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Superintense highly anisotropic optical transitions in anisotropic quantum dots

Siranush Avetisyan,1 Pekka Pietiläinen,2 and Tapash Chakraborty1,*
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Coulomb interaction among electrons is found to have profound effects on the electronic properties of
anisotropic quantum dots in a perpendicular external magnetic field and in the presence of the Rashba spin-orbit
interaction. This is more evident in optical transitions, which we find in this system to be highly anisotropic and
superintense, in particular, for large values of the anisotropy parameter.
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I. INTRODUCTION

For more than two decades, theoretical studies of quantum
dots (QDs) in an external magnetic field1 have largely
focused on the properties of dots with circular symmetry.2,3

Extensive investigations of transport and optical spectroscopy
of these semiconductor nanostructures (the artificial atoms)
have revealed several important atomic-like properties.2,3 In
contrast, not enough is known about the electronic properties
of anisotropic quantum dots.4,5 Another important direction
of the QD research that is gaining popularity in recent
years has been the role of Rashba spin-orbit interaction
(SOI)6–8 in quantum dots. The importance of this interaction
in semiconductor spintronics has been well documented in the
literature.9–11 Detailed theoretical studies of the influence of
Rashba SOI on the electronic properties of QDs with isotropic
confinement have already been reported earlier,12 where the
SO coupling was found to manifest itself mainly in multiple
level crossings and level repulsions in the energy spectra.
These were attributed to an interplay between the Zeeman
effect and the SOI present in the system Hamiltonian. Those
effects, in particular the level repulsions, were weak and as a
result, would require extraordinary efforts to detect the strength
of SO coupling13 in those systems. On the other hand, by
introducing anisotropy in a QD, we have previously shown that
a major enhancement of the Rashba SO coupling effects can
be achieved in the Fock-Darwin spectra.14 Although various
approximate schemes exist to study the effects of anisotropy on
the far-infrared absorption,15 the role of SO coupling on the far-
infrared response,16 or other physical properties of elliptical
dots,17 an accurate and coherent theoretical treatment of all
these issues, in particular, the role of Coulomb interaction, in
conjunction with all these properties is seriously lacking. Here
we demonstrate that in the presence of the Coulomb interaction
among the electrons, and combined with the Rashba SOI, the
eccentricity of the QD is responsible for major modification
of the electron energy spectra, which clearly manifests itself
in superintense and highly anisotropic optical transitions that
are vastly different from those that are commonly observed in
an isotropic QD.

II. THEORETICAL MODEL

Until now, interacting electrons in elliptical QDs have
been studied by means of perturbative approaches.18,19

In what follows, we present a nonperturbative, exact

diagonalization scheme to treat interacting electrons in
anisotropic quantum dots. Our complete single-particle Hamil-
tonian of an electron moving in the xy plane and subjected to an
external perpendicular magnetic field with the vector potential
A = 1

2B(−y,x) is
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The first two terms on the right-hand side describe a
two-dimensional harmonic oscillator confined by an elliptic
potential.4 The next term takes care of the SOI while the last
one is for the Zeeman coupling. In order to treat the Coulomb
interaction we rearrange the terms in the Hamiltonian into
three parts:
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where H� describes a two-dimensional spinless harmonic
oscillator, the Zeeman coupling HZ introduces the spin,
and HR deforms the simple Cartesian phase space of the
operators H� and HZ . We have also introduced the cy-
clotron frequency ωc = eB/mec and the oscillator frequencies
�2

x,y = m2
e(ω2

x,y + 1
4ω2

c ). The eigenstates |λ〉 of the oscillator
Hamiltonian H� are just direct products |nλ

x〉|nλ
y〉 of the two

harmonic oscillator states represented by the quantum numbers
nλ

x,y . Inclusion of the Zeeman term is also straightforward: we
multiply the states |λ〉 with the eigenstates |sz〉 of the Pauli
spin matrix σz yielding the states |ξ 〉 = |λξ 〉|sξ

z 〉. Finally, the
effects of the operator HR are incorporated by diagonalizing it
in the base spanned by the eigenstates |ξ 〉 of the combination
H� + HZ . Thus the eigenstates |γ 〉 of the total single-
electron Hamiltonian H are expressed as superpositions of the
states |ξ 〉.

