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Effects of the structure of charged impurities and dielectric environment
on conductivity of graphene
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We investigate the conductivity of doped single-layer graphene in the semiclassical Boltzmann limit, as well as
the conductivity minimum in neutral graphene within the self-consistent transport theory, pointing up the effects
due to both the structure of charged impurities near graphene and the structure of the surrounding dielectrics.
Using the hard-disk model for a two-dimensional (2D) distribution of impurities allows us to investigate structures
with large packing fractions, which are shown to give rise to both strong increase in the slope of conductivity
at low charge carrier densities in graphene and a strongly sublinear behavior of the conductivity at high charge
carrier densities when the correlation distance between the impurities is large. On the other hand, we find that a
superlinear dependence of the conductivity on charge carrier density in heavily doped graphene may arise from
increasing the distance of impurities from graphene or allowing their clustering into disklike islands, whereas
the existence of an electric dipole polarizability of impurities may give rise to an electron-hole asymmetry in
the conductivity. Using the electrostatic Green’s function for a three-layer structure of dielectrics, we show
that finite thickness of a dielectric layer in the top-gating configuration, as well as the existence of nonzero
air gap(s) between graphene and the nearby dielectric(s), exerts strong influences on the conductivity and its
minimum. While a decrease in the dielectric thickness is shown to increase the conductivity in doped graphene
and even gives rise to finite conductivity in neutral graphene for a 2D distribution of impurities, we find that an
increase in the dielectric thickness gives rise to a superlinear behavior of the conductivity when impurities are
homogeneously distributed throughout the dielectric. Moreover, the dependence of graphene’s mobility on its
charge carrier density is surprisingly strongly affected, quantitatively and qualitatively, by the graphene-dielectric
gap(s) when combined with the precise position of a 2D distribution of charged impurities. Finally, we show
that the conductivity minimum in neutral graphene is increased by increasing the correlation distance between
the impurities, reduced by increasing the graphene-dielectric gap, and increased by decreasing the dielectric
thickness in a top-gated configuration, even though the corresponding residual charge carrier density is reduced
by decreasing the dielectric thickness.
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I. INTRODUCTION

Graphene is a realization of a two-dimensional (2D)
material made of carbon atoms strongly bonded in a
honeycomb-like lattice, exhibiting a Dirac-like spectrum for
low-energy excitations of its π electrons, which has been
under intense scrutiny for possible applications in electronics,
photonics,1 and biochemical sensing.2 Being an all-surface
material renders graphene extremely sensitive to the incident
electromagnetic fields and to the dielectric properties of the
surrounding matter,3 which is both a blessing and a curse from
a technological point of view. While the use of external gates
and/or controlled adsorption of atomic and molecular species
present an efficient means for inducing precise concentrations
of charge carriers in graphene,4 the presence of indeterminate
amounts of charged impurities, which may be trapped in a
substrate or directly adsorbed on graphene, render quantitative
details of many measurements of graphene’s electronic and
optical properties “sample dependent.”5 In addition, integrat-
ing graphene in layered structures with different material
properties may bring additional issues due to uncertainties
in the geometric structure and the chemical composition of
such structures.6,7

Possibly the most intriguing manifestation of the presence
of charged impurities is the famed minimum in the dc
conductivity of single-layer graphene in the limit of vanishing
doping, i.e., when the average density of induced charge
carriers in graphene approaches zero.5,8 It was shown that the
minimum conductivity may be explained by the manifestation
of a system of electron-hole puddles in graphene due to
corrugation of the electrostatic potential that arises from a
spatial distribution of the charged impurities in a substrate.9

On the other hand, the conductivity in heavily doped graphene
layers often exhibits sublinear behavior, or saturation with
increasing charge carrier density, which is often explained by
the presence of short-range scatterers in graphene, presumably
arising from atomic-size defects in the carbon lattice.10

However, it turned out that spatial correlation among the
nearby charged impurities may provide an alternative and
more plausible explanation of the conductivity saturation in
single-layer graphene.10,11 Moreover, the atoms adsorbed on
graphene often show tendency of clustering and forming
islands, which may additionally affect the mobility of charge
carriers in graphene.12

As far as the structure and composition of the surrounding
material is concerned, preference is usually given to insulators
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and metals that only engage in weak interactions with graphene
of the van der Waals type, leaving the structure of its π electron
bands largely intact in the vicinity of the Dirac point.13 Those
interactions are characterized with relatively large spatial gaps
between graphene and the nearby material, on the order
of several angstroms, which reduce the dielectric screening
by that material and often exhibit significant fluctuations in
their size due to the surface roughness of the material.14

Furthermore, when graphene is top gated with a layer of high-κ
dielectric material, the mobility of its charge carriers may
be affected by a strong image interaction with the metallic
top gate.6,7,15 Finally, for electrolytically top-gated graphene,
the presence of mobile ions in the nearby electrolyte may
provide additional screening of the charged impurities in a
solid substrate.16,17

All of the above examples of the effects of charged
impurities near graphene and the structure of the surrounding
dielectrics play important roles in its charge carrier trans-
port, plasmon dispersion in doped graphene, and graphene’s
capacitance, which are of interest in electronics, photonics, and
sensing, respectively. It was recently shown that those effects
may be conveniently modeled by using Green’s function
(GF) for the Poisson equation for a layered structure,15,17

which is easily combined in a self-consistent manner with
the polarization function of graphene within the random phase
approximation (RPA) when graphene is modeled as a zero-
thickness material.18 In this work, we illustrate such approach
to modeling the conductivity of single-layer graphene with
large area by considering a three-layer structure of the
surrounding dielectrics and using an expression for the conduc-
tivity that results from the semiclassical Boltzmann transport
(SBT) theory for doped graphene.8 However, that expression
is derived here via the energy-loss method (ELM),19 which
explicitly evaluates the friction force on a system of external
charges with the spatial distribution that moves rigidly parallel
to graphene.20–22 Hence, the ELM has an added utility as
it may be used in studying other processes, such as sliding
friction of molecular layers physisorbed on graphene,23 or
probing the streaming potential in a flowing electrolyte by a
graphene-based sensor,24 which will be tackled in future work.

In this work we focus on several effects in the dc
conductivity of graphene. First, we explore the effects of long
correlation distances among impurities that give rise to large
packing fractions, which cannot be described by a simple
steplike pair correlation function.10,11 For that purpose we
use an analytically parametrized model of hard disks (HDs)
due to Rosenfeld,25 which gives reliable results for packing
fractions up to the freezing point of a 2D fluid. Next, whereas
all the previous studies assumed that charged impurities reside
in a plane parallel to graphene, our statistical formulation of
the theory allows for a fully three-dimensional (3D) spatial
distribution of impurities that may reside at a range of distances
from graphene. In addition, we allow that individual impurities
may be characterized by atomic-like form factors, which
include a finite dipole moment and a spatial spread that
accounts for the existence of disklike clusters near graphene.
Furthermore, by taking advantage of the electrostatic GF for
a three-layer structure, we also study the effects that arise in
conductivity of graphene due to finite thickness of a nearby
dielectric and a finite gap between graphene and the nearby

dielectrics. Finally, the above effects are also studied in the
context of the conductivity minimum within the self-consistent
transport (SCT) theory.9

Specifically, in this paper we show via the HD model that
large correlation distances between charged impurities may
give rise to significantly larger initial slopes of the conductivity
(or larger mobility) at lower charge carrier densities, as well
as to a more pronounced saturation, or sublinear behavior
of conductivity at higher densities than in the case of small
correlation distances. Next, the effects of clustering of charge
impurities, as well as the increasing distance from graphene,
are confirmed to give rise to superlinear dependence of con-
ductivity on charge carrier density in heavily doped graphene,
in agreement with observations12 and modeling,9 respectively.
Impurities with finite dipolar polarizability are shown to give
rise to electron-hole asymmetry in the conductivity as the
sign of charge carrier density changes, which may be related
to experimental observations in some graphene samples.5

Regarding the geometrical factors of a nearby dielectric layer,
we find an increase in both the conductivity and mobility
of graphene when the layer thickness decreases in the case
of a 2D distribution of impurities, whereas a homogeneous
3D distribution of impurities gives rise to a superlinear
behavior of the conductivity with increasing layer thickness.
Most intriguingly, we find a strong effect on the mobility of
graphene due to the presence of a finite gap between graphene
and the nearby dielectrics in conjunction with the varying
position of impurities, which was not previously considered
in the modeling of the transport properties of graphene, but
was observed in studying the polarization forces on external
charges.20 Finally, a similarly strong effect of the finite gap
between graphene and a nearby dielectric is also demonstrated
in the minimum conductivity within the SCT theory.9

After outlining the theoretical model in the next section, we
discuss our numerical results, and give concluding remarks. In
the appendices we outline a derivation of the electrostatic GF
and provide details for several models of the charged impurity
structure. Note that, unless otherwise explicitly stated, we use
Gaussian electrostatic units where 4πε0 ≡ 1, with ε0 being the
dielectric permittivity of vacuum.

II. THEORY

We assume that a single-layer graphene sheet of large area
is embedded into a stratified structure so that it lies parallel
to layers of various dielectrics with abrupt interfaces among
them, as shown in Fig. 1. Using a 3D Cartesian coordinate
system with coordinates R ≡ {r,z}, the entire structure may
be then considered translationally invariant (and is assumed
to be isotropic) in the directions of a 2D position vector r =
{x,y}. Furthermore, assume that a system of charged particles
is distributed throughout the structure and is moving rigidly
at a constant velocity v parallel to graphene. If the stationary
volume density of charges in the moving frame of reference
is given by ρ0(R) ≡ ρ0(r,z), then the corresponding volume
density in the rest frame of graphene (the laboratory frame of
reference) is given by ρ(R,t) = ρ0(r − vt,z).

