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Spin and phase coherence lengths in InAs wires with diffusive boundary scattering
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Measurements of low-temperature magnetotransport in lithographic wires of submicron widths fabricated
from high-mobility AlGaSb/InAs/AlGaSb two-dimensional electron system heterostructures are presented. The
dependence of the spin and phase coherence lengths on wire width and diffusion constant is investigated
by analyzing the conductance in low applied magnetic fields with antilocalization models. Predominantly
diffusive boundary scattering is deduced from the magnitude and wire width dependence of the conductance.
Diffusive boundary scattering leads to a diffusion constant decreasing with wire width and hence allows the
dependence of spin coherence on wire width and diffusion constant to be investigated concurrently. The spin
coherence lengths are experimentally found to be proportional to the ratio of the diffusion constant to wire width.
The phase coherence lengths follow Nyquist decoherence for low-dimensional wires.
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I. INTRODUCTION

Indium arsenide two-dimensional electron systems
(2DESs) have received substantial interest in spintronics and
spin physics due to their high electron mobilities and strong
Rashba spin-orbit interaction (SOI). In reduced dimensions,
InAs wires and wires of other narrow-band-gap semiconduc-
tors with strong SOI are moreover being pursued as hosts
for quantum states showing non-Abelian Majorana proper-
ties under proximity-induced superconductivity.1–4 Given this
interest, we probe spin-related phenomena in narrow InAs
wires fabricated from high-mobility InAs 2DESs. This work
examines how the low-temperature spin coherence length
evolves with wire width and is influenced by boundary
scattering in lithographic InAs wires. We also briefly discuss
the quantum phase coherence length and its dependence on
wire width and diffusion coefficient in the wires.

We model magnetotransport measurements, performed at
low magnetic fields applied perpendicularly to the plane of
the 2DES, in antilocalization theory in order to investigate
the dependence on wire width w of the spin coherence
length LS in wires of submicron widths fabricated from
high-mobility InAs 2DESs. At low temperatures, interference
between phase coherent electrons on time-reversed trajectories
can affect a material’s conductance G.5–11 Under strong SOI,
the magnitude of the interference corrections to G are sensitive
to both LS and the phase coherence length Lφ . Antilocalization
theory provides quantitative predictions for the dependence
of G on LS and Lφ as a function of the applied magnetic
field B.5–11 A comparison of the experimental G(B) with
antilocalization theory adapted to low-dimensional systems
thus provides quantitative information about LS and Lφ . Our
wires are in the quasi-one-dimensional (Q1D) regime, where w

is shorter than the mobility mean-free path le, and comparable
to or shorter than LS and Lφ .

Antilocalization in InAs wires was previously studied,
either in epitaxially grown nanowires12–14 or in wires fabri-
cated lithographically from a 2DES.15 Whereas these studies
focused on systems with comparatively low electron

mobilities, we report measurements on wires fabricated from
InAs 2DESs with a long mean-free path le > w and investigate
LS in a system where diffusive boundary scattering dominates
the overall momentum scattering. Several recent investigations
of spin coherence in narrow wires with strong SOI exist,
either theoretical5,16,17 or experimental on III-V semiconductor
systems14,18–22 or on surface states of bismuth.23 These
investigations indicate that LS increases as w is reduced.
Diffusive boundary scattering is important in narrow InAs
wires due to the fact that surface states pin the Fermi energy
EF above the conduction band at the surface of InAs.24–27

Hence, unlike in many other III-V semiconductor systems,
no depletion layer forms, and the electrons fully sample the
boundary roughness. The effect of boundary scattering on spin
decoherence in InAs wires may be similar to the effect in
narrow metal wires, where experiments demonstrate that the
spin decoherence rate is increased by boundary scattering.28

The experiments following show that the absence of depletion
layer, and the resulting increased diffusive boundary scattering
indeed can influence spin coherence in lithographic InAs
wires. In the InAs wires discussed in this paper, the spin
coherence length is thus influenced by w in two competing
ways: by the reduced dimensionality and by the increased
boundary scattering.

