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Exploring the XPS limit in soft and hard x-ray angle-resolved photoemission using
a temperature-dependent one-step theory
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We present a theory of temperature-dependent photoemission which accurately describes phonon effects in
soft and hard x-ray angle-resolved photoemission. Our approach is based on a fully relativistic one-step theory
of photoemission that quantitatively reproduces the effects of phonon-assisted transitions beyond the usual
k-conserving dipole selection rules which lead to the so-called XPS limit in the hard x-ray and/or high temperature
regime. Vibrational atomic displacements have been included using the coherent potential approximation in
analogy to the treatment of disordered alloys. The applicability of this alloy analogy model is demonstrated by
direct comparison to experimental soft x-ray data from W(110) showing very satisfying agreement.
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I. INTRODUCTION

Angle-resolved photoemission (ARPES) has developed
over the past several decades into the technique of choice
for determining the electronic structure of any new crystalline
material, and it is thus in some respects a very mature tool
in materials physics.1,2 It has always been realized, however,
that the results obtained are restricted in sensitivity to the
near surface of the systems studied, due to the short inelastic
mean free paths (IMFPs) of ∼5–10 Å of the low energy
photoelectrons, which are typically in the range from 10 to
150 eV.3 To overcome this limitation of surface sensitivity,
there is now considerable interest in using higher energy x
rays in the soft x-ray sub-keV or even hard x-ray multi-keV
regime to access deeper-lying layers in a sample, thus sampling
more bulklike properties.4–21 One can thus think of soft x-ray
ARPES (SARPES) or hard x-ray ARPES (HARPES), respec-
tively. These techniques have to date been applied to a wide
variety of materials, including free-electron and transition
metals,4,11 strongly correlated oxides and high TC materials,6,7

heavy fermion systems,6 mixed-valent Ce compounds,9 di-
lute magnetic semiconductors,16,19,21 layered transition metal
dichalcogenides,15 and bulk and Rashba phenomena.17 Addi-
tional advantages in such experiments are being able to tune
to core-level resonances so as to identify the atomic-orbital
makeup of ARPES features,21 to map three-dimensional Fermi
surfaces,15 and to take advantage of the longer IMFPs, which
translate into less smearing of dispersive features along the
emission direction (usually near the surface normal).14

Going higher in energy however comes with some addi-
tional challenges for interpretation of the data.4,10,14 Deviations
from the dipole approximation in photoelectron excitation
mean that the momentum of the photon can result in a non-
negligible shift of the position of the initial-state wave vector in
the reduced Brillouin zone (BZ), as first pointed out some time
ago. Phonon creation and annihilation during photoemission

also hinders the unambiguous specification of the initial state in
the BZ via wave vector conservation.4,5,10,11,13,14,16 Following
Shevchik,22 the photoemission intensities at a given energy E

and vector k can be approximately divided into zero-phonon
direct transitions IDT(E,k) and phonon-assisted nondirect
transitions INDT(E,k). As a rough guide to the degree of
direct-transition behavior expected in an ARPES experiment,
one can use a temperature-dependent Debye-Waller factor
W (T ) which qualitatively represents the fraction of direct
transitions.4,5,10,14,22–24 As a first approach that aimed to
go beyond this simple scheme for temperature-dependent
ARPES, Larsson and Pendry25 introduced a model called
Debye-Waller model later on which incorporates the effect
of lattice vibrations on the photoemission matrix elements.
More than 15 years later Zampieri et al.26 introduced a cluster
approach to model the temperature-dependent excitation of
valence band electrons for photon energies of about 1 keV.
More recently Fujikawa and Arai27,28 discussed phonon effects
on ARPES spectra on the basis of nonequilibrium Green’s
function theory. However, to date no truly quantitative and
generally applicable model has been developed for predicting
these phonon effects in ARPES.

We present an approach which accurately models phonon
effects over the full energy range from normal low-energy
ARPES to HARPES. More importantly it converges for high
temperatures and/or photon energies to the so called XPS limit
in photoemission, in particular the development of matrix-
element-weighted density-of-states (MEW-DOS)-like features
in the intensity distribution.13,29 Our alloy analogy model
includes vibrational atomic displacements via the coherent
potential approximation (CPA), where vibrations of different
lattice sites are assumed to be uncorrelated and averaged in the
sense of CPA over various possible displacements which are
calculated within Debye theory. Using the CPA formulation of
the one-step model30–32 provides a self-consistent temperature-
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dependent averaging of the photoemission matrix elements. In
other words, we describe in a quantitative sense the breakdown
of the k-conserving rules due to phonon-assisted transitions,
the driving mechanism that leads finally to the XPS limit.

