were taken for the best-fit CMP CC results.
The lower intensities obtained from the measurements may be
caused by the experimental setup: The measured intensities
decrease with increasing angle between the specular peak
and the position of measurement, which can be seen in the
background signal in Fig. 2. The theoretical results in Fig. 5(a)
show a remarkable asymmetry for both first- and second-order
diffraction probabilities. While this is clearly noticeable in
calculations with E; = 15.3 meV, the results for a higher
incident energy [see Fig. 5(b)] are almost symmetric. Likely,
this is caused by the relative arrangement of the diffraction
channels at a particular position of an elastic diffraction peak
(see Fig. 4). No clear indication of such an arrangement and
hence no final explanation were found, but it should be noted
that small deviations between real and determined bound-state
energies may have a major influence on the occurrence of
such conditions during CC calculations. In order to achieve
a precision of two significant digits in the results of the CC
calculations, a total number of 75 channels were included.

At the position of the classical turning points of He
atoms, V(R,z) = E; cos? ©; holds, which defines implicitly
[z = &g, (R)] the effective corrugation function &g, (R).* Due
to the fixed-angle geometry of the apparatus, measurements
at different incident angles ®; are indispensable. However,
for the following determination of the effective corrugation,
perpendicular incidence ®; = 0° was assumed, which yields

1 D D2 D VG
R)y=—In| —— — +—11 B HiGR
€k, (R) X E E,-2+Ei +(§Ovoe

19)

Note that £, depends on the incident energy E; of the He atoms
and on the well depth of the laterally averaged atom-surface
interaction potential D. &g, is used to obtain equipotential
surfaces and is usually presented as a result of CC calculations.
The obtained results are listed in Table IV. Furthermore, &g,
acts as an effective illustration of the shape of the electronic
corrugation, hence it is depicted in Fig. 6.

C. Resonance effects in the specular intensity

When the intensity of the specular peak is measured as a
function of the incident momentum (drift spectrum), several
features of different origins appear. First, the intensity of the
incident He beam depends on the nozzle temperature Ty via
1/+/Ty. Second, due to interference effects of waves scattered
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FIG. 6. (Color online) Plot of the effective corrugation for the
Sb(111) surface as obtained by HAS measurements and CC calcula-
tions with the HMP for perpendicular incidence ®; = 0°. The upper
part shows the result for an incident energy E; = 15.3 meV, whereas
the lower part shows the effective corrugation for E; = 21.9 meV.
In the latter case He atoms experience turning points closer to the
surface.

from different terraces, an oscillation of the measured signal is
detectable.?® Using the positions as well as the intensities of the
major peaks and dips, the terrace height and distribution on the
Sb(111) surface were estimated in a previous study.'” Besides
these main features, finer peaks and dips arise because of
SAR conditions that are moving “through” the angular position
of the measurement. In principle, this type of experiment is
possible with an arbitrary incident angle. However, the position
of the specular peak was chosen to obtain the best signal-to-
noise ratio.

In Fig. 7(a) the measured specular intensity (dashed black
line) is shown as a function of the energy of the incident
helium beam. The nozzle temperature was varied between 53
and 150 K to achieve energies of the He atoms between 11
and 32 meV. Elastic CC calculations were used to explain
the features observed in this measurement. The necessary
corrugations for these calculations were obtained with a
linear inter- and extrapolation of the best-fitting corrugation
parameters (HMP). The obtained result [dashed black line
in Fig. 7(b)] was convoluted with a Gaussian peak to take
into account the energy broadening of the incident He
beam [solid (red) line]. In addition, the nozzle temperature
dependency of the He beam intensity and the contribution
from the different terraces!” were included and the DW
attenuation was taken into account by using a surface Debye
temperature of 155 K, which was determined in a previous
study.’

In Fig. 7(a) the theoretically predicted signal is shown
as the solid (green) line. It is in good agreement with the
experimental data, although there is a shift of the peak near
E; = 12 meV. Most of the features found in the measurement
could be assigned to peaks in the theoretically predicted signal,
which proves the quality of the model used (the electronic
surface corrugation found).

205425-8



HELIUM-SURFACE INTERACTION POTENTIAL OF ...

(@)
—~1.0¢ e Calculated
g AN - - - Experimental
; 0.8F ! ‘-‘
2z
Zoep 1O\
= y .
z ' By
= 04f \ QRN
2 ‘.~"’~"'--' ..“.. P
- e --."’ hE .
< o2 S
(b)
Z10r --- CC, HMP
S qlt ' — CC, HMP, AE
; 0.8}F H :
% 06 E
Z o4 :
2] jod
< o2of
= 02

10 12 14 16 18 20 2 24 26 28 30
Incident energy Ej (meV)

FIG. 7. (Color online) (a) Drift spectrum of the specular (0,0)
peak with the sample oriented in the T M direction. The measured
intensity (dashed black line) is plotted versus the incident energy E; of
the He beam. The simulated intensity [solid (green) line] is in good
agreement with the experiment. (b) Results from CC calculations
(dashed black line) were convoluted with a Gaussian peak to account
for the energy spread AE of the He beam. The signal obtained
[solid (red) line] was used as the SAR contribution for the calculated
intensity in (a).