This notion of a rigidly moving distribution of external
charges may be related to several realistic physical situations
where the relative motion of particles with respect to each other
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FIG. 1. (Color online) Diagram showing a three-layer structure of
dielectrics with the relative bulk dielectric constants εj for j = 1,2,3,
which occupy the regions defined by the intervals I1 = [−L,0],
I2 = [0,H ], and I3 = [H,∞) for the z coordinate of a Cartesian
coordinate system, respectively.

may be treated as adiabatic at the time scale of the charge
carrier dynamics in graphene. Examples include sliding of
a film of adsorbed molecular layers across graphene,23 flow
of a molecular fluid that contains dissolved ions in thermal
equilibrium,24 or propagation of ionized fragments that result
from planar Coulomb explosion of a cluster grazingly scattered
from graphene.26 In each of those examples, the movement of
external charged particles gives rise to energy dissipation due
to excitations of charge carriers in graphene.

Conversely, one may reverse the frames of reference and
consider the regime of steady-state electric conduction in
graphene where its charge carriers move with a constant drift
velocity −v. In this case the distribution of external particles is
static in the laboratory frame and hence may be used to model
fixed charged impurities near graphene. If the speed v = ‖v‖ is
sufficiently low, then the electrical resistivity of graphene may
be related to energy dissipation due to scattering of its charge
carriers on external charged impurities, giving rise to Ohmic
heating of graphene. This idea of reversing the frames of
reference is a basis of the ELM that was developed for studying
the transport properties of semiconductor heterostructures
by means of the dielectric response formalism for their
conducting electrons.19 This method was used successfully
in studying the scattering of conduction electrons on interface
roughness27 and polarizable scattering centers,28 as well as
in discussing vibrational damping in adsorbed layers due to
surface resistivity,29 and in studying optical properties of thin
films for solar energy materials.30 Moreover, this same idea of
the equivalence of a drag force on a uniformly moving system
of impurities and the total force on the electron fluid in doped
graphene was recently applied to evaluate the conductivity of
graphene within the semiclassical hydrodynamic model for its
charge carriers.31

We note that the ELM gives an expression for the conduc-
tivity of doped graphene, which is identical to that obtained by
the SBT theory,8 but we chose ELM because it yields the drag
force on externally moving charges as a side result that may
be more directly used in modeling other processes, such as
sliding friction of molecular layers physisorbed on graphene23

or probing the streaming potential in a flowing electrolyte by
a graphene based sensor,24 to mention a few.

A. Energy-loss method

To be specific, we assume that the system of external
charges consists of N particles, each carrying a total charge
of Zje (where e > 0 is the proton charge) that is distributed
around the center of the particle according to some function
�j (R), such that

∫
d3R �j (R) = Zj with j = 1,2, . . . ,N . If

the j th particle is centered at the position Rj = {rj ,zj } in the
moving frame of reference, we may write for the total density
of charges in that frame

ρ0(r,z) = e

N∑
j=1

�j (r − rj ,z − zj ). (1)

Given that the positions Rj of external particles, as well
as their individual charge densities �j (R) are statistically
distributed, we denote their joint ensemble average by 〈· · · 〉.
Assuming that this distribution is translationally invariant in
the directions of r, we note that 〈ρ(R,t)〉 = 〈ρ0(r,z)〉 ≡ ρ̄0(z)
can only be a function of the perpendicular coordinate z.
Therefore, assuming that the equilibrium areal number density
of charge carriers is uniform across graphene, its value n̄ will be
determined by both the function ρ̄0(z) and the potential applied
through the external gates. We assume that n̄ has a sufficiently
large value allowing us to neglect the effects of fluctuations
in the charge carrier density in graphene on its screening
properties. On the other hand, we assume n̄ to be small enough
to allow the use of a 2D response function for graphene’s π

electrons in the approximation of Dirac fermions.32,33 Those
requirements practically limit our considerations of graphene’s
dc conductivity within the SBT theory to an approximate range
of doping densities 1011 cm−2 � n̄ � 1013 cm−2 (we assume
n̄ > 0 unless stated otherwise).

We further define the fluctuation in the charge density of
external particles by δρ(R,t) ≡ ρ(R,t) − 〈ρ(R,t)〉 = ρ0(r −
vt,z) − 〈ρ0(r,z)〉 ≡ δρ0(r − vt,z) and use it in the Poisson
equation, allowing us to express the resulting fluctuation of the
electrostatic potential, δ�(R,t), in terms of the electrostatic GF
for the entire system, G(R,R′; t − t ′) ≡ G(r − r′; z,z′; t − t ′),
as

δ�(R,t) =
∫

d3R′
∫ ∞

−∞
dt ′ G(R,R′; t − t ′) δρ(R′,t ′). (2)

Using a tilde to denote the Fourier transform (FT) of various
quantities with respect to the 2D position (r → q) and time
(t → ω), the above expression is recast in the form

δ�̃(q,z,ω) =
∫ ∞

−∞
dz′ G̃(q; z,z′; ω) δρ̃(q,z′,ω), (3)

where

δρ̃(q,z,ω) =
∫

d2r
∫ ∞

−∞
dt e−iq·r+iωt δρ0(r − vt,z)

= 2π δ(ω − q · v) δρ̃0(q,z) (4)

defines the relation between the FTs of the fluctuations of the
external charge densities in the two reference frames. Here,
δρ̃0(q,z) = ρ̃0(q,z) − (2π )2 δ(q) ρ̄0(z) is defined via the FT of
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the external charge density in the moving frame of reference,

ρ̃0(q,z) = e

N∑
j=1

�̃j (q,z − zj ) e−iq·rj . (5)

It may be shown that the ensemble average of the energy-
loss rate is given by34〈

dW

dt

〉
= −

∫
d3R

〈
δρ(R,t)

∂

∂t
δ�(r,z,t)

〉
= i

∫
d2q

(2π )2 (q · v)
∫

dz

∫
dz′ G̃(q; z,z′; q · v)

×〈δρ̃0(−q,z)δρ̃0(q,z′)〉. (6)

On using the symmetry properties of the FT of the full
GF, G̃(q; z,z′; ω) = G̃(−q; z′,z; ω) and G̃(cc)(q; z,z′; ω) =
G̃(−q; z,z′; −ω), where (cc) denotes complex conjugation,
one notices that only the imaginary part of the factor
G̃(q; z,z′; q · v) in Eq. (6) contributes to the energy loss.
Furthermore, assuming that graphene has a zero thickness and
is placed in the plane z = zg , we may express G̃(q; z,z′; ω) in
terms of the (real valued) 2D FT of the GF G̃(0)(q; z,z′) for the
dielectric environment without graphene, as given in Eq. (A2).
Thus, Eq. (6) may be rewritten as〈

dW

dt

〉
=

∫
d2q

(2π )2
VC(q) (q · v) Im

[ −1

ε(q,q · v)

]
×〈δÑ (−q)δÑ (q)〉, (7)

where we have defined a dielectric function that describes the
dynamic screening of external electrostatic fields in the plane
z = zg due to the polarization of the entire system as

ε(q,ω) = εbg(q) + VC(q) χ (q,ω), (8)

with εbg(q) ≡ 2π/[qG̃(0)(q; zg,zg)] being an effective back-
ground dielectric function due to the polarization of the system
without graphene, VC(q) = 2πe2/q the in-plane FT of the
Coulomb potential, and χ (q,ω) a 2D polarization function
of noninteracting π electrons in graphene.32,33 Moreover, in
Eq. (7) we have introduced the fluctuation in an effective areal
(or surface-projected) number density of external particles,
δN (r), which is defined via its 2D FT as δÑ (q) = Ñ (q) −
〈Ñ (q)〉, with

Ñ (q) ≡ 1

e

∫
dz ψ(q,z) ρ̃0(q,z) =

N∑
j=1

Fj (q) e−iq·rj , (9)

where

ψ(q,z) = G̃(0)(q; zg,z)

G̃(0)(q; zg,zg)
(10)

is a profile function that takes into account the decay of the
Coulomb interaction throughout the system with increasing
distance from graphene, and

Fj (q) =
∫

dz ψ(q,z) �̃j (q,z − zj ) (11)

may be considered to be a weighted form factor of the j th
particle.

B. Friction regime and conductivity of graphene

In order to use the ELM to obtain the dc conductivity of
graphene, we require an ensemble average of the energy-loss
rate to the lowest order in speed v, which corresponds
to the friction regime for slowly moving external charges.
This is easily accomplished by expanding the loss function
Im[−1/ε(q,ω)] in Eq. (7) to the leading order in frequency by
using the truncated expansion for the polarization function of
doped graphene in the zero-temperature limit,21

χ (q,ω) = χs(q) + iω

πh̄v2
F

U (2kF − q)

√(
2kF

q

)2

− 1, (12)

where χs(q) = χ (q,0) is the static polarization function,
kF = √

πn̄ is an average value of the Fermi wave number
for Dirac electrons in graphene, and U is a Heaviside unit
step function. We further define the autocorrelation function
of charged impurities in Eq. (7) by

S(q) ≡ 1

N
〈δÑ (−q)δÑ (q)〉, (13)

and note that it only depends on the magnitude q = ‖q‖ when
the distribution of impurities is isotropic in the directions
parallel to graphene. This allows us to finally obtain from
Eq. (7)〈

dW

dt

〉
= 2h̄kF Nv2r2

s

∫ 2kF

0
dq

√
1 − (q/2kF )2

[εbg(q) + 4kF rs/q]2
S(q),

(14)

where rs = e2/(h̄vF ) ≈ 2 with vF being the Fermi speed
of Dirac electrons. Note that the quantity Fs ≡ 〈dW/dt〉/v
is an average total stopping or drag force that acts on the
moving system of external charges,22 which may be used
to, e.g., evaluate the friction coefficient η for an adsorbed
layer on graphene from the expression η = Fs/v in the limit
v → 0.21,23