II. CALCULATION OF THE CPA PHOTOCURRENT AT
FINITE TEMPERATURES

Based on the CPA approach for configurational averaging
the temperature-dependent photocurrent at a given final-state
energy εf , wave vector k, and temperature T follows to

〈IAR-PES(εf ,k,T )〉 = 〈I at(εf ,k,T )〉 + 〈I s(εf ,k,T )〉
+ 〈Ims(εf ,k,T )〉 + 〈I inc(εf ,k,T )〉,

(1)

again with contributions from a pure atomic part, a coherent
part with multiple scattering involved, a surface-layer contri-
bution, and an incoherent part.30,31

By contrast, the temperature-dependent version of the
angle-integrated photocurrent is given by

〈IAI-PES(εf ,k,T )〉
= 〈I at(εf ,k,T )〉 + 〈I s(εf ,k,T )〉 + 〈I inc(εf ,k,T )〉. (2)

In the XPS limit it follows:

〈Ims(εf ,k,T )〉 → 0, (3)

because the temperature-dependent single-site scattering ma-
trix smears out all dispersive features, which are related to the
multiple scattering part, and results in a smooth background
that extrapolates to zero for high temperatures and/or photon
energies. In consequence, the XPS limit is given by

〈IAR-PES(εf ,k,T )〉 → 〈IAI-PES(εf ,k,T )〉. (4)

In our approach we include the vibrational atomic displace-
ments via the CPA, where vibrations of different lattice sites are
assumed to be uncorrelated. For example, a set of 14 different
modes may be used to represent the thermal vibrations of a
simple fcc or bcc lattice. For these vibrational displacements
the CPA average has to be taken over for a given temperature
T . Using for the explicit calculation Debye theory, a certain
temperature-dependent distribution function P (�Rn,T ), the
probability P of a certain vibrational displacement �Rn as
a function of T results. This finally provides us with the
temperature-dependent single-site scattering matrix23 which
can be embedded in the one-step formalism.33 This means
that the coherent temperature-dependent single-site scattering
matrix enters the spin-polarized low energy electron diffraction
(SPLEED) formalism as usual. Calculations based on this
approach have been used to successfully interpret ARPES
data over the full energy spectrum in recent years.10,13,16,18,33

The CPA formulation of the one-step model30,31 allows for
a self-consistent temperature-dependent averaging of the pho-
toemission matrix elements, in contrast to previous work which
simplified the problem to temperature-dependent scattering
phase shifts only.23,33

Furthermore, we can calculate the amplitudes for all
possible displacements and the corresponding displacement
matrices.34 The corresponding CPA-projector matrices allow
for the explicit CPA averaging as shown in the last section and

the temperature dependence of the different contributions is
described by the set of displacement matrices. The temperature
dependence of the atomic contributions results in

〈I at(εf ,k,T )〉 ∝ Im
∑
jnαn

��′

Ac
jn�Zat

jnαn

��′
(T )Ac∗

jn�′ , (5)

with

Zat
jnαn

��′
(T ) =

∑
νn

�′′�′′′

xjnαnνn
U νn

��′′
(T )Zat

jnαn

�′′�′′′
U

†
νn

�′′′�′
(T ). (6)

Herein the matrix Uνn
represents a certain displacement

calculated for a given temperature T with U †
νn

being the
adjoint matrix. Again, the indices n and j denote the nth
atomic cell and the j th layer. The corresponding weight for a
given species αn and/or displacement νn at site n is given
by xjnαnνn

. Ac
jn denote the coherent spherical coefficients

of the final-state wave field and the matrix Zat consists of
radial double matrix elements combined with corresponding
angular parts. A detailed description of the multiple scattering
coefficients Ac

jn and of the matrix Zat is given in Ref. 33.
The temperature-dependent averaging of the coherent and
incoherent multiple scattering contributions is done in an
analogous way.