II. EXPERIMENT

Magnetotransport through sets of narrow wires fabricated
from two separate AlxGa1−xSb/InAs/AlxGa1−xSb 2DES het-
erostructures was measured using standard four-terminal low-
frequency lock-in techniques at T = 0.4 K. B was applied
perpendicularly to the plane of the 2DES, as appropriate for
antilocalization measurements aimed at deducing the effect
of w on LS and Lφ in a 2DES.15,19–23 Both heterostructures
are grown by molecular beam epitaxy on (001) GaAs sub-
strates. Compositionally, the two heterostructures (Fig. 1) are
nominally equivalent except for the percentage of Al in the
barrier layers x = 0.3 (0.2) for heterostructure A (B). Within
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FIG. 1. Left: Schematic of the AlxGa1−xSb/InAs/AlxGa1−xSb
heterostructures. The composition of the buffer layers for het-
erostructure A (x = 0.3) is as follows: 1100 nm Al0.2Ga0.8Sb/32 nm
AlSb/5 nm AlAs/1000 nm GaAs; for heterostructure B (x = 0.2)
the buffer layers lack the AlSb and AlAs layers. The GaSb/AlSb
superlattice (S.L.) in both heterostructures consists of 10 periods of
5 nm GaSb/5 nm AlSb. Right: Schematic illustration of a wire set
geometry. From the ratio d2/d1 ≈ 0.5 we estimate the total series
contact resistance Rc ≈ ρ2D

.

∼15% variability between cooldowns, the results of electrical
transport measurements on the unpatterned 2DESs at T =
0.4 K are tabulated in Table I. Due to stronger confinement,
heterostructure A (x = 0.3) has higher electron density, but
lower mobility μ2D compared to heterostructure B (x = 0.2).
Table I contains parameters calculated assuming nonparabolic-
ity, a �-point electron effective mass m∗ = 0.024 me (with me

the free-electron mass),29 and a low-T energy gap of 418 meV.
The values of the Fermi wavelengths λF indicate that between
6 to 39 transverse subbands are expected to be occupied in
the wires, and hence effects of transverse quantization can be
neglected.

Wire sets were fabricated from each heterostructure using
electron-beam lithography and reactive ion etching in a boron
trichloride inductively coupled plasma. Each wire set contains
10 parallel wires of identical dimensions: the individual wires
have a width w and length L = 24 μm. The difference between
sets of wires resides in w with 0.17 μm � w � 0.98 μm.
Here, w has been determined through scanning electron
microscope (SEM) measurements on prototype wire sets

TABLE I. Transport and quantum well parameters of the unpat-
terned 2DESs in heterostructures A and B, at T = 0.4 K. Fraction
Al in the barriers, x; sheet resistance, ρ2D

; electron density, NS ;
mobility, μ2D; mobility mean-free path, le; diffusion constant, D2D;
Fermi energy, EF ; effective mass, m∗; Fermi wavelength, λF .

A B

x 0.3 0.2
ρ2D

(�/�) 42 26
NS (1015 m−2) 9.9 6.7
μ2D (m2/Vs) 15.0 36.0
le (μm) 6.43 11.2
D2D (m2/s) 2.39 3.65
EF (meV) 67.9 47.6
m∗/me 0.10 0.084
λF (nm) 25.2 30.6

fabricated in the same manner as the wires presented here. We
note that, as mentioned previously, EF at the surface of InAs
is pinned above the conduction band by surface states.24–27

Thus, carrier depletion at the edge of the wires is expected to
be minimal and the conducting and lithographic widths of the
wires are assumed to be equivalent.

