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Weak localization and Berry flux in topological crystalline insulators
with a quadratic surface spectrum
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The paper examines weak localization (WL) of surface states with a quadratic band crossing in topological
crystalline insulators. It is shown that the topology of the quadratic band crossing point dictates the negative
sign of the WL conductivity correction. For the surface states with broken time-reversal symmetry, an explicit
dependence of the WL conductivity on the band Berry flux is obtained and analyzed for different carrier-density
regimes and types of the band structure (normal or inverted). These results suggest a way to detect the band Berry
flux through WL measurements.
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I. INTRODUCTION

Topological insulators (TIs) feature edge or surface states
with a gapless spectrum at band crossing points in the
Brillouin zone. These singularities of the band dispersion
have a vortexlike structure and carry quantized Berry’s
flux that contributes to the phase of the electronic wave
function, affecting scattering and transport processes. The
best studied example is a linear (Dirac) band crossing in
two-dimensional1–3 and three-dimensional4–6 TIs with strong
spin-orbit coupling (SOC) (see also reviews in Refs. 7–9). The
linear crossing point is protected by time-reversal symmetry
(TRS) and carries the Berry flux of π . In this case, the
pairs of states with opposite momentum directions appear
to be orthogonal to each other and, hence, unavailable for
scattering. The absence of such backscattering is the hallmark
of electron transport in the SOC TI materials (see, e.g., reviews
in Refs. 10–12). In particular, Dirac surface states escape
being localized by potential disorder. Instead, the surface
conductivity acquires a positive quantum correction, an effect
known as weak antilocalization (WAL).

Recently, a new subclass of TIs—topological crystalline
insulators (TCIs)—has been identified.13–16 Unlike their SOC
counterparts, in the TCIs the gapless surface states are
protected by discrete symmetries of the crystal, which offers
diverse possibilities for engineering and controlling topolog-
ical states of matter.14–16 A vivid example of the distinct
topological properties of the TCIs is the possibility of gapless
surface states with a quadratic band crossing.13 These have
been predicted for crystalline materials with the fourfold C4 or
sixfold C6 rotational symmetry on the surface. The quadratic
band degeneracy point is characterized by the Berry flux of
2π , which does not forbid backscattering, but nevertheless
has implications for quantum transport.17,18 Most important,
instead of WAL the carriers on high-symmetry TCI surfaces
are expected to show weak localization (WL), with a negative
quantum conductivity correction. In contrast to the SOC ma-
terials, the WL properties of the TCIs still remain unexplored.

In this paper, the WL conductivity correction for the surface
states with the quadratic band dispersion is calculated by
means of Kubo’s formalism. Special emphasis is placed on
establishing an explicit relation between Berry’s flux β and
the WL conductivity correction δσ . It is shown that δσ is
negative, which is determined by the topology of the quadratic

band crossing point. If TRS is preserved, there is no other
dependence on the band structure, so that the WL correction
is typical of the orthogonal symmetry class of disordered
systems. Richer WL properties are found for the TCIs with
broken TRS in which the Berry flux can be tuned between 0
and 4π . In this case, the WL shows a unitary behavior with
three characteristic regimes in which the WL conductivity is
given per spin by

δσ (β) = e2

2πh
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln
[ τ0

2τφ
+ (

β

4π

)2]
, β → 0,

ln
[ τ0

τφ
+ 2

(
1 − β

2π

)2]
, β → 2π,

ln
[ τ0

2τφ
+ (

1 − β

4π

)2]
, β → 4π,

(1)

where τφ is the dephasing time, and τ0 � τφ is the character-
istic impurity scattering time. As explained below, the three
cases in Eq. (1) are realized depending on the filling of the
conduction band and the type of the band structure (normal
or inverted). In each case, Eq. (1) establishes a direct link
between the intrinsic band Berry flux β and the experimentally
accessible observable δσ . This is a distinctly different depen-
dence compared to that found in other TI materials, e.g., in
magnetically doped three-dimensional TIs,19,20 HgTe quantum
wells,11,21–23 and doped Kane-Mele TIs.24

The subsequent sections provide a comprehensive account
of the theoretical approach adopted in this paper. In Sec. II a
model for the TCI surface state is introduced and incorporated
into the general Kubo formalism. Section III contains the
details of the calculation of the WL conductivity correction
based on the solution of the Cooperon equation. In Sec. IV the
results are summarized and discussed.