Within the ELM, by reversing the frames of reference one
may express the energy-loss rate in graphene by the standard
expression of classical electrodynamics,〈

dW

dt

〉
=

∫
d2r 〈J · E〉 , (15)

where J = σE is the current density of charge carriers in
graphene, induced by a constant electric field E applied across
graphene, and σ is its dc conductivity. Assuming a uniform
charge carrier density n̄ across graphene, we may write
J = −en̄v in a steady-state regime, which gives 〈dW/dt〉 =
A (en̄v)2 /σ , where A is the macroscopic area of graphene. We
discard possible contribution to the conductivity of graphene
coming from charge carrier scattering on short-ranged im-
purities, and we limit our considerations to sufficiently low
temperatures to be able to neglect the contribution from
scattering on phonons. Thus, the final expression for the dc
conductivity takes a form that is familiar from the SBT for
doped graphene at zero temperature,8,11

σ = e2

h

n̄
nimp

2
∫ 1

0 du u2
√

1−u2

[2+(u/rs )εbg(2kF u)]2 S(2kF u)
, (16)
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where nimp = N/A is the mean areal number density of exter-
nal charged particles. We note that using a fully temperature-
dependent polarization function of graphene would yield a
nonmonotonic temperature dependence of its SBT conduc-
tivity, decreasing with temperature at low temperatures, and
increasing at high temperatures.35

C. Variance of the potential in graphene
and minimum conductivity

Equation (16) implies that the conductivity obtained within
the SBT theory as a function of the average equilibrium charge
carrier density in graphene, σ (n̄), should vanish in a linear
manner close to the neutrality point, i.e., when n̄ → 0, as
long as εbg(0) and S(0) remain finite. However, experiments
show that the conductivity reaches a minimum value σmin

at the neutrality point due to electron-hole puddles in the
charge carrier density across graphene, which are caused
by fluctuations of the electrostatic potential in the plane of
graphene due to spatial inhomogeneity of the external charged
impurities.4,5 An estimate of σmin may be found according to
the SCT theory as σmin = σ (n∗), where n∗ is referred to as a
residual charge carrier density that gives a measure of the width
of the plateau near the neutrality point where the conductivity
minimum is reached.9 It was shown that n∗ may be found as
a solution of an equation involving the square of graphene’s
Fermi energy, εF = h̄vF kF , and the variance of the fluctuating
electrostatic potential in graphene, δφg(r) ≡ δ�(r,z)|z=zg

, that
arises from a distribution of immobile external charges,

(h̄vF )2πn̄ = C0(n̄), (17)

where C0 ≡ e2〈δφ2
g(r)〉. We note that the SCT theory extends

the applicability of the SBT result for the conductivity of
graphene σ (n̄) down to lower charge carrier densities with
typically n∗ � 1011 cm−2.9

Working in the time-independent regime, we use the 2D
spatial FT to express the fluctuating potential in graphene in
terms of the 2D FT of the fluctuating charge density δρ̃(q,z) ≡
δρ̃0(q,z) as

δφ̃g(q) =
∫ ∞

−∞

G̃(0)(q; zg,z)

1 + e2χs(q)G̃(0)(q; zg,zg)
δρ̃0(q,z) dz (18)

= 2πe

q

δÑ (q)

εs(q)
, (19)

where εs(q) = εbg(q) + VC(q) χs(q) is the total dielectric
function of the entire system in the static limit. By invoking the
translational invariance of the distribution of external charges
in the directions of r, we may use a general relation,

〈δÑ (q′)δÑ (q)〉 = nimp δ(q′ + q)S(q), (20)

that allows us to write

C0 = nimp

∫
d2q

(2π )2

[
VC(q)

εs(q)

]2

S(q). (21)

D. Statistical description of external charges

It is important to make distinction between the geometric
structure of the external particle system and the statistical

distribution of the charge density functions �j (R) for individ-
ual particles. Assuming that those two characteristics of the
system are statistically independent, the geometric structure
may be modeled by using the one- and two-particle distribution
functions for their positions

F1(r,z) = N

A
f1(z) (22)

and

F2(r1,r2; z1,z2) = N (N − 1)

A2
f1(z1)f1(z2)g(r2 − r1; z1,z2),

(23)

where f1(z) describes the distribution of particle positions
along the z axis and is normalized to one, whereas g(r; z1,z2)
is the usual pair correlation function. A significant further
simplification may be achieved by assuming that the charge
densities of individual particles are identically distributed,
so that �j (R) = �(R) for all j = 1,2, . . . ,N . Still, Eqs. (9)
and (11) show that the corresponding individual particle form
factors generally remain entangled with the z dependence of
the geometric arrangement of particle positions, unless all the
particles reside in the same plane, say z = z0.

Accordingly, we first consider a 2D geometric model with
f1(z) = δ(z − z0), which is commonly used in all theoretical
modelings of the effects of correlated charged impurities on
the conductivity of graphene.8–11 In that case, we find that the
autocorrelation function from Eq. (13) may be written as

S(q) = 〈|F0(q)|2〉 − |〈F0(q)〉|2 + |〈F0(q)〉|2 S2D(q), (24)

where each particle is characterized by an “atomic” form factor

F0(q) =
∫

dz ψ(q,z) �̃(q,z − z0), (25)

and

S2D(q) = 1 + nimp

∫
d2r eiq·r [g2D(r) − 1] (26)

is a “geometric” structure factor that describes the arrangement
of external particles in the plane z = z0. As regards the
corresponding pair correlation (or radial distribution) function
g2D(r) = g2D(r), in addition to uncorrelated particles with
g2D(r) = 1, we consider two models that contain a single pa-
rameter rc characterizing the interparticle correlation distance:
a step-correlation (SC) model with g2D(r) = U(r − rc), which
was often used in the previous studies of charged impurities in
graphene,10,11 and the HD model, in which particles interact
with each other as hard disks of the diameter rc.25

There are several advantages to using the HD model over the
SC model. First, the former model is based on a Hamiltonian
equation for the thermodynamic state of a 2D fluid with
a well-defined pair potential between impurities, whereas
the latter model is an ad hoc description of the impurity
distribution, made up for simple, analytic results. That is not to
say that the SC model is poor at capturing the interesting results
in the conductivity of graphene with correlated impurities.10,11

However, from Eq. (16) it is obvious that, with kF = √
πn̄,

the initial slope of σ (n̄) is strongly influenced by the limiting
value of the structure factorS(q) as q → 0, that is, by the value
of S2D(0) via Eq. (24). It is well known that S2D(0) is related
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to the isothermal compressibility of a 2D fluid,36 which may
be expressed as a function of the packing fraction defined by
p = πnimpr

2
c /4. Thus, p is a key measure of performance

of the two models. It was recently shown by Li et al.11

that the SC model gives reliable results for packing fractions
p � 1 by comparing the analytical result for the 2D structure
factor in that model, SSC(q), with a numerically calculated
structure factor of a hexagonal lattice of impurities. However,
the analytical limit SSC(0) = 1 − 4p shows that the SC model
already breaks down for p � 0.25 because the corresponding
compressibility becomes negative at higher packing fractions.
On the other hand, it was recently shown that the interaction
potential between two point ions near doped graphene is
heavily screened and, moreover, exhibits Friedel oscillations
with interparticle distance, giving rise to a strongly repulsive
core region of distances on the order of k−1

F that resembles
the interaction among hard disks with diameter rc ∼ k−1

F .22

Therefore, we may estimate that the packing factor could
reach values on the order p ∼ nimp/n̄ that may not always
be negligibly small, necessitating the use of a model that goes
well beyond the SC model, at least for systems of adsorbed
alkali-atom submonolayers on graphene.10 In that respect, we
note that various parametrizations of the HD model extend
its applicability to include phase transitions in a 2D fluid
as a function of the packing fraction,37 even going up about
p = 0.9, corresponding to a crystalline closest packing where
hard disks form a hexagonal structure in 2D.38 In this work,
we use a simple analytical parametrization for the 2D structure
factor in the HD model, SHD(q), provided by Rosenfeld25

(see Appendix B) which works reasonably well for packing
fractions up to about p = 0.69, just near the freezing point of
a 2D fluid.

Regarding the structure of individual charged particles
within the 2D geometric model, we study a few specific
examples. First we consider a point particle of charge Ze that
carries a dipole moment μ with the density function

�p(R) = (Z − D · ∇R) δ (R) , (27)

where D = μ/e is an effective dipole length and δ(R) =
δ(r)δ (z) is a 3D delta function, which gives a form factor
from Eq. (25) as

Fp(q) = (Z + i q · D‖)ψ(q,z0) + D⊥
∂ψ(q,z)

∂z

∣∣∣∣
z=z0

, (28)

where D‖ = μ‖/e and D⊥ = μ⊥/e are the effective dipole
lengths in the directions parallel and perpendicular to
graphene, respectively. We note that, having in mind that the
first two terms on the right-hand side of Eq. (24) represent the
variance of the form factor F0(q), all of the three parameters
of the point particle model, namely, Z, D‖, and D⊥, may
exhibit fluctuations about their respective means (with the
mean 〈D‖〉 = 0 due to the presumed isotropy), as well as
mutual cross-correlations. In addition, assuming nimp to be
small enough, the perpendicular dipole moment component
may depend on the local electrostatic field E⊥ according to
μ⊥ = αE⊥, where α is an effective dipole polarizability near
graphene.