The data are presented in terms of conductance per wire
G ≡ 1/R, with R denoting the resistance per wire. In order
to accurately determine G, we estimate, based on device
geometry, the effective series contact resistance Rc due to
the contact areas at both ends of the wires (Fig. 1). The
centers of the voltage probes are separated from the ends of
the wires by a distance d2 ≈ 7.5 μm and the corresponding
contact areas have a width d1 ≈ 15 μm. Since the contact
areas on both sides of the wires contribute to the total Rc, we
estimate Rc = 2(d2/d1)ρ2D

≈ ρ2D
, where ρ2D

denotes the sheet
resistance of the unpatterned 2DES. From this estimate we
determine R = (RT − Rc)/Np where RT is the total measured
resistance and Np = 10 is the number of parallel wires in each
wire set.

According to the Einstein relation, the classically pre-
dicted conductance at B = 0 is given by G0 ≡ (w/L)ρ−1

2D
=

(w/L)2e2ν0D where D denotes the wire’s diffusion constant
and ν0 is the density of states per spin orientation at EF . For
purely specular boundary scattering, D is unchanged from
the two-dimensional expression: D = D2D

= 1
2vF le, where

vF represents the Fermi velocity. Thus, specular boundary
scattering would for the measured G(B = 0) = G(0) lead
to the simple expression G(0) → G0 = (w/L)ρ−1

2D
for all w.

However, diffusive scattering from the boundaries can reduce
D in narrow wires. According to the boundary scattering model
given in Ref. 30, the ratio D/D2D

for purely diffusive boundary
scattering in narrow wires is expressed as30

D

D2D

= 1 − 4le

πw

∫ 1

0
x
√

1 − x2

[
1 − exp

(
− w

xle

)]
dx . (1)

According to Eq. (1), D rapidly drops below D2D as w is
reduced below ∼2le in narrow wires with diffusive boundary
scattering. The actually measured G(0) as a function of w is
plotted for both heterostructures in Figs. 2(a) and 2(b). Using
the Einstein relation along with Eq. (1), theoretical plots for
purely specular and purely diffusive boundary scattering are
displayed along with the measured data.

Figure 2 shows that the measured G(0) are significantly
less than predicted for specular boundary scattering [G(0) →
G0 = (w/L)ρ−1

2D
]. In contrast, accurate predictions of G(0) can

be achieved using Eq. (1). The ratio D/D2D
for the different

w is experimentally determined from the Einstein relation and
the measured values of G(0) and ρ2D

[D/D2D
= G(0)Lρ2D

/w].
These experimental values of D/D2D

are used throughout
the remainder of this work and are displayed and compared
with Eq. (1) in Fig. 2(c). We note that Eq. (1) does appear
to underestimate D/D2D

for large w/le. The reason for the
discrepancy is unknown and is outside the scope of the work
presented in this paper. Regardless, since the measured G(0)
for all w are significantly less than predicted assuming entirely
specular boundary scattering, we conclude that scattering from
the boundaries is, in fact, predominantly diffusive. In terms of
the fits to antilocalization theory, the value of D and the nature
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FIG. 2. Dependence on wire width w of the measured conduc-
tance in zero applied magnetic field G(0) for wires fabricated from
(a) heterostructure A (open circle) and (b) heterostructure B (filled
circle). Solid and dashed lines in (a) and (b), respectively, depict
the predicted w dependence for purely specular boundary scattering
(G0 = w/Lρ2D

) and for purely diffusive boundary scattering [derived
from Eq. (1)]. (c) Values for the diffusion constant D/D2D

deduced
from the measured G(0) data displayed in (a) and (b). The data show
good agreement with Eq. (1).

of the boundary scattering is important when calculating the
effective value of the magnetic length LB . In addition, as will
be shown, the w dependence of D is found to directly impact
the w dependencies of LS and Lφ .