II. MODEL

A. Effective Hamiltonian and Berry flux

We consider a two-dimensional (2D) system of spinless
fermions described by the Hamiltonian

Ĥ0 = d1(k)σz + d2(k)σx + d0(k)σ0, (2)

with

d1(k) = A
(
k2
x − k2

y

)
, d2(k) = Bkxky, d0(k) = Ck2 − μ,

(3)
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FIG. 1. (Color online) Energy band dispersion in the (a) presence
and (b) absence of TRS [see also Eqs. (2) and (4)]. Fermi level lies
in the conduction band at E = 0.

where k = (kx,ky,0) is the wave vector; A, B, and C are
band structure constants; and μ is the Fermi energy. The
model applies, in particular, to a surface state in crystalline
materials of the tetragonal system with a diatomic unit cell
along the c axis.13 In this case, the surface state occurs on
the high symmetry crystal face (001) possessing the fourfold
C4 rotational symmetry. Hence, the Pauli matrices σx and
σz represent the unit-cell degrees of freedom, and σ0 is the
unit matrix. In the following we focus on the isotropic case
with B = 2A. Hamiltonian (2) is invariant under the time
reversal (represented by complex conjugation), yielding a
gapless spectrum with a quadratic band degeneracy at the high
symmetry point k = 0 [see also Fig. 1(a)].

We extend the model by adding a TRS-breaking perturba-
tion �σy ,

Ĥ = Ĥ0 + �σy, (4)

which opens a gap of 2|�| between the conduction and valence
bands at k = 0 [see also Fig. 1(b)]. This symmetry-breaking
mechanism can be incorporated into a spinful model and may
result from a magnetic proximity effect.25 The analogy with
the magnetic polarization becomes even more pertinent if one
makes a unitary transformation ÛĤ Û † → Ĥ with matrix

Û = iσ0 + σx + σy + σz

2
(5)

to cast the Hamiltonian in the form

Ĥ = d(k) · σ + d0(k)σ0, (6)

where d(k) is the three-component vector

d(k) = (d1(k),d2(k),�). (7)

Its out-of-plane component � accounts for the broken TRS,
while the in-plane vector (d1(k),d2(k),0) characterizes vortic-
ity associated with the quadratic Fermi point in momentum
space (see Fig. 2). The vortex carries the Berry flux:

β = −i

∮
|k|=kF

〈ψ(k)|∇kψ(k)〉 · dk, (8)

where the integration path is chosen along a closed Fermi line
of radius kF at the crossing of the conduction band with the

FIG. 2. (Color online) Vorticity of vector d(k) at the k = 0 point
[see also Eq. (7)]. The circle schematically indicates the Fermi
surface. All momenta are in units of A−1/2.

Fermi level (see also Figs. 1 and 2), and ψ(k) is the conduction
band eigenstate of (6) given by

ψ(k) = σ0 + σ · e(n)√
2(1 + ez)

[ 1
0

]
= 1√

2

[ √
1 + ez

e2iφ
√

1 − ez

]
. (9)

Here e(n) = d/|d| = [ex(n),ex(n),ez] is a unit vector describ-
ing the vortex structure on the Fermi surface as a function of
the unit wave vector, n = [cos φ, sin φ,0]:

ex(n) = e‖
(
n2

x − n2
y

) = e‖ cos(2φ), (10)

ey(n) = e‖2nxny = e‖ sin(2φ), (11)

ez = �√
A2k4

F + �2
, e‖ =

√
1 − e2

z. (12)

In view of the π periodicity of the vortex structure and broken
TRS, the Berry flux is