The temperature dependence of the coherent matrices Zc(1)

and Zc(2) is defined as

Zc(1)
jn

��′
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∑
�′′�′′′

U νn

��′′
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. (8)

For Zc(2) it follows:

Zc(2)
jn

��′
(T ) =

∑
�′′�′′′

U νn

��′′
(T )Zc(2)

jnνn

�′′�′′′
U

†
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�′′′�′
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with

Zc(2)
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αn

�1�2�3

xjnαnνn
D�1�2R

(2)
jnαn

�1��2�3
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′
. (10)

Finally, it remains to describe the temperature dependence
of the incoherent part of the photocurrent. The last term in
Eq. (1) is still temperature dependent because it is defined via
the coherent matrices Zc(1)(T ) and Zc(2)(T ). The first term
denotes the incoherent contributions of the different species
and/or displacements. Therefore, it follows for the temperature
dependence of the complete incoherent part:

〈I inc(εf ,k,T )〉
∝ Im

∑
jn

��′

Ac
jn�Z

c(1)
jn

��′
(T )τ 00

cjn

�′�′′
Zc(2)

jn

�′′�′′′
(T )Ac∗

jn�′′′

+ Im
∑
jn

αnνn

��′

xjnαnνn
Ac

jn�Z
(3)
jnαn

��′
(T )Ac∗

jn�′ , (11)
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with

Z (3)
jnαn

��′
(T ) =

∑
�′′�′′′

�′′′′�′′′′′

U νn

��′′
(T )Z (1)

jnαn

�′′�′′′

∗ (
τ 00
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− tjnαn

)
�′′′�′′′′

∗Z (2)
jnαn

�′′′′�′′′′′
U

†
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�′′′′′�′
(T ). (12)

The temperature-dependent averaging of the incoherent
part 〈I inc(εf ,k,T )〉 completes the CPA-averaged photocurrent
at finite temperatures. The calculation of the CPA-averaged
photocurrent at T = 0 K is shown in the Appendix. In a
similar way, thermal displacements of atoms were successfully
introduced by some of us within the alloy analogy model to
calculate the Gilbert damping parameter.35,36 This approach
has been implemented in the CPA version of the one-step
model,34 with the latter having been extended to higher photon
energies before.10,13,16,18,29,34,37–39

III. DISCUSSION

As a first illustration of the effect of phonon-assisted
transitions on ARPES, we consider intensity distributions
calculated in a fully relativistic way for Au(111) as a function
of temperature and excitation energy. Au is chosen as a typical
transition metal with a low Debye temperature of �D = 165 K.
The calculated results for two different photon energies of
1.0 and 6.4 keV are presented in Fig. 1. Considering first
1 keV, the left panel shows angle-resolved intensity distribu-
tions for normal emission that are labeled AR-PES (red curves)
in comparison to 2π angle-integrated (AI-PES) intensities
(blue curves) at 10, 100, and 300 K. The AI-PES curves
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FIG. 1. (Color online) Calculated photoemission spectra for
Au(111) at two different excitation energies as a function of
temperature. Shown is the comparison between normal emission
angle-resolved data (AR-PES, red curves) and corresponding angle-
integrated calculations (AI-PES, blue curves). Left panel: Intensity
distributions for an excitation energy of 1.0 keV for three temperatures
of 10, 100, and 300 K. Right panel: As the left panel, but for an
excitation energy of 6.4 keV and a selection of lower temperatures of
10, 50, and 100 K.

are expected to very closely represent XPS-limit MEW-DOS
results, even at zero temperature, and thus to be only weakly
dependent on temperature. This is because the spectral line
shapes reflect to a good approximation the MEW-DOS for
all temperatures. The main impact of temperature is therefore
a Debye-Waller-like decrease of angle-resolved-like features,
and an increase of the relatively constant MEW-DOS spec-
trum. As expected, these two spectral distributions strongly
deviate from one another as a function of binding energy at low
temperature. For higher temperatures, the overall shape of the
AR spectra significantly changes, whereas the AI spectra show
only small deviations in their intensity profiles. In the AI-PES
results we see only the phonon-assisted transitions producing
small temperature-dependent changes in the matrix elements.
The situation is completely different in the angle-resolved case.
The temperature-dependent matrix elements are responsible
for a decrease of the angle-resolved intensity profiles due to a
redistribution of spectral weight. This mechanism, associated
with a Debye-Waller-like suppression of the direct part of
the photocurrent is primarily responsible for the so called
XPS limit in ARPES, which clearly shows up in the left
panel of Fig. 1 for 1 keV photon energy at 300 K. Final
state energy broadening due to lifetime effects and phonon
creation/annihilation that are not included in our calculations
support this DOS-like transformation of spectral weight22 and
cause additional smearing of dispersing features. The first
effect is naturally included in our photoemission calculations
for the final state due to the use of a time-reversed LEED
state40 with a finite inelastic mean-free path. Multiphonon
induced effects are not included in our theory but according to
Shevchik22 one should expect an additional smearing of about
0.2 eV, which would alter the calculated spectra only slightly
via a corresponding energy broadening.