We also consider a cluster of uniformly distributed charge
Ze within a disk of radius Rcl parallel to graphene with

�cl(R) = Z

πR2
cl

U (Rcl − r) δ (z) , (29)

giving

Fcl(q) = 2Z

qRcl
J1 (qRcl) ψ(q,z0), (30)

where J1 is a Bessel function of order 1. We limit our consid-
erations to cases with kF Rcl � 1, validating the perturbative
treatment of charge carrier scattering on such clusters,39 and
we also assume πnimpR

2
cl � 1 to avoid the interference in

scattering patterns from neighboring clusters.
On the other hand, it is of interest to explore the effects of a

fully z-dependent geometric structure of particle positions in
3D, with arbitrary distribution function f1(z) and the pair cor-
relation function that depends on the z coordinates, g3D(r2 −
r1; z1,z2). In this case, we only consider point charges with
Z = 1 and obtain the autocorrelation function from Eq. (13) as

S(q) =
∫

dz f1(z) ψ2(q,z) +
∫

dz f1(z) ψ(q,z)

×
∫

dz′ f1(z′) ψ(q,z′)[S3D(q; z,z′) − 1], (31)

where partial structure factor in the 3D case is defined by

S3D(q; z,z′) = 1 + nimp

∫
d2r eiq·r[g3D(r; z,z′) − 1]. (32)

Any realistic modeling of the 3D pair correlation function
in the presence of charged graphene is beyond the scope of
the present study, so we only consider uncorrelated point
charges with g3D(r; z,z′) = 1, and focus on the effect of their
distribution over the depth z. In a first study of this type,
we only consider the case f1(z) = 1/L for a homogeneous
distribution of point charges throughout a dielectric slab of
finite thickness L. In Appendix B we also provide a result
for semi-infinite region (L → ∞) based on a pair correlation
function g3D(R) for a bulk one-component plasma (OCP) with
the volume density of charged particles Nimp = N/ (AL), and
make a few comments on the possible implications of using
the model of hard spheres near a hard wall (HSHW).

III. RESULTS AND DISCUSSION

In this section, we study several special configurations
of graphene with the surrounding dielectrics by using the
electrostatic GF, which is derived in Appendix A for a
three-layer structure of Fig. 1, defined on the intervals I1 =
[−L,0], I2 = [0,H ], and I3 = [H,∞) along the z axis that are
characterized by the relative bulk dielectric constants εj with
j = 1,2,3, respectively. The positions of charged impurities
are restricted to the intervals I1 and I2.

Throughout this section, we fix several model parameters
for charged impurities by considering them to have a unit
valency Z = 1 and to be represented by point charges
[except in Fig. 2(c)] with no dipole moment [except in
Fig. 3(b)], which occupy a 2D planar distribution [except
in Figs. 4(a) and 4(b)] with a fixed areal number density of
nimp = 1012 cm−2 (except in Fig. 3).
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FIG. 2. (Color online) The dependence of conductivity (in units
of e2/h) on the average charge carrier density n̄ (in units of
1013 cm−2) for a two-layer structure that consists of a semi-infinite
SiO2 substrate (L → ∞, ε1 = 3.9) and a semi-infinite layer of air
(H → ∞, ε2 = 1), with graphene placed on their boundary (zg = 0).
A planar distribution of charged impurities with the correlation length
rc is placed a distance d away from graphene. Results are shown for
uncorrelated impurities [thin gray (red) solid lines], for the SC model
with rc = 4 and 5 nm [thick solid and dashed gray (light blue) lines,
respectively], and for the HD model with rc = 4, 5, 6, and 7 nm
(thick black solid, dashed, dotted, and dash-dotted lines, respectively).
Panels (a) and (b) show the cases of pointlike impurities on graphene
(d = 0) and at d = 0.3 nm in the SiO2 substrate, respectively, whereas
panel (c) shows disklike impurities with the cluster radius Rcl = 2 nm
placed on graphene (d = 0). The insets show the blow-ups of the
regions with n̄ � 1012 cm−2.

In Figs. 2–4 and 6 we explore the effects of correlation
between the impurities by varying their correlation length rc.
In Figs. 4, 5, and 7 we explore the effects of the proximity
of a perfectly conducting gate by varying the thickness L of
the intervening dielectric layer. In Figs. 2, 4, and 5 we explore
the effects of variation in the distance of impurities d from
graphene. In Figs. 5 and 6 we explore the effects of finite air
gap(s) between graphene and the nearby dielectric(s). Finally,
the effects of finite cluster radius Rcl of disklike impurities
and finite dipole polarizability α of pointlike impurities are
investigated in Figs. 2(c) and 3(b), respectively.

A. Graphene on the boundary between
a thick SiO2 layer and air

Referring to Fig. 1, in this subsection we consider a two-
layer structure that consists of a semi-infinite SiO2 substrate
(L → ∞ with ε1 = 3.9) and a semi-infinite layer of air
(H → ∞ with ε2 = 1) with graphene placed right on their
boundary (zg = 0).

In Fig. 2 we show the dependence of graphene’s conductiv-
ity σ on its average charge carrier density n̄ for several values
of the correlation length rc among the impurities by using the
SC and the HD models for their 2D structure factor. (Note that
the SC model only yields physical results for rc < 5.6 nm for
the given density of impurities nimp = 1012 cm−2.) In addition
to the case of pointlike impurities being placed directly on
graphene (d = 0 and Rcl = 0), we also show in Fig. 2 the
effects of pointlike impurities embedded at d = 0.3 nm inside
the SiO2 substrate, as well as disklike impurities with fixed
radius Rcl = 2 nm placed on graphene (d = 0).

As regards the effects of finite d and Rcl, one notices in
Fig. 2 that they both contribute to an increase in the slope
of conductivity at higher n̄ values, as expected, where they
even give rise to a superlinear dependence of conductivity on
n̄ for smaller values of the correlation length rc. (Note that the
case of uncorrelated disks with rc = 0 is somewhat unphysical
as the disks are allowed to overlap.) However, the effects of
finite d and Rcl are relatively weak and only affect quantitative
details of conductivity at higher n̄, whereas comparison among
the insets in Fig. 2 shows that their effects are barely noticeable
at n̄ � 1012 cm−2.

The most prominent effect in Fig. 2 is a strong increase of
the initial slope of conductivity as a function of n̄ [and hence
an increase in mobility of graphene, μ = σ/(en̄)] at low values
of n̄ as the correlation length rc increases. One notices from
the insets in Fig. 2 that the initial slopes from the SC model
are higher than those from the HD model for the same value of
rc because SSC(0) < SHD(0), but the latter model permits the
use of much larger values of rc than the former model, hence
giving rise to rather large initial slopes of the conductivity at the
largest packing fractions shown. (Notice that the case with a
maximum packing fraction of p ≈ 0.38 that is shown in Fig. 2
is still well within the interval of confidence for the HD model
used here.25) As the charge carrier density n̄ increases, the
conductivity shows a sublinear dependence on n̄ that becomes
more pronounced as the correlation length rc increases. In the
case of d = 0 and Rcl = 0 the sublinear dependence occurs
for all rc > 0, whereas in the cases of finite d or Rcl values the
sublinear dependence may even overcome the opposite effect
of superlinear dependence for sufficiently large rcs. For the
largest rc value shown in Fig. 2, the sublinear behavior even
gives rise to a pronounced saturation effect in the conductivity
of graphene with increasing n̄, which is sometimes observed in
experiments.5,10 Thus, high packing fractions that result from
long correlation distances among the charged impurities can
give rise to both higher initial slope of conductivity at lower n̄

and a more pronounced sublinear dependence of conductivity
at higher n̄ with the HD model than those that can be achieved
with the SC model. We pause to discuss those two effects in
some detail.

Various models that attempt to reproduce the experimental
dependence of graphene’s conductivity σ on its charge carrier
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density n̄ use the areal density of charged impurities nimp as
free parameter to fit the slope of conductivity in the range of
n̄ values where that dependence is found to be predominantly
linear. Ignoring the relatively narrow region of n̄ values around
zero where the conductivity of a nominally neutral graphene
reaches a minimum, one sees that Eq. (16) implies a linear
dependence of conductivity in the form σ = c n̄/[nimpS2D(0)]
when n̄ → 0, where c is constant when the dielectric media
are semi-infinite. For a system of uncorrelated impurities that
may be described as a 2D gas, one simply finds σ = c n̄/nimp

because S2D(0) = 1. However, when impurities are strongly
correlated, one should consider their number N to be a random
variable because different samples of graphene flakes with
fixed area A may cover different regions of a much larger
area of the substrate plagued by varying concentrations of
impurities. Then, the impurity density should be defined
in terms of the average number of impurities covered by
the graphene flake, nimp = 〈N〉/A. On the other hand, the
long-wavelength limit of the structure factor may be expressed
as the ratio S2D(0) = 〈δN2〉/〈N〉, where the numerator is the
variance in N ,36 with δN = N − 〈N〉 being the fluctuation in
the number of impurities that are covered by the graphene flake.
Therefore, from the statistical point of view, the n̄ → 0 limit of
the SBT conductivity should be reinterpreted as σ = c n̄/n∗

imp,
where we define n∗

imp = 〈δN2〉/A to be an effective density
of impurities rather than the average density. In general,
n∗

imp �= nimp unless N is Poisson distributed, i.e., the impurities
behave as an ideal 2D gas. Clearly, the distinction between n∗

imp
and nimp should be borne in mind when attempting to use nimp

as a fitting parameter in modeling the slope of graphene’s
conductivity in the presence of a liquid-like distribution of
charged impurities.