β = 2π (1 − ez) = 2π
(
1 − �

/√
A2k4

F + �2
)
. (13)

We assume a simple relation, kF = √
4πn, between the Fermi

wave number and surface carrier density n. Table I shows
the values of β close to modulo 2π depending on the type
of the band structure and the carrier-density regime. The
characteristic carrier density n0 is given by

n0 = |�|/4πA. (14)

TABLE I. Characteristic values of Berry flux β for different types
of the band structure and carrier-density regimes.

n 	 n0 n � n0

Normal band structure (� > 0) β → 2π β → 0
Inverted band structure (� < 0) β → 2π β → 4π
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For high carrier densities, n 	 n0 (or μ 	 �), the Berry flux
is close to 2π independently of the band structure type. For
low carrier densities, n � n0 (or μ → |�|), the behavior of
β depends on whether the band structure is normal (� > 0)
or inverted (� < 0). For the normal structure β → 0, while
for the inverted one β → 4π . Other examples of materials
with nontrivial quadratic band dispersion and Berry’s phases
include semiconductor hole structures (see, e.g., Refs. 26–29)
and bilayer graphene (see, e.g., Ref. 17).

B. Kubo formula. Model of disorder

To calculate the electric conductivity, we use the linear
response theory with respect to an external uniform electric
field Ee−iωt at frequency ω. The longitudinal conductivity is
given by Kubo formula

σxx = e2

2πωa

∫
dE[f (E) − f (E + h̄ω)]

×
∑
k,k′

Tr
[
v̂x

kĜ
R

k,k′(E + h̄ω)v̂x
k′Ĝ

A

k′,k(E)
]
, (15)

where a is the area of the system, f (E) is the Fermi-Dirac
distribution function, Tr denotes the trace in σ space, v̂x

k is the
x component of the velocity operator

v̂x
k = 1

h̄

∂Ĥ
∂kx

= 2A

h̄
k · σ + 2C

h̄
kxσ0, (16)

and Ĝ
R/A

k,k′(E) are the retarded and advanced Green functions
satisfying the equation

Ĝ
R/A

k,k′ = Ĝ
R/A

0k δk,k′ +
∑

k1

Ĝ
R/A

0k V̂k,k1Ĝ
R/A

k1,k′ . (17)

In the above equations and throughout, the “hat” indicates
2 × 2 matrices in σ space. Ĝ

R/A

0k are the bare Green functions
defined by the equation (E − Ĥ)Ĝ

R/A

0k = σ0. Assuming the
splitting between the conduction and valence bands at |k| = kF

to be much larger than the characteristic scale of E,

2
√

A2k4
F + �2 = 2

(
μ − Ck2

F

) 	 E, (18)

we find Ĝ
R/A

0k near the Fermi surface (|k| ≈ kF ) as

Ĝ
R/A

0k ≈ P̂n

E − ξk
, P̂n = σ0 + σ · e(n)

2
, (19)

where P̂n is the projector on the conduction band, and ξk =√
A2k4 + �2 + Ck2 − μ is the conduction band dispersion.
Finally, V̂k,k1 in Eq. (17) is the matrix element of the

scattering potential. We consider scattering from a spin-
independent short-ranged random potential characterized by
the correlation function〈〈

V̂k,k1 ⊗ V̂k′,k2

〉〉 = ζ

a
δk−k1,−k′+k2

σ0 ⊗ σ0, ζ = h̄

πNτ0

,

(20)

where the double brackets 〈〈. . .〉〉 denote averaging over
the ensemble of the disorder realizations, and ⊗ indicates
the direct matrix product. The correlation strength ζ is
parametrized in terms of the characteristic scattering time τ0

and the density of states (DOS) at the Fermi level per spin N .
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FIG. 3. (Color online) Diagrammatic representations for (a) the
Kubo formula for the quantum correction to the Drude conductivity,
and (b) the Bethe-Salpeter equation for the Cooperon. Solid lines with
arrows correspond to the disorder-averaged retarded (R) and advanced
(A) Green functions (24), dashed lines to the disorder correlator (20),
and shaded area to the Cooperon.