Turning now to the right panel of Fig. 1 with an excitation
energy of 6.4 keV, we see more dramatic effects at lower
temperature, with the XPS limit being reached already by
100 K. This behavior was observed, for example, in recent
HARPES measurements on W(110) and GaAs(100).13 For
6.4 keV excitation of the valence electrons, the Debye-Waller
factor of Au is about 0.45 at 30 K, and about 0.09 at 300 K,
which means that only 9% direct transitions should survive at
6.4 keV at room temperature. This kind of analysis leads to
the need for cryogenic cooling to minimize phonon induced
effects in soft and hard angle-resolved x-ray experiments.
Nevertheless, these effects are still present in the experimental
data, even at low temperatures. This makes it more difficult
to achieve an accurate picture of the bulk electronic structure
and indicates the importance of interpreting data via our more
realistic model.

As a second system, we consider Pt, again a heavy 5d

metal, adjacent to Au and with very nearly the same atomic
mass (195.1 u versus 197.0 u for Au), but with a much higher
Debye temperature of �D = 230 K, which leads to higher
Debye-Waller factors than Au and thus to a preservation of
dispersing features up to higher temperatures and/or photon
energies. The left panel of Fig. 2 again presents calculated soft
x-ray angle-resolved spectra for 1 keV excitation, this time for
10, 100, 300, and 500 K. In contrast to the spectra calculated
for Au a much higher temperature is needed to reach the XPS
limit at 1 keV for Pt. Even at 300 K dispersing features survive
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FIG. 2. (Color online) As Fig. 1, but for Pt(111) and for four
different temperatures of 10, 100, 300, and 500 K as in Fig. 1 at
hν = 1.0 keV (left panel). The same three temperatures are shown
for hν = 6.4 keV (right panel).

at higher binding energies in the soft x-ray spectra. In the right
panel of Fig. 2 for 6.4 keV excitation, analogous results are
shown for three lower temperatures of 10, 50, and 100 K,
and they clearly reveal that by comparison with Au one has
to increase the temperature to values far beyond 100 K to
generate EDCs which look essentially MEW-DOS-like in their
line shapes.

As a final comment, we note that, if the AI-PES curves in
either Fig. 1 or Fig. 2 are normalized to the same maximum
height, they are essentially identical, within about 5%, for each
photon energy, and are in fact also nearly identical between the
two energies for both Au and Pt. This suggests that the matrix
elements as averaged over emission angle, which are expected
to be dominated by the 5d character of the initial states for
both energies, change very little over the valence bands with
photon energy, which is consistent with these levels behaving
overall as corelike 5d emission described by one cross section,
and affected only by XPD in their angular profiles.13,26

In Fig. 3 we now compare our calculations directly to
experimental data from W(110) with soft x-ray excitation
at 870 eV.10 W has a Debye temperature of 400 K and an
atomic mass of 183.84 u near to Au and Pt. In Fig. 3(i)
we show experimental results for four different sample
temperatures: (a) 300 K, (b) 470 K, (c) 607 K, and (d) 780 K.10

For all four temperatures dispersive features are clearly seen
but with significant smearing and an increase of MEW-DOS-
like intensity features as temperature is raised. Also shown in
Figs. 4(a) and 4(b) are vertical and horizonal cuts, respectively,
through the 2D data of Fig. 3(i). These cuts yield 4(a)-energy
distribution curves (EDCs) and 4(b)-momentum distribution
curves (MDCs) to illustrate more directly the changes in both
types of distributions with temperature. Also, various spectral
features are labeled by the numbers 1–6 in these figures. Figure
3(ii) again presents fully relativistic one-step calculations
which are done with our new approach, whereas Fig. 3(iii)
shows conventional one-step calculations in which phonon
excitations are more simply considered through a temperature-
dependent single-site scattering matrix.24 Although at the