On the other hand, the sublinear dependence of graphene’s
conductivity on n̄ at large doping densities is often modeled
by combining the scattering processes of its charge carriers
on both charged impurities and short-ranged impurities via the
Matthiessen’s rule.10 However, the density of atom-size defects
in graphene that could give rise to short-range scattering
is extremely low due to the structural and compositional
resilience of graphene’s atomic lattice, so that “the source
of the proposed weak short-range scattering is mysterious.”10

Another contender for the explanation of the sublinear conduc-
tivity is the resonant scattering model that invokes the existence
of bound-state resonances in the π electron bands due to
chemisorbed molecules on graphene.40 However, the fact
that graphene is chemically inert also makes this mechanism
unlikely in most situations. On the other hand, it was recently
shown that the charge carrier scattering on charged impurities
in a substrate may also give rise to the sublinear behavior
of conductivity in highly doped graphene in the presence of
a strong spatial correlation among the impurities.10,11 Noting
that the sublinear behavior was demonstrated in simulations
based on the SC model with small packing fractions,10,11

we follow the same idea and suggest that, by being able
to go to much larger packing fractions in the HD model
than in the SC model, one may include large enough values
of rc in simulations that could even give rise to saturation
of graphene’s conductivity at high enough charge carrier
densities, thus eliminating the need to invoke the existence of
resonance scatterers or atom-size defects in graphene. Namely,

one may verify that, with increasing packing fraction the
structure factor SHD(q) develops a very pronounced peak at the
wave number q = qshell corresponding to the first coordination
shell due to the nearest neighbors.25,38 So, from Eq. (16) it
follows that a relatively sudden increase in the value of the
integral over u may be expected with the HD model when
kF surpasses the value qshell/2 ∼ π/rc, causing a slowdown
in the increase of σ when n̄ ∼ π/r2

c that is reminiscent of
the saturation in conductivity. For example, in the case of the
largest correlation distance shown in Fig. 2, rc = 7 nm, one
finds that a strong saturation of the conductivity indeed occurs
at about n̄ = π/r2

c ≈ 6.4 × 1012 cm−2.
In Fig. 3 we consider the same configuration of single-

layer graphene atop a semi-infinite SiO2 substrate with a
semi-infinite layer of air above it as in Fig. 2, and attempt
to model the experimental data for conductivity versus charge
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FIG. 3. (Color online) The dependence of conductivity (in units
of e2/h) on the average charge carrier density n̄ (in units of 1012 cm−2)
for a two-layer structure that consists of a semi-infinite SiO2 substrate
(L → ∞, ε1 = 3.9) and a semi-infinite layer of air (H → ∞,
ε2 = 1), with graphene placed on their boundary (zg = 0). A planar
distribution of pointlike charged impurities with the areal number
density nimp and the correlation length rc is placed on graphene (d = 0)
and is allowed to have a nonzero perpendicular dipole moment with
polarizability α per impurity. The results from the HD model (black
solid lines) are fitted to the experimental data from Ref. 5 (symbols),
with the best fit in panel (a) obtained for nimp = 3 × 1011 cm−2

with rc = 6.8 nm (packing fraction p = 0.11) and α = 0, and the
best fit in panel (b) obtained for nimp = 7.4 × 1011 cm−2 with
rc = 6.3 nm (p = 0.23) and α = 1150 Å3. Also shown are the
results for uncorrelated impurities (rc = 0) with α = 0 on both panels
[dashed gray (red) lines], as well as for the uncorrelated impurities
with α = 1150 Å3 in panel (b) [dash-dotted gray (light blue) line].
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carrier density n̄ from Ref. 5 by using the HD model for a 2D
distribution of unit point charges. We select two graphene
samples from Ref. 5 labeled K17 and K12, which both
exhibit sublinear behavior with increasing n̄, with K17 being
symmetric and K12 showing an electron-hole asymmetry
(i.e., asymmetry with respect to the sign of n̄). The physical
mechanism(s) that occasionally give rise to this kind of
asymmetry in graphene are still unclear, so we explore here the
possibility that the presence of the perpendicular component
of dipole moment in each impurity, D⊥, may give rise to
a sizable asymmetry, as that seen in Fig. 3 for the sample
K12. We assume D⊥ = αE⊥/e, where α is the effective
polarizability and E⊥ is the total perpendicular electric field
near graphene. Assuming nimp to be small enough, we may
neglect mutual depolarization among the impurities and simply
write E⊥ = 4πen̄/ε1, with E⊥ being positive (negative) for
electron (hole) doping of graphene.41 The two samples were
fitted in Ref. 5 by assuming that the impurities reside in
graphene (d = 0) and are uncorrelated, and the optimal linear
symmetric fits were found with nimp = 2.2 × 1011 cm−2 for
K17 and with nimp = 4 × 1011 cm−2 for K12. We also assume
the impurities to lie in graphene (d = 0), and we use nimp, rc,
and α as fitting parameters. In the case of the symmetric K17,
the best fit is found for nimp = 3 × 1011 cm−2 with rc = 6.8 nm
(p = 0.11) and α = 0, whereas for the asymmetric case of
K12 the best fit is found for nimp = 7.4 × 1011 cm−2 with
rc = 6.3 nm (p = 0.23) and α = 1150 Å3. Both fits obtained
with the HD model in Fig. 3 are quite satisfactory as far as
the sublinear behavior of conductivity is concerned, and the
relatively large values of packing fractions used in both cases
suggest the necessity of using the HD rather than the SC model.
On the other hand, a good fit in the asymmetric case can only
be achieved with a rather large value of α, which indicates
that the dipole mechanism may not be the primary cause of
the electron-hole asymmetry in conductivity, at least for the
experimental setting of Ref. 5. However, we note that the effec-
tive polarizability α of a single impurity may be significantly
increased by the presence of a nearby conducting surface.41

B. Graphene between HfO2 layer of finite thickness
and a thick SiO2 layer

Referring to Fig. 1, in this subsection we consider a
three-layer structure that consists of a dielectric material
of finite thickness L (we choose HfO2 with ε1 = 22), a
semi-infinite layer of SiO2 (with ε3 = 3.9), and a layer of
air between them with thickness H that contains graphene.
This configuration may represent the physical situation where
single-layer graphene sits on a SiO2 substrate of thickness
∼300 nm and is top gated through a thin layer of HfO2 with
L � 10 nm.

In Fig. 4 we assume a zero air gap (H = 0) between the
two dielectrics with graphene placed right on their boundary
(zg = 0). We show the dependence of the conductivity σ

on charge carrier density n̄ for several model distributions
of charged impurities: a homogeneous 3D distribution of
uncorrelated charges throughout the HfO2, which extends up to
a distance d from graphene, as well as a 2D planar distribution
placed in HfO2 a distance d away from graphene, with both

uncorrelated (rc = 0) and correlated (rc = 6 nm, p ≈ 0.28)
charges that are described with the HD model.

One notices in Fig. 4 that finite thickness L exhibits strong
effects on conductivity, both in quantitative and qualitative
aspects, which are dependent on the underlying structure of
charged impurities. First noted is that the overall conductivity
is generally increased compared to that seen in Figs. 1
and 2, which is expected due to the more efficient screening
of charged impurities by a high-κ material such as HfO2.
Moreover, the conductivity is seen to increase with decreasing
L for all n̄ in the 2D cases and only for lower n̄ in the
3D case, which may be explained by the more efficient
screening of impurities due to the proximity of a metal gate.
Furthermore, the conductivity is larger in the 3D case than
in the corresponding uncorrelated 2D case because the same
number of impurities is spread over larger distances from
graphene so that the resulting scattering potential in graphene
is weaker. As regards the distance d, one notices similar
trends as in Fig. 2, namely, a finite d increases both the
value of conductivity and its slope (i.e., mobility) in both
3D and 2D models. However, as regards the effects of finite
correlation length rc in the 2D models with finite L, one
sees little evidence to the increase in the initial slope of
conductivity at lower n̄, in contrast to the trends seen in Fig. 2,
whereas saturation of conductivity at higher n̄ seems to get
stronger than in Fig. 2 as L decreases. In fact, for the shortest
thickness of L = 1 nm for both d = 0 and d = 0.3 nm, this
saturation turns into a broad maximum of conductivity around
n̄ = 1011 cm−2, followed by a still broader minimum at higher
n̄ values.

One remarkable feature seen in Fig. 4 is that the con-
ductivity generally does not vanish in the SBT limit when
n̄ → 0 for finite L, but rather reaches a minimum value
σ (0). This minimum may be easily estimated for d = 0 by
using the limiting form of the background dielectric constant
εbg(q) = ε1/(2qL) when qL � 1 in Eq. (16), which then gives

σ (0) =
(

ε1

πrsL

)2
e2/(2h)

nimpS(0)
= 4vF

πrs

C2
L

nimpS(0)
, (33)

where S(0) = 1/3 for the 3D case, S(0) = 1 for the uncorre-
lated 2D case, andS(0) = SHD(0) = (1 − p)3/(1 + p) ≈ 0.29
for the correlated 2D case in the HD model. In the second
expression for σ (0) in Eq. (33) we emphasize that the minimum
conductivity in the SBT limit for neutral graphene is governed
by the geometric capacitance per unit area, CL = ε1/(4πL),
of the dielectric with finite thickness L used in top-gating the
graphene.

Finally, one notices in Fig. 4 that, as the thickness L

increases in the 3D case, the conductivity gains quite strong
superlinear dependence with increasing n̄. This dependence
may be estimated by considering Eq. (16) in the limit of large
but finite L, such that qL � 1. In that case, the background
dielectric constant becomes εbg ≈ (ε1 + ε2)/2, whereas the
3D structure factor, which is determined by the first term
in Eq. (31), goes as S(q) ≈ 1/ (2qL), so that Eq. (16) gives
σ ∝ n̄3/2/Nimp, where Nimp = N/(AL) is the volume density
of charge impurities. We note that this behavior of conductivity
in graphene at large n̄ is a consequence of the 3D nature of
a distribution of uncorrelated charges that gives rise to the
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FIG. 4. The dependence of conductivity (in units of e2/h) on the average charge carrier density n̄ (in units of 1013 cm−2) for a structure
that consists of a HfO2 layer (ε1 = 22) with finite thickness L and a semi-infinite layer of SiO2 (ε3 = 3.9), with zero gap (H = 0) between
them and graphene placed on their boundary (zg = 0). The structure of the system of charged impurities is assumed to be either (a), (b) a 3D
homogeneous distribution throughout the HfO2 layer extending up to a distance d from graphene, or a planar 2D distribution placed in the
HfO2 layer a distance d away from graphene, with the correlation length being (c), (d) rc = 0 or (e), (f) rc = 6 nm (packing fraction p ≈ 0.28)
in the HD model. In panels (a), (c), (e) we set d = 0, while in panels (b), (d), (f) we set d = 0.3 nm. The thickness of the HfO2 layer takes
values L = 1 nm (solid lines), 2 nm (dashed lines), 5 nm (dotted lines), and 10 nm (dash-dotted lines). The insets show the blow-ups of the
regions with n̄ � 5 × 1011 cm−2.

special form of structure factor, S(q) ≈ 1/(2qL). The lack of
experimental observations of such superlinear dependence of
conductivity in graphene should not be taken as evidence to
rule out the role of 3D distributions of impurities, because
both the correlation among impurities and their layering close
to graphene, as described in the Appendix B for the OCP
and HSHW models, seem to be capable of eliminating the
superlinear dependence.