III. THEORETICAL APPROACH

A. Quantum correction to classical conductivity
from Kubo formula

We follow the standard approach in which the Kubo formula
(15) is averaged over the disorder configurations, and the
quantum correction to the Drude conductivity δσ is given
by the crossed diagrams summing up into the Cooperon
Cαβα′β ′(q,ω) as depicted in Fig. 3(a) (see, e.g., Refs. 30 and 31).
The corresponding analytic expression for δσ is

δσ = e2h̄

πNτ 2

∫
dE

2πω
[f (E) − f (E + h̄ω)]

∑
αβα′β ′

×
∫

dk
(2π )2

(
Ĝ

A

k,E v̂x
k Ĝ

R

k,E+h̄ω

)
β ′α

× (
Ĝ

R

q−k,E+h̄ω v̂x
q−k Ĝ

A

q−k,E

)
α′β

∫
dq

(2π )2
Cαβα′β ′(q,ω),

(21)

where the Greek indices label the states in σ space.
The Cooperon obeys the Bethe-Salpeter equation [see also
Fig. 3(b)],

Cαβα′β ′ (q,ω) = τ 2

τ0

δαα′δββ ′ + ζ

∫
dk

(2π )2

∑
γ ′δ′

G
R

αγ ′ (k,E + h̄ω)

×G
A

βδ′ (q − k,E)Cγ ′δ′α′β ′(q,ω). (22)

Due to the chosen normalization of Cαβα′β ′(q,ω), the prefactors
in Eqs. (21) and (22) contain the elastic scattering time τ given
by

1

τ
= 2πNζ

h̄

∫ 2π

0

dφn1

2π

1 + e(n) · e(n1)

2
= 1 + e2

z

τ0

, (23)

where the integration goes over the directions of the scat-
tered state specified by the unit momentum vector n1 =
(cos φn1 , sin φn1 ,0). The same time τ enters the disorder-
averaged Green functions Ĝ

R/A

k,E in Eqs. (21) and (22),

Ĝ
R/A

k,E = P̂n

E
R/A

− ξk
, E

R/A
= E ± ih̄

2τ
. (24)

Since velocity operator (16) is odd in k, the vertex corrections
vanish identically. As a result, the transport scattering time
coincides with τ , the diffusion constant is D = v2τ/2, and
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there are no additional corrections to the conductivity in
Eq. (21). Equations (21) to (24) are valid in the metallic regime

kF vτ 	 1. (25)

Since under conditions (18) and (25) only the vicinity of
the Fermi surface matters, we employ the standard integration
over ξk in Eq. (21), after which the conductivity correction
assumes the form32

δσ = 8e2D

hv2

∑
αβα′β ′

[
P̂nv̂x

nP̂n
]
β ′α

[
P̂−nv̂

x−nP̂−n
]
α′β

×
∫

dq
(2π )2

Cαβα′β ′(q,ω), (26)

where the bar denotes averaging over the directions of the
unit vector n: (· · · ) = ∫ 2π

0 · · · dφn/(2π ). In order to sum out
the spin degrees of freedom, we expand the Cooperon in the
orthonormal basis of the two-electron spin states,

Cαβα′β ′(q,ω) =
∑
ij

Cij (q,ω) �i
αβ�

j∗
α′β ′ , (27)

where the basis functions �i
αβ can be chosen as follows:

�j = σjσy√
2

, j = 0,x,y,z,
∑
αβ

�
j

αβ�i∗
αβ = δji . (28)

The index j = 0 labels the singlet state, while j = x,y, and z

correspond to the three triplet states. After the straightforward
summation with the use of Eqs. (27) and (28), we find

δσ = −4e2D

h

∫
dq

(2π )2

[
n2

x

(
1 − e2

x

)
Cxx + n2

x

(
1 − e2

y

)
Cyy

+ n2
x

(
1 − e2

z

)
Czz + n2

xez i(Cxy − Cyx)
]
. (29)