The magnetoconductance 	G ≡ G(B) − G(0) obtained at
T = 0.4 K for wires fabricated from the two InAs 2DESs are
depicted in Fig. 3. Except for the narrowest wires fabricated
from heterostructure A (w = 0.17 μm), wires fabricated from
both heterostructures display the characteristic shape of antilo-
calization: 	G first decreases as |B| is initially increased from
zero until 	G reaches a minimum at the field Bmin, directly
above which 	G increases as |B| increases further. The data
for the narrowest wires fabricated from heterostructure A (w =
0.17 μm) will not be further analyzed since antilocalization is
suppressed and not observed in these wires.

III. ANALYSIS AND RESULTS

At B = 0 and in the absence of SOI, the quantum correction
per spin channel to the two-dimensional conductivity due to
time-reversed trajectories in a Q1D system can be expressed
as31,32

δ
(
ρ−1

2D

) = −e2

h

Lφ

w
. (2)

An applied B introduces time-reversal-symmetry breaking,
expressed by a modification of Lφ to include a magnetic
length appropriate for the particular Q1D system LB ≡ √

DτB ,
where τB represents a magnetic field dephasing time.5,11,30,33,34

Under SOI, the role of Lφ is assumed by a combination
of effective singlet and triplet5,7,10,11,22,35 length scales. The
resulting singlet and triplet length scales Ls,m (with m = ±1,0

FIG. 3. Measured change in conductance 	G ≡ G(B) − G(0),
at T = 0.4 K as function of applied magnetic field B for wires of
different widths (w as indicated) on heterostructure A (left column)
and heterostructure B (right column). Solid lines are fits of the
magnetoconductance traces to antilocalization theory.

and s = 0,1) are expressed as

Ls,m(LB) = (
L−2

φ + νs,mL−2
S + L−2

B

)− 1
2 , (3)

where νs,m are constants that we take as ν1,±1=1, ν1,0=2, and
ν0,0=0, consistent with the anisotropic spin decoherence in
(001) III-V 2DESs.8,36 Here, LS ≡ √

DτS with τS representing
the spin decoherence time, and Lφ ≡ √

Dτφ with τφ represent-
ing the phase decoherence time. Unlike the triplet contributions
(L1,m), the singlet (L0,0) contribution is not sensitive to
spin decoherence under SOI (ν0,0=0).10,11,22,35 Noting that
δG = (w/L)ρ−1

2D
, the B dependence of δG(B) = G(B) − G0

in Q1D systems under SOI can now be described using a
combination of length scale ratios Ls,m/L (Refs. 22 and 34):

δG(B) = −e2

h

1

L

( ∑
m=±1,0

L1,m(LB) − L0,0(LB)

)
. (4)

We note that 	G = G(B) − G(0) = δG(B) − δG(0), and
hence the experimental data can be compared to fits to
Eq. (4). For simplicity, we have neglected the short-time
cutoff correction for ballistic wires suggested by Beenakker.30

Including a short-time cutoff when analyzing the data leads to
extracted values of LS that are somewhat (≈20%) larger than
the results presented here, but the short-time cutoff correction
does not quantitatively or qualitatively impact the observed
dependence of LS on w and D.
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FIG. 4. Extracted values of LS and Lφ obtained from fitting
the measured 	G to the Q1D antilocalization model. (a) and (c)
display the dependence of LS and Lφ for wires on heterostructure
A. (b) and (d) display the dependence of LS and Lφ for wires on
heterostructure B.

For Q1D wires where w ≈ lm ≡ √
h̄/eB and where le > w,

phenomena due to modifications of the wave-function bound-
ary conditions and ballistic flux cancellation have to be
considered, and LB is effectively described by22,30,33,37

L1D
B = lm

√(
C1l2

mle

w3
+ C2l2

e

w2

)
D

D2D

. (5)

The values of the numerical constants C1 and C2 depend on
whether the boundary scattering is specular or diffusive, with
C1 = 2π and C2 = 1.5 for predominantly diffusive boundary
scattering as considered here.30 The first fraction in Eq. (5)
dominates at weak applied B (lm >