To handle the mutual interactions between electrons, we
work in the occupation number representation based on the
eigenstates of the Hamiltonian H. Then the main task is to
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evaluate the two-body matrix elements

〈γ1γ2|V |γ3γ4〉 =
∫

dx1 dx2 
∗
γ1

(x1)
∗
γ2

(x2)

×V (|x1 − x2|)
γ3
(x2)
γ4

(x1),

where the wave functions 
γ (x) correspond to the eigenstates
|γ 〉 of H and the integrals over the variables x include
also summation over the spin degrees of freedom. The
expansion of the functions 
γ in terms of the wave functions
corresponding to the eigenstates |ξ 〉 of H� + HZ leads to
evaluations of two-body matrix elements between the states
|ξ 〉. Since the electrons act via the Coulomb potential V (|x|) =
VC(r) = e2/εr , where ε is the background dielectric constant,
the summations over spin degrees of freedom yield only
Kronecker deltas of the sz quantum numbers and we are left
with the matrix elements

〈λ1λ2|V |λ3λ4〉 =
∫

dr1 dr2 ψ∗
λ1

(r1)ψ∗
λ2

(r2)

×V (|r1 − r2|)ψλ3
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between pairs of the single-particle oscillator wave functions.
In isotropic parabolic dots with mutual Coulomb interactions
we could use the explicit algebraic formula,12 but in elliptical
confinements we have to resort to numerical computations.
Perhaps the most cost-effective way is to do the evaluation via
the (two-dimensional) Fourier transforms


̃μν(k) =
∫

dr eik·rψ∗
μ(r)ψν(r),

Ṽ (k) =
∫

dr eik·rV (r)

of the products of the wave functions and the interaction. A
straightforward algebra yields the expression

〈λ1λ2|V |λ3λ4〉 = 1
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Numerical computation of this final twofold integral is a
relatively fast operation.

Since for the Coulomb interactions we know the Fourier
transform to be ṼC(k) ∝ 2πe2/k, we are left with the evalua-
tion of the Fourier transforms 
̃μν(k). We have experimented
with two practically equally efficient methods: the first one is
fully generic and applicable to any system while the second
one is restricted to elliptical confinements. The generic method
is based on the observation that the Fourier transform 
̃μν(k)
can in fact be written as the matrix element of the exponential
of the position operator rop, 
̃μν(k) = 〈μ|eik·rop |ν〉. Since the
components xop and yop of the position operator commute we
actually need the matrix elements of the exponential operators
exp (ixop) and exp (iyop). These in turn are easily evaluated
by diagonalizing the matrix X with matrix elements Xμν =
〈μ|xop|ν〉 and applying the inverse unitary transformation
taking X to the diagonal form to the exponentiated diagonal,
together with the similar procedure for the operator yop.

In the second approach we take advantage of the fact that
the single-particle wave functions are products of two Hermite
functions, one with the x coordinate and the other with the
y coordinate as the argument. This implies that the product
ψ∗

μ(r)ψν(r) to be transformed factorizes to a product of two

functions depending on x and y, respectively. In fact we can
do the resulting one-dimensional transforms yielding


̃μν(k) = G̃x
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where the functions G̃x,y

i,j (k) are given by
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In the above formulas the symbols n
μ
x,y and nν

x,y stand for the
x and y oscillator quantum numbers of the states labeled by μ

and ν. We have also introduced the shorthand notations βx,y =√
h̄

2meωx,y
, n = min(i,j ), ξ = |i − j |, p = ξ mod 2. Although

both approaches introduced here have their merits, it should
be noted that the first method is somewhat more general and
applicable to any system, while the second method works
only for the harmonic oscillator basis. The second method
is however computationally slightly faster than the first.

III. RESULTS AND DISCUSSION

In our numerical studies that follow, we have used the
parameters corresponding to the InAs QD,14 where strong
SOI was reported experimentally.11 The results for the energy
spectra are displayed in Figs. 1–3 for various values of the SO
coupling strength α and the anisotropy. In the absence of the
external magnetic field and the SOI, neither the total spin S

nor its z-component Sz appear in the full Hamiltonian (with
Coulomb interactions). We therefore expect the two-electron
systems to consist of S = 0 spin singlets and S = 1 spin
triplets. The energy spectra of Fig. 1 indeed confirm that to
be the case: the dispersions form bunches of one and three
lines, the latter of which diverges due to the Zeeman splitting
when the magnetic field increases. Perhaps the most noticeable
feature shown in Fig. 1 is the singlet-triplet transition of the

FIG. 1. Magnetic field dependence of the low-lying two-electron
energy levels of an elliptical dot without the Rashba SOI (α = 0). The
results are for ωx = 4 meV and (a) ωy = 4.1 meV, (b) ωy = 6 meV,
(c) ωy = 8 meV, and (d) ωy = 10 meV.
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FIG. 2. Same as in Fig. 1, but for α = 20 meV nm.

ground state for magnetic fields slightly above 1 T. The origin
of this crossing of the dispersion lines can be traced to the
crossing of the second and third lowest energy levels of the
single-electron systems.14

Just as for the circular QD, the spin singlet-triplet transition
(at B � 1.5 T in Fig. 1) is the only transition in the ground
state. The critical field where the transition takes place is
somewhat dependent on the method of calculation and the
choice of material parameters.18 The main role of the Coulomb
interaction is the upward shift of the spectral lines and lifting
of the accidental degeneracies. Surprisingly, the interaction
also practically freezes the movement of the singlet-triplet
transition point to higher fields when the eccentricity increases.
In the absence of the electron-electron interaction the transition
point shifts about 2 T whereas in the presence of the
interactions the shift is only few tenths of a tesla with the same
eccentricities. When the SOI is turned on (Fig. 2 and Fig. 3)
most of the characteristic features of Fig. 1 survive. However,
since the SOI can mix spin-up and spin-down single-particle
states, neither S nor Sz are any longer good quantum numbers.
This is clearly evident in the singlet-triplet transition which

FIG. 3. Same as in Fig. 1, but for α = 40 meV nm.