In Fig. 5 we consider the same three-layer structure as in
Fig. 4, but with a layer of air (ε2 = 1) of finite thickness
H = 0.6 nm between the HfO2 and SiO2 dielectrics, and
with graphene placed midway between them at zg = 0.3 nm,
resulting in the gaps of air of equal thickness 0.3 nm on both
sides of graphene. We investigate the effects of finite thickness
L of HfO2 on the mobility of graphene, μ = σ/(en̄), as a
function of charge carrier density n̄ for a 2D planar distribution
of uncorrelated point charges placed either (A) on graphene
(d = 0) or (B) on the surface of the HfO2 layer a distance
d = 0.3 nm away from graphene, both in the presence of the

0.3 nm gaps, as well as the case (C) from Fig. 4(c) having zero
gaps between graphene and the HfO2 and SiO2 dielectrics
with the 2D distribution of uncorrelated charges placed on
graphene (d = 0). One may see in Fig. 5 that the mobility
generally increases with decreasing L within each of the three
configurations, (A), (B), and (C), but that there are remarkable
differences between them in the magnitude of the mobility and
its dependence on n̄. In the configurations (A) and (C) with
charge impurities placed on graphene, the mobility generally
decreases with increasing n̄, whereas in the configuration (B)
with the impurities placed on the surface of the HfO2 layer
with a finite gap relative to the graphene, the mobilities with
higher L values pass through a minimum at a low n̄ value and
further increase as n̄ increases. Moreover, the magnitudes of
the mobility with equal L values are seen in Fig. 5 to increase in
the order of configurations (A) → (C) → (B), which is also the
order of increasing spread of the curves with different L values
within each configuration. Finally, it is interesting to notice that
differences between the magnitudes of the mobility in the three
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FIG. 5. (Color online) The dependence of the mobility μ =
σ/(en̄), (in units of cm2 V−1 s−1) on the average charge carrier density
n̄ (in units of 1013 cm−2) for a three-layer structure that consists of a
HfO2 (ε1 = 22) with thickness L, a layer of air (ε2 = 1) with thickness
H , and a semi-infinite layer of SiO2 (ε3 = 3.9), with graphene placed
at distance zg above the top surface of the HfO2 layer. A planar
distribution of uncorrelated (rc = 0) charged impurities is placed a
distance d underneath graphene. The cases of graphene with equal
air gaps of zg = H − zg = 0.3 nm towards the two dielectrics are
shown with the impurities placed on graphene (d = 0) (case A, thin
black lines) or on the top surface of the HfO2 layer (d = 0.3 nm)
[case B, thick dark gray (red) lines]. The case of graphene with zero
gaps (zg = H = 0) towards the two dielectrics and the impurities
placed on graphene (d = 0) [case C, medium light gray (green) lines]
corresponds to the conductivity σ shown Fig. 4(c). The thickness
of the HfO2 layer takes values L = 1 nm (solid lines), 2 nm
(dashed lines), 5 nm (dotted lines), 10 nm (dash-dotted lines), and ∞
(double-dotted lines).

different configurations with L → ∞ become diminished as
n̄ decreases.

One may conclude from Fig. 5 that the existence of a finite
gap between graphene and the nearby dielectric, as well as
the precise location of impurities within that gap (with the
extreme positions being on graphene and on the surface of
the dielectric) both have decisive influences on the mobility.
Noting that the configuration (A) with impurities on graphene
in the presence of finite gaps was considered in Ref. 15, it is
remarkable how closing the gaps in configuration (C) increases
the magnitude of the mobility and increases the spread of its
values for different L values, whereas moving the impurities
to the surface of a HfO2 layer in the presence of finite gaps
in configuration (B) further accentuates those two effects, and
even gives rise to a nonmonotonic dependence of the mobility
on n̄ for thicker HfO2 layers. While the role of the distance of
impurities from graphene was discussed in detail for the case of
zero gaps,9 one may conclude from our analysis that the size
of the gap(s) between graphene and the nearby dielectric(s)
plays an equally important role in modeling the conductivity
of graphene in a broad range of charge carrier densities.

C. Minimum conductivity of graphene
and residual charge density

In this subsection we turn to studying the conductivity
minimum as n̄ → 0 due to the presence of electron-hole
puddles by using Eqs. (17) and (21) based on the SCT theory.9

We consider a 2D planar distribution of charged impurities

FIG. 6. (Color online) The dependence of the variance of the
potential in graphene C0 (in units e2nimp) on the average charge carrier
density n̄ (in units of cm−2) for a two-layer structure that consists of
a semi-infinite SiO2 substrate (L → ∞, ε1 = 3.9) and a semi-infinite
layer of air (H → ∞, ε2 = 1), with graphene placed either on SiO2

with zero gap (zg = 0) [thick gray (red) lines and symbols] or above
SiO2 with the air gap of zg = 0.3 nm (thin black lines and symbols).
A planar distribution of charged impurities with the correlation length
rc is placed in/on SiO2 at a fixed distance d = 0.3 nm from graphene.
The case of uncorrelated impurities (rc = 0) (solid lines, crosses) is
compared with the cases of correlated impurities with rc = 5 nm
(packing fraction p = 0.2) in the HD model (dashed lines, circles)
and in the SC model (dotted lines, squares). The left inset shows the
residual charge carrier density (in units of 1011 cm−2) and the right
inset shows the conductivity minimum σmin (in units of e2/h), as
functions of the correlation distance rc (in nm).

and note that, unlike the integral in Eq. (16) for conductivity,
in order to render the integral in Eq. (21) convergent one must
assume that the impurities are placed a finite distance d away
from graphene, which we fix in this subsection at d = 0.3 nm.

In Fig. 6 we consider a configuration similar to that in Fig. 2,
with a semi-infinite SiO2 substrate (L → ∞ with ε1 = 3.9)
and a semi-infinite layer of air (H → ∞ with ε2 = 1), with
graphene placed in the air at a distance zg � 0 above SiO2.
We show in the main panel of Fig. 6 the n̄ dependence of the
variance of the potential in the plane of graphene C0 from
Eq. (21), where we explore the effects of the size of the air gap
between graphene and the SiO2 substrate by considering both
the zero gap case with zg = 0 (impurities embedded at the
depth of d = 0.3 nm inside SiO2) and the finite gap case with
zg = d = 0.3 nm (impurities placed on the surface of SiO2).
In addition to considering uncorrelated impurities, we use a
finite correlation length of rc = 5 nm (p ≈ 0.2) allowing us to
compare in the main panel the effects of the SC and the HD
models on C0. In the insets of Fig. 6, we show the dependence
of the residual charge carrier density n∗ and the corresponding
minimum conductivity σmin = σ (n∗) on rc for both the HD and
the CS models, in the presence of both zero and finite gaps.

One notices in Fig. 6 that the size of the gap between
graphene and the SiO2 substrate exerts a very strong effect
on the magnitude of C0 for all n̄, echoing similar conclusion
drawn from the results analyzed in Fig. 5. The gap size also
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strongly affects the values of n∗ for all correlation lengths rc,
whereas the effect of the gap size on σmin is seen to diminish
as rc decreases. The latter result seems to justify the neglect of
the graphene-substrate gap, which is implicitly invoked in all
simulations of the conductivity minimum in graphene in the
presence of charged impurities with small or vanishing packing
fractions.8–11 As far as the comparison between the HD and
SC models is concerned, one sees a noticeable difference in
the variance C0 at small n̄, which diminishes at large n̄ values.
The differences between the two models are surprisingly small
in both n∗ and σmin, and only become noticeable when the
packing fraction p approaches the breakdown value of 0.25
for the SC model for sufficiently large correlation lengths rc.
These results again lend confidence to simulations that use the
SC model with short correlation lengths among the charged
impurities, which were seen to yield robustly satisfactory
interpretations for the conductivity minimum in graphene due
to electron-hole puddles.8–11

Finally, in Fig. 7 we consider a configuration that was
studied in Fig. 4(d) with graphene sandwiched between a
layer of HfO2 of finite thickness L and a semi-infinite layer of
SiO2, with no gaps between graphene and the two dielectrics
(zg = H = 0), and with a 2D distribution of uncorrelated
charged impurities embedded at a depth d = 0.3 nm inside the
HfO2 layer. In the main panel of Fig. 7 we show the dependence
of the variance C0 on the charge carrier density in graphene n̄,
which exhibits an overall reduction in the magnitude of C0 in

FIG. 7. (Color online) The dependence of the variance of the
potential in graphene C0 (in units e2nimp) on the average charge
carrier density n̄ (in units of cm−2) for a structure that consists of a
HfO2 (ε1 = 22) with thickness L and a semi-infinite layer of SiO2

(ε3 = 3.9) with zero gap between them (H = 0) and graphene placed
on their boundary (zg = 0). A planar distribution of uncorrelated
charged impurities is embedded at a depth d = 0.3 nm inside the
HfO2 layer, as in Fig. 4(d). The thickness of the HfO2 layer takes
values L = 1 nm (solid lines), 2 nm (dashed lines), 5 nm (dotted
lines), 10 nm (dash-dotted lines), and ∞ (double-dotted lines). The
(red) symbols + show in the left inset the residual charge carrier
density (in units of 1011 cm−2) and in the right inset the conductivity
minimum σmin (in units of e2/h), as functions of the thickness of
the HfO2 layer L. The (green) symbols × in the right inset show
σ (n̄ = 0) as a function of the HfO2 layer thickness L.

comparison to Fig. 6 due to a larger dielectric constant of HfO2,
as well as a strong decrease of C0 with decreasing L owing
to the screening of impurities by the nearby metallic gate. As
a consequence, the resulting residual density n∗ is seen in an
inset to Fig. 6 to decrease with decreasing L, which indicates
that fluctuations in the charge carrier density in graphene due
to electron-hole puddles would be gradually erased as the
metal gate gets closer to graphene and provides more efficient
screening of the fluctuations of the electrostatic potential.
Finally, in the inset showing σmin we explore the contribution
of electron-hole puddles to raising the conductivity minimum
above the SBT value σ (0) that was discussed in Fig. 4 via
Eq. (16) in the limit n̄ → 0. It is interesting to note that,
even though the contribution σ (n∗) − σ (0) that comes from
the residual density n∗ decreases with decreasing L, the
dependence of σ (0) ∝ L−2 implied from Eq. (33) due to
geometric capacitance of the HfO2 layer appears to increase
much faster with decreasing L, so that the net value of the
conductivity minimum σmin = σ (n∗) actually increases as the
thickness L of the HfO2 layer decreases.