√
wle), while the second

fraction dominates at higher B (lm <
√

wle).30

In order to find values of LS and Lφ in the Q1D model, we fit
the measured 	G to Eq. (4) using Eqs. (3) and (5) to evaluate
Ls,m and LB . The extracted values for LS and Lφ are presented
in Fig. 4. The data displayed in Fig. 4 correspond to fits taken
over the range |B| � 2Bmin and the error bars correspond to
the different values of LS and Lφ obtained by fitting over
different ranges of B from 1.5Bmin to 4Bmin. Results from
the Q1D model indicate differing dependencies of LS on w

between wires fabricated from heterostructures A and B. For
heterostructure A, LS decreases moderately as w narrows; for
heterostructure B, LS increases moderately as w narrows. As
a later discussion of LS will clarify, the dependence of LS on
w is affected by the variation of D with w/le under diffusive
boundary scattering, and le differs for heterostructures A and
B. The extracted Lφ for both heterostructures are found to
decrease as w narrows.

We note that the functional dependence of δG(B) on B

is determined, in part, by the effective dimensionality of the
system. Ls,m decreases as |B| increases and a dimensional
crossover from 1D (w < Ls,m) to 2D (w > Ls,m) can occur
for Ls,m ≈ w in the diffusive regime (le < w).15 While in
the narrower wires the condition w < Ls,m is fulfilled, in our
widest wires (w = 0.98 μm) and at the higher B considered,
the Ls,m approach w. Yet, application of Eq. (5) experimentally

provides good fits to our data. We are moreover not aware of
a theoretical description of antilocalization with dimensional
crossover for wires where w < le. We hence have analyzed
	G without dimensional crossover in this work. The following
discussion then focuses on LS and Lφ obtained by analyzing
the data with the Q1D model.

IV. DISCUSSION

In order to explain the observed dependence of LS on w

(Fig. 4), we examine the dependence of LS on D. Figures 5(a)
and 5(b) display the experimentally observed dependence of
wLS on D for the wires fabricated from heterostructures A
and B, respectively, showing that to a good approximation wLS

scales linearly with D, implying LS ∝ D/w. The experimental
dependence of D on w/le has already been discussed in a
previous section, and is shown in Fig. 2(c) to agree with
Eq. (1), valid for diffusive boundary scattering. The differing
dependencies of LS on w in Fig. 4 follow from LS ∝ D/w,
taking into account the dependence of D on w/le. With a lower
le = 6.43 μm in heterostructure A, compared to le = 11.2 μm
in heterostructure B, in heterostructure A w/le spans a wider
range and D has a stronger effect on LS . In heterostructure
A, the decrease in D with narrowing w leads to a decrease
in LS , reversing the usual increase in LS with narrowing
w.18–23 We next explore the origin of our observation that
LS ∝ D/w.

We are not aware of explicit theoretical predictions of the
dependence of LS on D and w in ballistic wires (le > w)
with diffusive boundary scattering. Yet, for systems with
dominant Rashba SOI,38 as will be assumed here, the w

FIG. 5. Plot of wLS versus the diffusion constant D in narrow
wires fabricated from (a) heterostructure A and (b) heterostruc-
ture B. A linear dependence of wLS on D is found in both
heterostructures; the numerical values indicate the proportionality
constant between wLS and D/D2D for each heterostructure. The
dependence of the phase coherence length Lφ on D and w is shown in
(c) for heterostructure A and in (d) for heterostructure B. A linear
dependence of Lφ on D2/3w1/3 is consistent with the Nyquist
decoherence mechanism in Q1D systems.
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dependence of LS in diffusive wires (with le < w, D = D2D)
under the D’yakanov-Perel (DP) spin decoherence mechanism
is theoretically predicted5,21 to follow wLS = √

12L2
�, where

the spin precession length L� = vF /� with � representing the
spin precession frequency under SOI. For systems with Rashba
SOI, where the zero-B spin-splitting energy is 	SO = 2kF α