FIG. 4. Optical absorption (dipole allowed) specta of elliptical
QDs with α = 0 meV nm for various choice of anisotropy parameters:
(a) ωx = 4 meV, ωy = 4.1, (b) ωx = 4 meV, ωy = 6 meV, and
(c) ωx = 4, ωy = 10. The polarization of the incident radiation is
along the x axis. The parameters for (d)–(f) are the same, except
that the incident radiation is polarized along the y axis. The areas of
the filled circles are proportional to the calculated absorption cross
section.

transforms to anticrossing in the presence of the SOI. Several
similar kind of crossing-anticrossing conversions can also be
seen higher in the spectra.

In Figs. 4–6 we show the the absorption cross sections
for the dipole allowed transitions14 from the ground states
corresponding to the energy spectra of Figs. 1–3. To eval-
uate the cross sections we express the dipole operator in
the occupation representation as the single-particle operator
P = ∑

ij 〈γi |ε · r|γj 〉a†
i aj , where ε is the polarization of the

incident radiation and the operators a† (a) create (destroy)
the single-particle SOI states |γ 〉. Computation of the matrix
element of this polarization operator between ground state and
the excited states of the full Hamiltonian (mutual Coulomb
interactions included) yields transition amplitudes for the
absorption. We explore the cases where the incident radiation
is polarized along the x and y directions. Although the
energy conservation forces the absorbed energies to match
the transition energies the dipole absorptions are mostly
probing the single-particle properties of the dot. This is clear
from the explicit expression of the dipole operator P : the
radiation can affect only one electron at a time by kicking
it to a higher unoccupied selection rule allowed state. In
particular, chosen polarizations explore the oscillator strengths
along the x and y directions. Consequently we expect the
absorption spectra to resemble approximately the spectra of
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FIG. 5. Same as in Fig. 4, but for α = 20 meV nm.

the one-particle system. This indeed seems to be the case.
Except for the case of almost isotropic QDs [panels (a) and
(c)], the optical transitions are clearly highly anisotropic. For
example, because the y-polarization probes for oscillations
along the y direction the related transitions go mostly to
the upper mode; i.e., the favored transition energies are 4,
6, and 10 meV in panels (d)–(f). The resulting transitions
are therefore superintense, unlike in isotropic QDs. There
are also weak-intensity transitions to the lower mode. This
is due to the magnetic field and the SOI, both of which distort
the confinement ellipsoid. There are of course some notable
deviations from the single-electron case. For example, because
the Coulomb interaction couples several noninteracting states
there can be many more allowed transitions from a given
interacting state than from a noninteracting one resulting
in different absorption intensities. The second and perhaps
the most notable example of the multiparticle nature of the
system may be the reflection of the ground-state singlet-triplet
anticrossings in the cross section.

FIG. 6. Same as in Fig. 5, but for α = 40 meV nm.

To summarize: we have reported here detailed and accurate
studies of anisotropic quantum dots with interacting electrons
in the presence of the Rashba SOI. The Coulomb interaction
in the presence of the spin-orbit coupling exhibits a very
strong effect, particularly in the presence of strong anisotropy.
This is clearly seen in the optical absorption spectra which
is superintense and highly anisotropic. The spectra derived
here are entirely different from the ones observed thus far
in isotropic QDs. Our present work can be generalized,
in a straightforward manner, to include more interacting
electrons in the QD. The energy spectra and optical transitions
with more electrons will undoubtedly be very complex.
However, the basic properties uncovered here will remain
intact.
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C. Ertler, P. Stano, and I. Žutić, Acta Phys. Slov. 57, 565 (2007);
M. W. Wu, J. H. Jiang, and M. Q. Weng, Phys. Rep. 493, 61
(2010).

10J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett.
78, 1335 (1997); M. Studer, G. Salis, K. Ensslin, D. C. Driscoll,
and A. C. Gossard, ibid. 103, 027201 (2009); D. Grundler, ibid. 84,
6074 (2000).

11H. Sanada, T. Sogawa, H. Gotoh, K. Onomitsu, M. Kohda,
J. Nitta, and P. V. Santos, Phys. Rev. Lett. 106, 216602 (2011);
S. Takahashi, R. S. Deacon, K. Yoshida, A. Oiwa, K. Shibata,
K. Hirakawa, Y. Tokura, and S. Tarucha, ibid. 104, 246801 (2010);
Y. Igarashi, M. Jung, M. Yamamoto, A. Oiwa, T. Machida,
K. Hirakawa, and S. Tarucha, Phys. Rev. B 76, 081303(R)
(2007).
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