D. Kinematic focusing

The angular scan along I'K [Fig. 2(a)] shows two addi-
tional features, at ®; = 26.5° and ®; = 42.0°, which can be
explained by the occurrence of KFE>%3! At an angular position,
where the scan curve of the HAS experiment is tangent to
the surface phonon dispersion curve, an enhancement of the
detected He intensity is observable. For the experimental setup
used, a certain scan curve is given by!*°

AE sin ©; AK\?
o 7 (=2 -, (20)

E; sin?(@gp — ©;) K;

(a) (b)
= 3
% 4550
é =
>
o0
g
s
= 27.09
2 26.5°
st 26.0°F
A -

0

T K T K

FIG. 8. (Color online) (a) Scan curves (solid blue lines) proving
the KF origin of the additional peak at ®; = 42° in Fig. 2(a). Gray
lines show the dispersion curves for a 24-layer slab of Sb(111)
calculated with DFPT as published by Campi et al.'* Surface-
localized modes and resonances for longitudinal polarization are
indicated by shaded regions. For an incident angle of about 42.5°,
the scan curve for phonon creation is tangent to the surface mode
with an energy of between 7 and 8 meV. (b) Same as (a), with scan
curves for incident angles of about ®; = 26.5°, which are tangent to
the same surface phonon mode.
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where AFE is the gained (lost) energy due to phonon
annihilation (creation), and AK the corresponding wave
vector of the phonon. Although the surface phonon bands
have not been measured to date, Campi et al.'® used density
functional perturbation theory (DFPT) to model the surface
dynamics of Sb(111). Figure 8 shows the results for a slab
with 24 layers as a longitudinally polarized mode along
the TK direction. Furthermore, selected scan curves for
our measuring geometry at incident angles around the KF
positions are plotted as solid blue lines (phonon creation). It
is clearly shown that the scan curves in the vicinity of these
angles are tangent to the surface phonon modes, which is a
prerequisite for KF appearance. The peaks found prove that
KF is a reliable tool for investigation of the exact position of
theoretically predicted surface phonon modes.

V. CONCLUSIONS

The He-Sb(111) interaction potential was determined by
a thorough analysis of elastic HAS measurements. Clearly
observable SAR features between the positions of the Bragg
peaks were used to estimate five bound-state energies in the
attractive well (see Table I). They were best fit with the eigen-
values of a 9-3 interaction potential with a well depth of 4.4 &
0.1 meV. Compared to HAS on Bi(111),>* the He-Sb(111)
potential is shallower, which is the result of the lower polariz-
ability of Sb. Furthermore, the exact CC method was applied
to determine the electronic surface corrugation. Therewith,
the bound-state energies were used to model potentials (CMP,
HMP) suitable for CC calculations. The CC results for the
CMP showed deviations from the measured intensities, most
likely due to the weaker long-range part of the CMP compared
to the HMP. CC results for the HMP are in good agreement
with the experimental data. For the best-fitting model, HMP, a
peak-to-peak corrugation of approximately 17% was obtained,
which is higher than the value obtained with the less accurate
HCW models.!” The effective corrugation was found to have
a peak-to-peak value of approximately 12%. Furthermore, CC
calculations were used to model the intensity modulation of
the specular peak as a function of the incident beam energy.
The theoretical findings are in very good agreement with the
measurements, which is further proof of the good quality of
the He-Sb(111) interaction potential obtained. Two additional
peaks found in the elastic measurements were attributed to
KF effects, which were used as a coarse consistency check for
the DFPT calculations of the Sb(111) surface phonon modes.?
The He-Sb(111) interaction potential and the electronic surface
corrugation obtained represent a further step towards a com-
plete understanding of the surface properties of the semimetal
antimony and its role as a building block in topological in-
sulators. The bound-state energies determined will help in the
analysis of future inelastic HAS measurements. Therewith, the
experimentally determined surface phonon dispersion will be
obtained and a comparison with DFPT results'? will help to im-
prove theoretical models of the surface dynamics. Based on our
results for HAS on Bi(111),'*2%23 mode-dependent e-ph cou-
pling strengths will be investigated, especially if resonance-
enhanced subsurface phonon modes can be detected.

In this work, we have applied the exact CC method within
the framework of elastic channels. However, even in the
calculation of elastic intensities and elastic SARs, couplings
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to inelastic channels have to be taken into account. We have
used a simplified approach by including inelastic effects via
a global attenuation factor: the DW factor. We think that
it would be desirable to include inelastic channels in the
CC framework instead of using the DW factor in order to
be completely consistent. Further theoretical developments
towards this goal are under way and should show whether
our current approximations are sufficient.

PHYSICAL REVIEW B 88, 205425 (2013)
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