FIG. 3. (Color online) (i) Plots of measured intensity versus angle
of emission for 870 eV excitation from the valence bands of W(110)
approximately along the 
-N direction for four temperatures of
(a) 300 K, (b) 470 K, (c) 607 K, and (d) 870 K (from Ref. 5), where
90 deg corresponds to normal emission. (ii) Corresponding intensity
distributions calculated from temperature-dependent one-step theory
based on the CPA formulation. (iii) Conventional ARPES calculations
of the direct contribution IDT(E,k) by use of complex scattering phase
shifts and the Debye-Waller model (from Ref. 5).

lowest temperature of 300 K, the two different theoretical
approaches yield very similar results, as expected with a
Debye-Waller factor of 0.70, the temperature dependence
of the experimental data is much better described by our
temperature-dependent one-step calculations. The simpler
calculation based on the single-site scattering matrix predicts
neither the smearing of dispersing features nor the growth
of MEW-DOS features for higher binding energies, but
shows instead only the expected decrease of direct transition
intensities.10

Phonon induced smearing only appears via temperature-
dependent matrix elements which cause a decrease of the
direct part of the photocurrent due to a redistribution of spectral
weight. Although for 780 K and a 870 eV photon energy the
XPS limit is not fully established for W, the indirect con-
tribution of the temperature-dependent CPA-like photocurrent
dominates the corresponding angle-resolved soft x-ray spectra.
This is clearly observable from both the experimental and
theoretical data, which are nearly in quantitative agreement.

Figures 4(a) and 4(c) compare in more detail the temper-
ature dependence of experimental and theoretical spectra in
the form of EDCs for a fixed angle of ≈104 deg, which is
14 deg from the surface normal. Figures 4(b) and 4(d) present
the same comparison for MDCs at a fixed binding energy of
≈2 eV. The points labeled 1, 2, 4, 5, and 6 denote d-like
electronic states, whereas point 3 labels bands that are more
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FIG. 4. (Color online) (a) Measured temperature-dependent en-
ergy distribution curves (EDCs) as integrated over 20 channels in
angle over the windows indicated in Fig. 3(i)-(a–d). A comparison to
the W density of states, as broadened by experimental resolution of
400 meV is also shown in the topmost curve. (b) Measured
temperature-dependent momentum distribution curves (MDCs) in-
tegrated over a narrow energy interval, again as indicated in Fig. 3(i)-
(a–d). (c) and (d) Corresponding theoretical results for (c) EDCs and
(d) MDCs. Dashed lines indicate conventional one-step calculations,
solid lines indicate calculations within the new approach.

free-electron like and a mixture of s and d states. The
experimental and theoretical data in Fig. 4 show pronounced
smearing of features in both EDCs and MDCs as the temper-
ature is raised, but some remnant direct-transition behavior is
clearly still present, even at 780 K. The dashed lines shown in
Figs. 4(c) and 4(d) indicate conventional one-step calculations
using the one-site scattering matrix approach. As expected,
only slight changes appear in the form of the EDCs and MDCs
as a function of temperature. In contrast, the EDCs and MDCs
strongly depend on temperature when using the alloy analogy
approach, although in general the MDCs in experiment and
those of both the conventional and CPA approaches change less
than the EDCs. Significant broadening of spectral features and

shift of spectral weight, not at all present in the conventional
one-site scattering matrix approach, can be observed. The
EDC at the highest temperature has not converged to a
MEW-DOS-like curve and the corresponding MDC still has
structure in it. In the XPS limit all MDCs would exhibit only
x-ray photoelectron diffraction (XPD), with a different type of
angular distribution.10,16,18,26,29 This is obviously not the case.
This is expected because the Debye-Waller factor of 0.41 at
780 K indicates that a certain number of transitions should still
be direct. Our calculations thus correctly predict a diminution
of the features expected due to direct transitions, and as well
a significant broadening of features in the EDCs or MDCs.
The additional weak and smooth background observed in the
experimental data thus must be ascribed to additional phonon
effects, perhaps through multiple phonon excitations.