This expression reflects the π periodicity of the vortex
structure in momentum space, with e(−n) = e(n). Because
of that, there is no contribution of the singlet Cooperon C00,
which is responsible for the WAL in the Dirac systems.33 The
correction (29) is always negative.34 At the same time, Eq. (29)

differs from the WL conductivity of a conventional 2D electron
gas (2DEG) with a σ -independent quadratic Hamiltonian. To
illustrate the difference, in Appendix A we obtain the WL
correction for the conventional 2DEG from Eq. (26). We note
that a negative WL conductivity has also been found for the
semiconductor hole systems under appropriate conditions (see,
e.g., Refs. 35, 29, and 36) and for bilayer graphene.18

Apart from the diagonal triplet Cooperons, Eq. (29) con-
tains the off-diagonal ones Cxy and Cyx . These are induced by
the polarization term and both proportional to iez. Technically,
the off-diagonal Cooperon terms originate from the matrix
elements σ

β ′α
0 σ

α′β
z ez and σ

β ′α
z σ

α′β
z ez in the prefactor in front

of the integral in Eq. (26). Without the off-diagonal Cooperons
Cxy and Cyx Eq. (29) cannot correctly describe the case
of strong polarization, |ez| → 1. In the next subsection we
calculate the required triplet Cooperon amplitudes.

B. Cooperon amplitudes

The equation for the Cooperon amplitudes Cij (q,ω) =∑
αβα′β ′ �

i∗
αβ�

j

α′β ′ Cαβα′β ′(ω,q) follows from Eq. (22). After
the standard integration procedure32 we find

Cij (q,ω) = τ 2

τ0

δij + τ

τ0

∑
s=0,x,y,z

Tr〈P̂−nσiP̂nσs〉Csj (q,ω),

(30)

where the brackets 〈· · · 〉 stand for the integral

〈· · · 〉 =
∫ 2π

0

dφn

2π

· · ·
1 − iτω + iτvn · q

, (31)

taken over the momentum directions on the Fermi surface.
Equation (30) reproduces the Cooperon amplitudes for the
conventional 2DEG (see Appendix A). In our case, the
specifics of the system consists in the π -periodic pseudospin
texture determined by vector e(n) in Eqs. (10) to (12). First,
we make use of the fact that e(n) is an even function of n. This
allows us to reduce Eq. (30) to

⎡
⎢⎣

1 + e2
z − 〈

1 − e2
x

〉 〈iez + exey〉 〈−iey + exez〉
〈−iez + eyex〉 1 + e2

z − 〈
1 − e2

y

〉 〈iex + eyez〉
〈iey + ezex〉 〈−iex + ezey〉 1 + e2

z − 〈
1 − e2

z

〉
⎤
⎥⎦
⎡
⎣Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz

⎤
⎦ = τ

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , (32)

and C0j = (τ 2/τ0 )δ0j . Note that the Cooperons with the singlet
first index (i = 0) decouple from the rest and are independent
of q and ω. In Appendix B we solve Eq. (32) in the diffusion
approximation

τvn · q � 1, τω � 1. (33)

For the required Cooperon amplitudes we find

Cxx(q,ω) = 1

2

[
1

(1 + ez)(Dq2 − iω) + (1 − ez)2/2τ

+ 1

(1 − ez)(Dq2 − iω) + (1 + ez)2/2τ

]
, (34)

Cyy = Cxx, Cyx = −Cxy = 2iez

1 + e2
z

Cxx, (35)

Czz(q,ω) = 1(
1 − e2

z

)
(Dq2 − iω) + 2e2

z/τ
. (36)

In these equations, parameter ez quantifies the degree to which
the TRS is broken by the polarization field. In the TRS case
(ez = 0), Cooperon Czz is gapless, while Cxx and Cyy both
have a large relaxation gap of 1/2τ . If the TRS is broken, all the
Cooperons are gapped as expected for the unitary universality
class. For a weak polarization with e2

z � 1, a small gap of
2e2

z/τ opens in Czz. For a strong polarization with |ez| → 1,
Cooperons Cxx and Cyy become gapless, while the gap in Czz
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increases to 2/τ . In each case, the conductivity correction is
determined by the Cooperons with a small gap.