(with kF = √
2πNS denoting the Fermi wave vector and α

the Rashba SOI parameter), we have h̄� = 2kF α and L� =
h̄2/(2m∗α).5,21,39 Under the DP mechanism, the spin decoher-
ence rate of the parent 2DES is given by 1/τ 2D

S = �2τe/2,
with τe the momentum scattering time (le = vF τe).5,8,9,18,39

Then, Dτ 2D
S = (vF /�)2 = L2

�. Combining wLS = √
12L2

�

and Dτ 2D
S = L2

�, we obtain LS = √
12Dτ 2D

S /w. Hence, the
dependence LS ∝ D/w is, in fact, predicted for spin decoher-
ence due to the DP mechanism in narrow wires in the diffusive
regime under Rashba SOI.

The dependence wLS = √
12L2

� for wires in the diffusive
regime (le < w) is analogous to expressions for the magnetic
length in such wires, where wLB = √

3 l2
m.15,19,30,34 The anal-

ogy relates to the concept that linear SOI effects can be ascribed
to an effective magnetic vector potential. Then, the dependence
of LS on w in narrow wires is expected to be similar to the
dependence of L1D

B on w, with L� assuming the role of lm.5,19

For ballistic wires (le > w) in the strong field regime, Eq. (5)
yields wL1D

B = √
C2 lmle, in contrast to the diffusive expres-

sion wLB = √
3 l2

m (to compare both expressions, boundary
scattering effects have been neglected). Therefore, in direct
analogy, we suggest to modify the diffusive expression wLS =√

12L2
� to a ballistic expression wLS = √

12L�l∗e . We have
retained the

√
12 proportionality constant as in diffusive wires

but applied an effective mean-free path l∗e ≡ le(D/D2D) to
account for boundary scattering. Using an effective mean-
free path is here supported by the experimentally observed
linear dependence of wLS on D. Thus, the analogy between
magnetic vector potentials and spin-orbit effects leads us to
model the extracted LS in our ballistic wires with wLS =√

12L�le(D/D2D
). This expression is in accordance with

our observation that LS ∝ D/w. Using L� = h̄2/(2m∗α) and
applying the expression for wLS to the data shown in Figs. 5(a)
and 5(b), we find α ≈ 5 × 10−12 eV m for wires from both
heterostructures.

The dependence LS ∝ D/w in narrow ballistic wires can
also be qualitatively understood by considering the effect of
scattering off wire boundaries on the spin decoherence rate
under the DP mechanism. The spin decoherence rate under
the DP mechanism is inversely proportional to the momentum
scattering rate 1/τe,36 as also expressed above in 1/τ 2D

S =
�2τe/2. Scattering from wire boundaries increases the overall
scattering rate in narrow wires above that in the parent 2DES.
Using Matthiessen’s rule, we estimate the effective overall
scattering rate in narrow wires as 1/τ ∗ = τ−1

e + τ−1
w where τw

represents the time associated with scattering from the wire
boundaries which we approximate by the average time it takes
an electron to diffuse a distance w (τw ≈ w2/D). For very
narrow ballistic wires where w 	 le, a good approximation for
the InAs wires considered here, scattering off wire boundaries
is much more frequent than scattering in the bulk 2DES
and leads to τw 	 τe and, thus, τ ∗ ≈ τw. Under the DP
mechanism, the spin decoherence rate in the narrow ballistic

wires can then be estimated by 1/τ 1D
S = �2τ ∗/2 ≈ �2τw/2.

One then finds LS =
√
Dτ 1D

S ≈ L�le(D/D2D
)/w. Within a

numerical constant, this qualitative expression agrees with
the expression above. The qualitative approach shows that
boundary scattering increases the overall scattering rate in
narrow wires and can lead to a suppression of spin decoherence
by motional narrowing (�2τw/2 < �2τe/2); however, the
reduced D arising from diffusive boundary scattering tends
to lower LS .