IV. CONCLUDING REMARKS

We have investigated the conductivity of doped single-layer
graphene in the limit of semiclassical Boltzmann transport,
as well as the conductivity minimum of a nominally neutral
graphene within the self-consistent transport (SCT) theory,
placing emphasis on the effects due to the structure of charged
impurities near graphene and the structure of the surrounding
dielectrics. This was achieved by treating graphene as a
zero-thickness layer embedded in a stratified structure of three
dielectric layers and by using the full electrostatic Green’s
function for that structure. We have used the energy-loss
method to derive the conductivity of graphene from the friction
force on a slowly moving structure of charged impurities,
based on the polarization function of graphene within the RPA
for its π electrons treated as Dirac’s fermions. Regarding the
structure of charged impurities, we have analyzed the effects of
their distance from graphene, the effects of correlation distance
between the impurities within the hard-disk (HD) model for
a 2D planar structure, and the effects of a homogeneous
distribution of impurities over a 3D region. Besides point-
charge impurities, we have analyzed the effects of a finite
dipole moment on each impurity, as well as the effects of
clustering of impurities into circular disks. Regarding the
structure of the surrounding dielectrics, we have analyzed the
effects of finite thickness of one dielectric layer that pertains
to the top gating of graphene through a high-κ dielectric, as
well as the effects of finite gap(s) of air between graphene and
the nearby dielectric(s).

For graphene lying on a semi-infinite substrate with zero
gap, the effects of finite distance of impurities and finite
cluster size both give rise to a slightly superlinear dependence
of conductivity σ on the average charge carrier density n̄

in a heavily doped graphene. Taking advantage of the HD
model that allows studying 2D structures of impurities with
relatively large packing fractions, it is shown that increasing
the correlation distance among the impurities gives rise to a
strongly increasing slope of σ at low n̄ values, accompanied by
a pronounced sublinear dependence of conductivity on charge
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carrier density at higher n̄ values. Making reasonable choices
of both the impurity density and the correlation distance in
the HD model gives good agreement with the experimental
data that exhibit sublinear behavior of the conductivity
in graphene,5 whereas inclusion of a perpendicular dipole
moment with sufficiently large polarizability also describes
the electron-hole asymmetry in soma data.

Reducing the thickness of a high-κ dielectric gives rise to
an increase in conductivity of graphene at all charge carrier
densities in the presence of a 2D distribution of charged
impurities and, in particular, causes the conductivity at n̄ = 0
to take finite values. The same conclusions are also true
for a homogeneous 3D distribution of impurities throughout
the dielectric at low charge carrier densities, but the trend
is reversed at higher charge carrier densities because of the
pronounced superlinear dependence of the conductivity on n̄

as the thickness of the dielectric increases. Further examination
of the effects of the dielectric thickness on graphene’s mobility,
μ = σ/(en̄), reveals that the existence of a finite gap between
graphene and the nearby dielectric and the precise location
of a 2D system of impurities both play important roles in the
dependence of μ on charge carrier density. While the role of
the distance of the impurities from graphene was discussed
before, our results point to the need of including the size of
the graphene-substrate gap as another important parameter in
modeling the conductivity of graphene.

While the effects of the gap size are also important in
the variance of the electrostatic potential in graphene and
in the resulting residual charge carrier density within the
SCT theory, such effects are seen to gradually diminish in
the corresponding conductance minimum as the correlation
distance among the impurities in a 2D structure is reduced. This
partially justifies the neglect of the graphene-substrate gap in
previous studies of the conductivity minimum in the presence
of uncorrelated impurities. Finally, reducing the thickness of
the high-κ dielectric in a top-gated graphene is shown to reduce
both the variance of the potential and the resulting residual
charge carrier density in graphene, showing that the effects
of a system of electron-hole puddles on conductivity in a
nominally neutral graphene are likely to be washed out due
to strong screening by a nearby metallic top gate. However,
the minimum conductivity would continue to increase with
decreasing thickness of the high-κ dielectric due to the effect
of its geometric capacitance. These opposing roles of the
electron-hole puddles in neutral graphene and the geometric
capacitance of a dielectric layer in the minimum conductivity
of top-gated graphene are worth further exploration.

Summarizing our main findings, we have shown that the
effects of finite distance of impurities from graphene, the size
of the disk-like clusters of impurities, and the 3D distribution
of impurities throughout a dielectric of finite thickness all
give rise to superlinear dependence of conductivity on charge
carrier density in heavily doped graphene. Next, the thickness
of a dielectric and its gap to graphene play important roles in
both the conductivity of doped graphene and the conductivity
minimum in neutral graphene. Those effects are conveniently
taken into account using the electrostatic Green’s function for
a layered structure of dielectrics. Finally, a strong increase
in the slope of conductivity for low charge carrier densities
and its saturation at high densities are both well described by

large correlation distances among charged impurities in a 2D
structure, which may be conveniently described by means of a
HD model that allows the use of much higher packing fractions
than the simple model of a steplike correlation.
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APPENDIX A: GREEN’S FUNCTION

Assume that a single layer of graphene with large area
is placed in the plane z = zg of a Cartesian coordinate
system with coordinates R ≡ {r,z}, where r ≡ {x,y}, and is
embedded in a structure that consists of several dielectric
layers parallel to graphene, as shown in Fig. 1. By invoking
a translational invariance in the directions of the 2D vector
r, one may obtain Green’s function (GF) G(R,R′; t − t ′) ≡
G(r − r′; z,z′; t − t ′) for the Poisson equation for the entire
structure by means of a Fourier transform (FT) with respect to
position (r → q) and time (t → ω), defined via

G(r − r′; z,z′; t − t ′)

=
∫

d2q
(2π )2

∫ ∞

−∞

dω

2π
eiq·(r−r′)−iω(t−t ′) G̃(q; z,z′; ω). (A1)

If one assumes that graphene has zero thickness, then the
FT of the above GF may be expressed in terms of FT of
the GF (FTGF) for the dielectric structure without graphene,
G(0)(R,R′; t − t ′), as

G̃(q; z,z′; ω)= G̃(0)(q; z,z′)

− e2χ (q,ω)G̃(0)(q; z,zg)G̃(0)(q; zg,z
′)

1 + e2χ (q,ω)G̃(0)(q; zg,zg)
, (A2)

where χ (q,ω) is a 2D, in-plane polarization function of
graphene. We note that this result is easily obtained from a
Dyson-Schwinger equation for the full FTGF G̃(q; z,z′; ω),
which may be generalized to solving a simple matrix algebraic
problem for a system of a finite number of graphene layers
of zero-thickness that are embedded in a stratified structure
of dielectric slabs described by the FTGF G̃(0)(q; z,z′).17

Implicit in the solution to this equation is an assumption
that the dielectric properties of the surrounding structure
do not change upon inclusion of graphene. Namely, it is
particularly easy to derive expressions for the FTGF G̃(0) of
layered structures by assuming that their dielectric constants
are uniform throughout the respective dielectrics, and only
change abruptly at their boundaries. However, interactions
between the dielectrics and the graphene sheet may affect
their polarizability when graphene is laid on their surfaces,
rendering their dielectric constants inhomogeneous, and hence
the use of the graphene-free result for G̃(0) in Eq. (A2) may
become problematic.

In order to find G̃(0)(q; z,z′), we assume that the dielectric
structure consists of three layers that occupy the intervals along
the z axis defined by I1 = [−L,0], I2 = [0,H ], and I3 =
[H,∞), and are characterized by the relative bulk dielectric
constants εj with j = 1,2,3, as shown in Fig. 1. To describe a
specific physical configuration, one may assume that, e.g.,
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the interval I1 is occupied by a high-κ dielectric such as
HfO2 (ε1 ≈ 22) of finite thickness L > 0, the interval I2

represents a layer of vacuum or air (ε2 = 1) of thickness
H � 0 that contains graphene (zg ∈ I2), and I3 is a thick
(semi-infinite) layer of SiO2 (ε3 ≈ 3.9). Thus, for finite zg > 0
and H > zg , such a configuration allows for finite vacuum
gaps of thicknesses zg and H − zg between graphene and the
dielectrics occupying the intervals I1 and I3, respectively.