IV. RESULTS

The TRS breaking parameter ez can be controlled by tuning
the carrier density n [see Eqs. (12) and (13) and text after].
We begin by evaluating WL conductivity (29) at high carrier
densities

n 	 n0, (37)

which corresponds to |ez| � 1. In this case,

Czz(q,ω) ≈ 1

Dq2 − iω + 2e2
z/τ

, (38)

and the other Cooperons can be neglected. With the upper
integration cutoff Dq2

c = τ−1 ≈ τ−1
0 and replacement −iω →

τ−1
φ , Eqs. (29) and (38) yield

δσ ≈ e2

2πh
ln

(
τ0

τφ

+ 2e2
z

)
. (39)

The case of strong polarization (|ez| → 1) corresponds to low
carrier densities

n � n0. (40)

Under this condition, Cooperons Cxx/yy (34) and Cxy/yx (35)
are

Cxx = Cyy ≈ 1/2

2(Dq2 − iω) + (1 − |ez|)2/2τ
, (41)

Cyx = −Cxy ≈ i sgn(ez) Cxx, (42)

and Czz is negligible. With the upper integration cutoff Dq2
c =

τ−1 ≈ 2τ−1
0 in Eq. (29), we find

δσ ≈ e2

2πh
ln

(
τ0

2τφ

+ (1 − |ez|)2

4

)
. (43)

In view of Eq. (13) the dependence on the polarization ez is
equivalent to the dependence on the Berry flux β. Replacing

0
0

0

−1

−2

−3

−4

−5

5 10 15 20 25
n/n

δσ
/σ

unitary

orthogonal

orthogonal

FIG. 4. (Color online) WL conductivity correction δσ versus
carrier density n [see also Eqs. (39) and (43)]; σ0 = e2/(2πh) and
τφ/τ0 = 100.
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FIG. 5. (Color online) WL conductivity correction δσ versus
normalized dephasing rate τ0/τφ for different carrier densities [see
also Eq. (39)].

ez by β in Eqs. (39) and (43), we arrive at Eq. (1) for the WL
conductivity correction δσ (β) announced in the Introduction.
We note that the regimes ez → ±1 are realized in the normal
and inverted structures with β → 0 and β → 4π , respectively.

In conclusion, we discuss two possible experimental
signatures of the Berry-flux dependence of δσ . One is a
nonmonotonic carrier-density dependence of δσ , which
follows from asymptotics (39) and (43). In Fig. 4 Eqs. (39)
and (43) are plotted as a function of the normalized
density n/n0. In the two extreme limits n/n0 → 0 and
n/n0 → ∞ the system behavior is typical of the orthogonal
universality class with a logarithmically large negative
δσ ≈ −(e2/2πh) ln(τφ/τ0 ). On the crossover between the
orthogonal limits at n ∼ n0, the WL correction should reach
a maximum value of the order of −e2/2πh. The maximum is
the signature of the Berry flux in the well-developed unitary
regime in which the phase-coherent quantum interference is
limited by a short time scale ∼ τ .37 This corresponds to the
large gaps in the Cooperon amplitudes in Eqs. (34) to (36).
The other possibility is to examine the dependence of δσ on
the dephasing rate τ−1

φ , as shown in Fig. 5. For a sufficiently
large carrier density (curve a in Fig. 5) the correction δσ tends
to be divergent in the limit τ−1

φ → 0. This indicates that β is
very close to 2π . For somewhat lower densities (e.g., curve c in
Fig. 5), δσ is less sensitive to τ−1

φ . Its finite value at τ−1
φ → 0,

δσ ≈ e2

πh
ln

∣∣∣∣1 − β

2π

∣∣∣∣ , (44)

is the measure of the Berry flux β. Experimentally, this limit
can be achieved at sufficiently low temperatures.