The Rashba parameter α can be obtained, separately,
from Shubnikov–de Haas oscillations in magnetoresistance
measurements.40,41 Rashba SOI causes a spin splitting of
the Fermi surface, which can lead to beat nodes in the
Shubnikov–de Haas oscillations. The spin-splitting energy ε

is expressed as41,42

ε =
√

[h̄ωc(1 − g∗m∗/2me)]2 + (2αkF )2 − h̄ωc, (6)

where ωc = eB/m∗ is the cyclotron frequency, g∗ is the
effective Landé g factor. Under Rashba SOI, beat nodes in the
Shubnikov–de Haas oscillations occur at values of B where ε

is an odd multiple of h̄ωc/2. Shubnikov–de Haas oscillations
measured for the unpatterned 2DES in heterostructure B are
depicted in Fig. 6. One beat node corresponding to ε = h̄ωc/2
and occurring at B = 0.55 T is observed. Using g∗ = −15,29

we calculate a Rashba parameter α ≈ 5.3 × 10−12 eV m from
Eq. (6), in good agreement with α extracted from the
observed dependence of LS on D and w in the Q1D model.
The quantitative agreement between α extracted by the two
separate methods should not be overemphasized. As discussed
previously, the Q1D model does not include the short-time
cutoff which, if included, would lead to slightly larger values
of LS and, thus, a slightly lower value for α; nor does it
include the dimensional crossover which is expected to result
in smaller values of LS and, hence, larger values for α. The
comparison, however, strongly supports the hypothesis that
wLS ∝ L�le(D/D2D

). For quantitative comparisons, more
rigorous theoretical models for both the dependence of LS

on D/w and for antilocalization in ballistic Q1D wires with
diffusive boundary scattering, valid over a range of w and B,
are needed.

FIG. 6. Shubnikov–de Haas oscillations in the magnetoresistance
of the unpatterned 2DES in heterostructure B (T = 0.4 K). The solid
arrow highlights the observed beat node resulting from SOI in the
2DES.
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We note that for the narrowest wires from heterostructure B
(w = 0.17 μm), LS is smaller than predicted by the observed
LS ∝ D/w dependence for larger w. For extremely narrow
wires, it is reasonable to expect that additional mechanisms
for spin decoherence are active. For instance, due to the
narrow band gap in InAs, the Elliott-Yafet spin decoherence
mechanism36 may significantly affect LS in wires with very
narrow w where the overall electron scattering rate (intrinsic
plus boundary) is high.

A detailed discussion of quantum phase coherence in
the InAs wires is outside the scope of this paper. The
linear dependence of Lφ on D2/3w1/3 in Figs. 5(c) and 5(d)
indicates that the extracted Lφ are consistent with the Nyquist
phase decoherence mechanism43,44 in Q1D wires. It is indeed
predicted that for Nyquist decoherence in Q1D wires, L3

φ =
h̄2ν0D

2w/kBT (where kB denotes the Boltzmann constant).
A deviation from the Nyquist prediction occurs at the widest
w. Yet, such a deviation may be anticipated for wide w, as Lφ

is expected to saturate to its 2D value as the wire approaches
the 2D regime.

V. CONCLUSIONS

In narrow ballistic wires lithographically patterned on high-
mobility InAs 2DESs, the dependencies of the spin coherence
length LS on wire width w and diffusion constant D are
experimentally studied by analyzing the quantum corrections
to the conductivity due to antilocalization. Using a Q1D
antilocalization approach, the extracted values of LS are found
to show an overall weak dependence on w, with LS ∝ D/w.
Diffusive boundary scattering in the narrow InAs wires results
in D decreasing with decreasing w, affecting LS and the phase
coherence length Lφ . The often-observed increase in LS as
w narrows, arising from the LS ∝ 1/w dependence, is in the
InAs wires largely canceled by the decreasing D.
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