IV. SUMMARY

In summary, we have presented a unique theory of
temperature-dependent photoemission that works quantita-
tively for soft and hard x-ray photon energies, thus spanning
the traditional ARPES regime and extending it to soft and
hard x-ray ARPES. The validity of this approach has been
demonstrated with illustrative soft and hard x-ray calculations
for Au and Pt, and by direct comparison to experimental soft
x-ray data from W(110). Our approach correctly converges
at high energy and/or temperature to the so-called XPS or
MEW-DOS limit, as demonstrated in the calculations for Au
and Pt. Furthermore, we were able to show that this limit is
triggered mainly by temperature-dependent relaxation of the
usual k-conservation selection rules. The nearly quantitative
agreement between experiment and theory further illustrates
that our approach could work as a powerful analysis tool for
various soft x-ray as well as hard x-ray ARPES investigations
in the future.
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APPENDIX

1. LSDA treatment of disordered alloys

First we shortly review the coherent potential approxima-
tion (CPA)41,42 within the local spin-density approximation
(LSDA) scheme. The CPA is considered to be the best theory
among the so-called single-site (local) alloy theories that
assume complete random disorder and ignore short-range
order. This scheme is implemented within the spin-polarized
Korringa-Kohn-Rostoker (SPR-KKR) method.34,43 Within the
CPA the configurationally averaged properties of a disordered
alloy are represented by a hypothetical ordered CPA medium,
which in turn may be described by a corresponding site-
diagonal scattering path operator τCPA, which in turn is
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closely connected with the electronic Green’s function. The
corresponding single-site t-matrix tCPA and multiple scattering
path operator τCPA are determined by the so-called CPA
condition:

xAτA + xBτB = τCPA. (A1)

For example for a binary system AxB1−x composed of
components A and B with relative concentrations xA = x and
xB = (1 − x) is considered. The above equation represents the
requirement that embedding substitutionally an atom (of type
A or B) into the CPA medium should not cause additional
scattering. The scattering properties of an A atom embedded
in the CPA medium are represented by the site-diagonal
component-projected scattering path operator τA (angular
momentum index omitted here)

τA = DAτCPA. (A2)

A corresponding equation holds also for the B component
embedded into the CPA medium. The coupled sets of equations
for τCPA and tCPA have to be solved iteratively within the CPA
cycle. The factor DA = [1 + (t−1

A − τ−1
CPA)]−1 in Eq. (15) is

called the CPA projector. The quantities tA and tCPA denote
the single-site matrices of the A component and of the CPA
effective medium.

2. Calculation of the CPA photocurrent at T = 0 K

We start our considerations by giving Pendry’s formula
for the photocurrent which defines the one-step model of
AR-PES44:

IAR-PES ∝ Im〈εf ,k|G+
2 �G+

1 �†G−
2 |εf ,k〉. (A3)

The first step in an explicit calculation of the photocurrent
consists in the setup of the relativistic spin-polarized low
energy electron diffraction (SPLEED) formalism within the
CPA theory. The coherent scattering matrix tCPA

n for the nth
atomic site together with the crystal geometry determines the
scattering matrix M for a certain layer of the semi-infinite
half-space:

Mττ ′ss ′
gg′ = δττ ′ss ′

gg′ + 8π2

kk+
gz

∑
nn′

��′�′′

i−lC
ms

� Y
μ−ms

l (k̂τ
g)

× tCPA
n

��′′
(1 − X)−1

�′′�′ i
l′C

m′
s

�′ Y
μ′−m′

s

l′ (k̂τ ′
g′ )

× e
−i(kτ

g Rn+kτ ′
g′ Rn′ ). (A4)

By means of the layer-doubling technique the so-called bulk-
reflection matrix can be calculated, which gives the scattering
properties of a semi-infinite stack of layers. Finally, applying
SPLEED theory23,43 we are able to derive the final state
for the semi-infinite crystal. The quantity � in Eq. (A3) is
the dipole operator in the electric dipole approximation. It
mediates the coupling of the high-energy final state with the
low-energy initial states. In a fully relativistic theory the dipole
interaction of an electron with the electromagnetic field is
given by the dipole operator � = −αA0, where A0 is the
spatially constant vector potential inside the crystal. The three
components αk of the vector α are defined through the tensor

product αk = σ1 ⊗ σk,k = 1,2,3, where σk denote the Pauli
spin matrices. Dealing with the matrix element 〈
f |�|
i〉
between eigenspinors |
f 〉 and |
i〉 of the Dirac Hamiltonian
with energies Ef and Ei , respectively, it is more convenient to
express � in the equivalent form