The FTGF for the above configuration of dielectric layers,
G̃(0)(q; z,z′), may be obtained as a tensor G̃

(0)
jk (q; z,z′), where

indices j and k correspond to specific locations of the
observation point, z ∈ Ij , and the source point, z′ ∈ Ik , by
solving the FT of the Poisson equation

∂2

∂z2
G̃

(0)
jk (z,z′) − q2G̃

(0)
jk (z,z′) = −4π

εj

δjk δ(z − z′), (A3)

where δjk is a Kronecker delta with j,k = 1,2,3, and where
we dropped q in G̃(0)(q; z,z′) for the sake of brevity. When
the potential distribution in the system is determined by the
potentials at external, ideally conducting electrodes, solutions
of Eq. (A3) need to satisfy homogeneous boundary conditions
of the Dirichlet type at z = −L and z → ∞ giving

G̃
(0)
1k (−L,z′) = 0, (A4)

G̃
(0)
3k (∞,z′) = 0 (A5)

for k = 1,2,3. When both z and z′ are in the interval Ij , one
usually defines two components of the corresponding diagonal
element of the FTGF as

G̃
(0)
jj (z,z′) =

{
G̃<

j (z,z′), z � z′,

G̃>
j (z,z′), z′ � z,

(A6)

which must satisfy the continuity and the jump conditions at
z = z′,

G̃<
j (z′,z′) = G̃>

j (z′,z′), (A7)

∂

∂z
G̃>

j (z,z′)
∣∣∣∣
z=z′

− ∂

∂z
G̃<

j (z,z′)
∣∣∣∣
z=z′

= −4π

εj

. (A8)

Moreover, assuming abrupt interfaces among various di-
electrics, the solution of Eq. (A3) needs to satisfy the usual

matching conditions at the interfaces z = 0 and z = H

between dielectric regions,

G̃
(0)
1k (0,z′) = G̃

(0)
2k (0,z′), (A9)

ε1
∂

∂z
G̃

(0)
1k (z,z′)

∣∣∣∣
z=0

= ε2
∂

∂z
G̃

(0)
2k (z,z′)

∣∣∣∣
z=0

, (A10)

G̃
(0)
2k (H,z′) = G̃

(0)
3k (H,z′), (A11)

ε2
∂

∂z
G̃

(0)
2k (z,z′)

∣∣∣∣
z=H

= ε3
∂

∂z
G̃

(0)
3k (z,z′)

∣∣∣∣
z=H

, (A12)

for k = 1,2,3.
For the sake of definiteness, we assume that charged

impurities may only occupy the intervals I1 and I2, so that
we only need the elements G̃

(0)
jk of the FTGF with k = 1,2.

By solving Eq. (A3) subject to the conditions in Eqs. (A4)
and (A5) and Eqs. (A9)–(A12), we obtain for z′ ∈ I1 (Ref. 17)

G̃
(0)
11 (z,z′) = 4π

ε1q

sinh [q(z< + L)]

sinh (qL)

×
ε1
ε2

cosh(qz>) − � sinh(qz>)

� + �
, (A13)

where z< = min(z,z′), z> = max(z,z′), � ≡
(ε1/ε2) coth(qL), and

� = ε2 tanh(qH ) + ε3

ε2 + ε3 tanh(qH )
, (A14)

giving

G̃
(0)
21 (z,z′) = G̃

(0)
11 (0,z′) [cosh(qz) − � sinh(qz)] , (A15)

whereas for z′ ∈ I2 we find15

G̃
(0)
22 (z,z′) =

2π
ε2q

� + �
{(� + �)e−q|z−z′ |

+ (� − 1)(� − 1) cosh[q(z − z′)]
− (�� − 1) cosh[q(z + z′)]
+ (� − �) sinh[q(z + z′)]}. (A16)

It is worthwhile mentioning that, with graphene placed at zg ∈
I2, one obtains from Eq. (A16) an explicit expression for the
background dielectric function εbg(q) ≡ 2π/[qG̃

(0)
22 (q; zg,zg)]

as

εbg(q) = ε2

2

� + �

cosh2(qzg) − �� sinh2(qzg) + (� − �) cosh(qzg) sinh(qzg)
. (A17)

For the sake of completeness, we briefly comment on other
elements of the FTGF. One may verify that the symmetry
relation G̃

(0)
12 (z,z′) = G̃

(0)
21 (z′,z) is satisfied by defining

G̃
(0)
12 (z,z′) = G̃22(0,z′)

sinh [q(z + L)]

sinh (qL)
. (A18)

Moreover, fluctuations of the potential in the interval I3 may
be found from

G̃
(0)
3k (z,z′) = G̃

(0)
2k (H,z′)e−q(z−H ), (A19)

with k = 1,2, which may also be used to deduce components
of the FTGF for the source point z′ ∈ I3 via symmetry relations
G̃

(0)
13 (z,z′) = G̃

(0)
31 (z′,z) and G̃

(0)
23 (z,z′) = G̃

(0)
32 (z′,z).

Finally, it may be of interest to quote the results for the
background dielectric function εbg(q) and the profile function
ψ(q,z) in Eq. (19) for a few cases of special interest. First, we
consider the familiar case of a semi-infinite substrate (L→∞)
with dielectric constant ε1 ≡ εs that occupies the region z < 0,
whereas we let H → ∞ to represent a semi-infinite region
z > 0 of air or vacuum with ε2 = 1 that contains a single layer
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of graphene a distance zg � 0 above the substrate. We then
obtain

εbg(q) =
[

1 − εs − 1

εs + 1
exp(−2qzg)

]−1

(A20)

and

ψ(q,z) =

⎧⎪⎪⎨⎪⎪⎩
exp(qz)

cosh(qzg )+εs sinh(qzg ) , z � 0,

cosh(qz)+εs sinh(qz)
cosh(qzg )+εs sinh(qzg ) , 0 � z � zg,

exp[−q(z − zg)], z � zg.

(A21)

As a second example, we consider a semi-infinite substrate
(L → ∞) with dielectric constant ε1 that occupies the region
z < 0, but we retain H finite and allow for three different
dielectric constants as in the original model, and we place
graphene at zg = H , i.e., at the boundary between the
regions with dielectric constants ε2 and ε3. Assuming that
the impurities may only reside in the region z < 0, this
configuration describes a case with a dielectric spacer of
thickness H between graphene and the region with impurities,
giving

εbg(q) = ε3 − ε2

2
+ ε2

[
1 + ε2 − ε1

ε2 + ε1
exp (−2qH )

]−1

(A22)

and ψ(q,z) = ψ0(q) eqz for z < 0, where

ψ0(q) = ε2

ε2 cosh(qH ) + ε1 sinh(qH )
. (A23)

APPENDIX B: GEOMETRIC STRUCTURE MODELS

We summarize expressions that define the structure factor
for the hard disk (HD) model due to Rosenfeld25 for a 2D
planar distribution of charged impurities with the packing
fraction p = πnimpr

2
c /4, where nimp = N/A is their areal

number density and rc is the disk diameter,

SHD(q) =
{

1 + 16a

[
J1(qrc/2)

qrc

]2

+ 8b
J0(qrc/2)J1(qrc/2)

qrc

+ 8p

1 − p

J1(qrc)

qrc

}−1

(B1)

with

a = 1 + x(2p − 1) + 2p

1 − p
,

b = x(1 − p) − 1 − 3p

1 − p
,

x = 1 + p

(1 − p)3
.

Note that the important long-wavelength limit is given
by SHD(0) = 1/x = (1 − p)3/(1 + p). The expression in
Eq. (B1) should be compared with the structure factor for
a model with the steplike pair correlation function,10,11

SSC(q) = 1 − 8p

qrc

J1(qrc), (B2)

which gives SSC(0) = 1 − 4p.

Next consider a 3D distribution of N point charges
Ze occupying the region −L � z � 0 with a large but
finite thickness L and the dielectric constant ε1, while
graphene sits in a region with the dielectric constant ε2

at the distance zg = H � 0. If one disregards the effects
of the proximity of graphene and uses the pair correlation
(or radial distribution) function for the bulk of a homoge-
neous charge distribution, g3D(r2 − r1; z2 − z1) = g3D(R) with
R =

√
(r2 − r1)2 + (z2 − z1)2, Eqs. (31) and (A23) give

S(q) = Z2

πL
ψ2

0 (q)
∫ ∞

q

dQ

Q

S3D(Q)√
Q2 − q2

, (B3)

where

S3D(Q) = 1 + Nimp

∫
d3R eiQ·R [g3D(R) − 1] , (B4)

with Nimp = N/ (AL) being the volume density of particles
and Q = (q,qz) a 3D wave vector. For example, we may
consider a model for electrostatic correlations among mobile
charges in a one-component plasma (OCP)42 at temperature
T with the square of the inverse Debye length defined by
Q2

D = 3πNimpZ
2e2/(ε1kBT ), and use the long-wavelength

result for this system S3D(Q) = Q2/(Q2 + Q2
D) in Eq. (B3)

to obtain

S(q) = Z2 ψ2
0 (q)

2L

√
q2 + Q2

D

. (B5)

This result is not used in this work, but it may be found useful
in future modeling of the interaction of graphene with an OCP
with a spacer layer of thickness H and dielectric constant ε2

between graphene and the OCP.
Finally, it is worthwhile making a few comments on

the possible implications of describing a 3D distribution of
charged impurities with the model of hard spheres near a hard
wall (HSHW) that is frequently invoked in discussions of the
surface structure of charged colloids.43 Monte Carlo (MC)
simulations and analytical parametrizations of the HSHW
model show that the density of spheres exhibits peaks at
distances from the wall that are approximately given by odd
multiples of the sphere’s radius, Rs . This layering of hard
spheres near the wall is characterized by the peak magnitudes
in the density that decrease sharply with increasing distance
from the wall.43 Assuming that the interaction of impurities
with graphene may described by a hard wall interaction, the
distribution function f1(z) that appears in Eq. (31) could be
approximated by a series of delta-function peaks at distances
z� = (2� + 1)Rs , with � = 0,1,2, . . . . Moreover, the MC
simulations of the structure of the HSHW model show that,
within each layer of hard spheres, the corresponding pair
correlation function g3D(r; z�,z�) involves a dependence on
the radial distance r parallel to the wall that resembles a pair
correlation function for an isotropic planar structure with the
characteristic correlation length rc ≈ 2Rs . By keeping in f1(z)
the peak at z0 = Rs that is closest to graphene as the dominant
one, and neglecting the pair correlations between different
layers of hard spheres, one may approximate the in-layer pair
correlation function g3D(r; z0,z0) in Eq. (32) with, e.g., the
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function g2D(r) in the HD model with rc = 2Rs . Thus, the
effects of using the HSHW model for a 3D structure of charged
impurities may be qualitatively mapped to the effects of a series

of 2D planar structures, which are in some cases dominated
by the nearest layer that is akin to the 2D models of charged
impurities used in this work.
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