APPENDIX A: WL CORRECTION AND
COOPERON AMPLITUDES FOR A CONVENTIONAL

2DEG FROM EQS. (26) AND (30)

Since matrix P̂n in Eq. (26) is still arbitrary, this equation
is valid also for a 2DEG with a spin-independent quadratic
Hamiltonian. In this case, A = B = 0 in Eqs. (2) and (16), and
the Green functions are given by Eq. (24) where P̂n should be
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replaced by the unit matrix σ0. Then, using Eq. (27) we find
from Eq. (26)

δσ = −4e2D

h

∫
dq

(2π )2

∑
αβ

Cαββα

= −4e2D

h

∫
dq

(2π )2

∑
ij

Cij Tr[�i�j∗]

= −4e2D

h

∫
dq

(2π )2
[Cxx + Cyy + Czz − C00]. (A1)

Unlike Eq. (29), the above equation involves both triplet and
singlet diagonal Cooperons. These can be calculated from
Eq. (30) with P̂n = σ0 and τ = τ0/2 as

Cij (q,ω) = τ/2

1 − 〈1〉δij , (A2)

where 〈1〉 is the angle integral

〈1〉 =
∫ 2π

0

dφn

2π

1

1 − iτω + iτvn · q
≈ 1 + iτω − τ 2v2q2

2
,

(A3)

under conditions (33). Inserting this into Eq. (A2), we have

Cij (q,ω) = 1/2

Dq2 − iω
δij , D = v2τ

2
. (A4)

The factor of 1/2 is due to the chosen normalization of
the Cooperon. Equations (A1) and (A4) lead to the well
known result: δσ = − 2e2

(2π)h ln τφ

τ
, where the factor of 2 in the

numerator accounts for the band degeneracy.

APPENDIX B: COOPERON AMPLITUDES FROM EQ. (32)

We seek the solutions of Eq. (32) with the diffusion pole
structure similar to that in Eq. (A4). Let us first estimate the
off-diagonal matrix elements 〈ex,y〉 and 〈exey〉 in Eq. (32). To
do so we expand the denominator in Eq. (31) and perform
averaging over n under conditions (33). Since ex,y are both
second harmonics of φ [see Eqs. (10) and (11)], the expansion
must be to the second order in τvn · q at least. Consequently,

〈ex〉 ∼ τ 2v2
(
q2

x − q2
y

)
, 〈ey〉 ∼ τ 2v2qxqy. (B1)

These terms produce a fourth order correction τ 4v2q4 in the
diffusion pole, and, for this reason, can be neglected. The aver-
age product 〈exey〉 ∼ τ 4v2q4 leads to even smaller negligible
corrections. Next, we note that the main approximation for
〈e2

x,y〉 is 〈
e2
x,y

〉 ≈ e2
‖

/
2. (B2)

Therefore, Eq. (32) can be approximated as

⎡
⎢⎣

1+e2
z

2 + 1 − 〈1〉 i〈ez〉 0

−i〈ez〉 1+e2
z

2 + 1 − 〈1〉 0
0 0 1 + e2

z − 〈
1 − e2

z

〉
⎤
⎥⎦
⎡
⎣Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz

⎤
⎦ = τ

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ . (B3)

It splits into three equations for the required triplet Cooperons:[
1+e2

z

2 + 1 − 〈1〉 iez〈1〉
−ezi〈1〉 1+e2

z

2 + 1 − 〈1〉

][
Cxx

Cyx

]
= τ

[
1
0

]
, (B4)

[
1+e2

z

2 + 1 − 〈1〉 iez〈1〉
−iez〈1〉 1+e2

z

2 + 1 − 〈1〉

][
Cxy

Cyy

]
= τ

[
0
1

]
, (B5)

[(
1 − e2

z

)
(1 − 〈1〉) + 2e2

z

]
Czz = τ. (B6)

Solving these equations and using Eq. (A3) for 〈1〉 we obtain Cooperon amplitudes (34) to (36).
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