� = E

(
A0∇ + iω

c
αA0

)
VLSDA + E (A0∇) βσBLSDA

+ E
ω

c
βA0 × σBLSDA, (A5)

with E = −2ic/[(Ef + c2)2 − (Ei + c2)2]. The expression is
derived by making use of commutator and anticommutator
rules analogously to the nonrelativistic case in Ref. 45. The
quantity VLSDA denotes the spin-independent potential, and
BLSDA is the effective magnetic field. They are given as

VLSDA = 1
2 (V ↑

LSDA + V
↓

LSDA) (A6)

and

BLSDA = 1
2 (V ↑

LSDA − V
↓

LSDA) b. (A7)

The constant unit vector b determines the spatial direction of
the (uniform) magnetization as well as the spin quantization
axis. β denotes the usual 4 × 4 Dirac matrix with the nonzero
diagonal elements β11 = β22 = 1 and β33 = β44 = −1.

According to Pendry44 the calculation of G+
1 , and in

consequence the calculation of the photocurrent, can be
divided into four different steps. The first contribution I at, the
so called “atomic contribution”, results from the replacement
of G+

1 in Eq. (A3) by G+
1,a . The second contribution Ims

describes the multiple scattering of the initial state. The third
contribution I s to the photocurrent takes care of the surface.
When dealing with the disorder in the alloys, an additional I inc,
the so called “incoherent” term, appears. Following Durham
et al.30,31 the configurational average can be written as

〈IAR-PES〉 = 1

π
Im

∑
ij

〈Miτ
ijM∗

j 〉 − 1

π
Im

∑
i

〈Ma
i 〉 + 〈I s〉.

(A8)

Herein τ ij denotes the scattering path operator between the
sites i and j . Ma

i represents an atomic-type matrix element
containing the irregular solutions which appear as a part of
the retarded Green function G+

1,a . Mi indicates a conventional
matrix element between regular solutions of the initial and
final states. The first term can be decomposed in on-site and
off-site contributions:∑

ij

〈Miτ
ijM∗

j 〉 =
∑

ij,i 
=j

〈Miτ
ijM∗

j 〉 +
∑

i

〈Miτ
iiM∗

i 〉. (A9)

The on-site term is called the incoherent part of the pho-
tocurrent since this term reveals density-of-states (DOS)-like
behavior by definition. The off-site contribution, which con-
tains all dispersing features, represents the so-called coherent
part of the photocurrent. Together with the surface part that
remains unchanged by the averaging procedure 〈I s〉 = I s the
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total one-step current can be written as

〈IAR-PES〉 = − 1

π
Im

∑
i

〈
Ma

i

〉 + I s

+ 1

π
Im

∑
ij,i 
=j

〈Miτ
ijM∗

j 〉

+ 1

π
Im

∑
i

〈Miτ
iiM∗

i 〉. (A10)

Using Pendry’s notation it follows:

〈IAR-PES(εf ,k)〉 = 〈I at(εf ,k)〉 + 〈Ims(εf ,k)〉
+ 〈I inc(εf ,k)〉 + I s(εf ,k), (A11)

where Ims can be identified with the coherent contribution that
describes all bandlike features of the initial state and I inc with
the incoherent contribution that describes the corresponding
DOS-like features. Because of this clear cut separation in con-
tributions that describe dispersing or nondispersing features
one may easily define the angle-integrated photocurrent by
use of the CPA formalism. The ordered case is then defined by
an binary alloy with two identical species at each atomic site.
Therefore, it follows:

〈IAI-PES(εf ,k)〉 = 〈I at(εf ,k)〉 + 〈I inc(εf ,k)〉 + I s(εf ,k).

(A12)

For the atomic contribution the averaging procedure is
trivial since 〈I at(εf ,k)〉 is a single site quantity. In detail, the
atomic contribution is built up by a product between the matrix
Zat

jnαn
and the coherent multiple scattering coefficients Ac

jn� of
the final state. Herein n denotes the nth cell of the j th layer and
� denotes the combined relativistic quantum numbers (κ,μ).
It follows:

〈I at(εf ,k)〉 ∝ Im
∑
jnαn

��′

xjnαn
Ac

jn�Zat
jnαn

��′
Ac∗

jn�′ , (A13)

where αn denotes the different atomic species located at a given
atomic site n of the j th layer. The corresponding concentration
is given by xjnαn

.
For an explicit calculation Zat must be separated into

angular matrix elements and radial double matrix elements.
A detailed description of the matrix Zat and of the multiple
scattering coefficients Ac

jn� for the different atomic species is
given in Refs. 33 and 46.

The intra(inter)-layer contributions 〈Ims(εf ,k)〉 to the pho-
tocurrent describe the multiple scattering corrections of the
initial state G+

1 between and within the layers of the single
crystal. They can be written in a similar form:

〈Ims(εf ,k)〉 ∝ Im
∑
jn

��′

Ac
jn� Zc(2)

jn

��′
C

B,G
jn�′ . (A14)

In analogy to the atomic contribution the coherent matrix Zc(2)

can be separated into angular and radial parts. The difference
to the atomic contribution is that the radial part of the matrix
Zc(2) consists of radial single matrix elements instead of radial
double integrals. In the alloy case this matrix results in the

following expression:

Zc(2)
jn

��′
=

∑
αn

�1�2�3

xjnαn
D�1�2R

(2)
jnαn

�1��2�3

Djnαn

�3�
′
. (A15)

The radial and angular parts of the matrix element are denoted
by R(2) and D. The CPA-average procedure explicitly is
represented in terms of the CPA-projector Djnαn

representing
the α species at site n for layer j . CB and CG denote the
coherent multiple scattering coefficients of the initial state
within a layer and between different layers. They have the form

CB
jn� =

∑
n′�′�′′

B
(o)c
jn′�′(tCPA)−1

jn′
�′�′′

(
(1 − X)−1

jnn′
�′′�

− δ nn′
�′′�

)
,

(A16)

with the coherent bare amplitudes B
(o)c
jn′�′ :

B
(o)c
jn′�′ =

∑
�′′

Zc(1)
jn′

�′�′′
Ac∗

jn′�′′ (A17)

and

Zc(1)
jn

��′
=

∑
αn

�1�2�3

xjnαn
D†

jnαn

��3

R
(1)

jnαn

�1�3�2�
′
D

†
�1�2

. (A18)

Finally, the coherent scattering coefficients CG for the
interlayer contribution take the form

CG
jn� =

∑
n′�′

G
(o)c
jn′�′(1 − X)−1

jn′n
�′�

(A19)

and the coherent bare amplitudes G
(o)c
jn′�′ are given by

G
(o)c
jn′�′ =

∑
gms

4πil
′
(−)μ

′−sC
ms

�′
[
d+

jgms
Y

ms−μ′
l′ (k̂+

1g)eik+
1g·rn′

+ d−
jgms

Y
ms−μ′
l′ (k̂−

1g)eik−
1g·rn′ ]. (A20)

The coefficients d±
jgms

in Eq. (A20) represent the plane-
wave expansion of the initial state between the different layers
of the semi-infinite stack of layers. For a detailed description of
the matrices Zat, Z (1), and Z (2) and of the multiple scattering
coefficients d±

jgms
the reader again is referred to Refs. 33

and 46.
The last contribution to the alloy photocurrent is the so

called incoherent part 〈I inc(εf ,k)〉, which appears because
the spectral function of an disordered alloy42 is defined as
a non-single-site quantity. In fact, this contribution is closely
connected with the presence of the irregular wave functions
well known from the spherical representation of the Green
function G+

1 . The incoherent term is defined as

〈I inc(εf ,k)〉 ∝ Im
∑
jnαn

��′�′′

xjnαn
Ac

jn�Z
(1)
jnαn

��′

∗ (
τ 00
jnαn

− tjnαn

)
�′�′′ Z (2)

jnαn

�′′�′′′
Ac∗

jn�′′′

+ Im
∑
jn

��′

Ac
jn�Z

c(1)
jn

��′
τ 00

cjn

�′�′′
Zc(2)

jn

�′′�′′′
Ac∗

jn�′′′ ,

(A21)
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at which τ 00
jnαn

denotes the one-site restricted average
CPA matrix for species αn at atomic site n for layer j .
τ 00
cjn represents the corresponding matrix for the coherent

medium. The incoherent part 〈I inc(εf ,k)〉 completes the CPA-
averaged photocurrent within the fully relativistic one-step
model.
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