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Combined influence of Coulomb interaction and polarons on the carrier dynamics
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Experimental results for the carrier capture and relaxation dynamics in self-organized semiconductor quantum
dots are analyzed using a microscopic theory. Time-resolved differential transmission changes of the quantum-dot
transitions after ultrafast optical excitation of the barrier states are studied in a wide range of carrier temperatures
and excitation densities. The measurements can be explained by quantum-dot polaron scattering and their
excitation-dependent renormalization due to additional Coulomb scattering processes. Results of configuration-
picture and single-particle-picture descriptions, both with nonperturbative transition rates, show good agreement
with the experiments while Boltzmann scattering rates lead to a different excitation density and temperature
dependence.
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I. INTRODUCTION

In the past, extensive investigations of the carrier scattering
processes in semiconductor quantum dots (QDs) have been
performed both experimentally1–7 and theoretically8–18 due
to their numerous applications in optoelectronics devices and
for semiconductor quantum optics. In QDs the energy levels
are completely quantized. From the viewpoint of perturbation
theory, energy relaxation of QD-confined carriers toward
lower states only occurs when a scattering mechanism exactly
fulfills energy conservation in terms of free-carrier states,
which is expressed by a δ function in Fermi’s golden rule.
In the case of phonon scattering, phonon dispersions must
be evaluated or multiphonon processes have to be taken
into account. However, the longitudinal optical (LO) phonon
dispersion is small, and longitudinal acoustic (LA) phonons
as well as higher-order processes (such as LO-LA phonon
combinations) turned out to contribute only weakly to the
redistribution of carriers.9,15 In experiment, though, efficient
carrier relaxation was observed. This has led to the puzzling
question of which mechanisms override the “phonon bottle-
neck”. Carrier-carrier interaction processes were proposed,2

and indeed, when scattering partners are available, Coulomb
scattering can provide efficient carrier relaxation. Regarding
the interaction with LO phonons, it was demonstrated that
perturbation theory does not provide the full answer for
modeling QDs and that quasiparticles (“polarons”) emerging
from the nonperturbative carrier-phonon interaction should be
considered.12,19,20

Instead of sharp energies, these quasiparticles represent an
extended energy range due to phonon replicas and their broad-
ening. Spectral functions reflect these properties, and transition
rates depend on the overlap between the spectral functions of
the involved states.21,22 For the low-temperature regime and
in the long-time limit, polaron satellites and hybridizations
show small broadenings which end up in low scattering rates
within a model that solely considers carrier scattering due
to polarons. In the ultrafast time domain, however, spectral

functions are not yet sharply defined and non-Markovian
effects temporally lift the energy-conservation condition.23,24

It has also been shown that coupling of LO phonons to
plasmons in doped heterostructures leads to the formation of
quasiparticles referred to as “plasmon LO phonons”, which
exhibit a stronger dispersion than LO phonons alone and hence
enable efficient scattering of QD carriers.25,26

Carrier-carrier Coulomb interaction provides additional
scattering channels due to the coupling of localized QD
states and delocalized states, which are provided by ener-
getically nearby wetting layer (WL) or barrier material. In
the past, carrier-carrier Coulomb scattering has been mainly
addressed in terms of Boltzmann transition rates.8,13–16,18,27,28

Such a treatment relies on a single-particle description of
carrier excitations. In its simplest form, it is derived from
Fermi’s golden rule. Quantum kinetic models, e.g., based
on the nonequilibrium Green’s function technique, allow
for the inclusion of non-Markovian effects and quasiparticle
renormalizations, e.g., when the carrier scattering is used to
determine interaction-induced dephasing in optical absorption
and gain spectra.29,30 Recently it has been pointed out that
the co-action of carrier-carrier and carrier-phonon interaction
contributes in a nontrivial way, since both interactions lead to
quasiparticle renormalizations, which in turn act back on the
individual scattering efficiencies.31 Another question, which
has been addressed, is about the use of a configuration-picture
description of QD excitations, which accounts for the different
multiexciton states, in comparison to the usual single-particle
picture description, which considers the averaged carrier
populations of the single-particle states.32

Among the many issues is the relative importance of carrier
scattering with LO phonons versus the Coulomb scattering and
their temperature and excitation density dependence. In this
paper, we compare systematic experimental results to a novel
theoretical approach, which includes the configuration-picture
description of QD excitations and the co-action of Coulomb
and polaron scattering within a nonperturbative theory.
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II. EXPERIMENTAL SETUP AND RESULTS

A. Overview

Time-resolved differential transmission (TRDT) experi-
ments were performed with samples containing ten layers of
nominally undoped (In,Ga)As/GaAs QDs. The density of dots
in each layer was estimated to 1 × 1010 cm−2. By postgrowth
thermal annealing at various temperatures, the confinement
potential heights of the QDs (taken as the energy difference
between WL and ground-state emission) were shifted in a
wide range for different pieces of the as-grown sample. The
QD samples were kept in an optical cryostat with a variable
temperature insert.

The temporal evolution of carriers in the QDs after
pulsed excitation was studied by time-resolved pump-probe
spectroscopy: We used two synchronized Ti:sapphire lasers
whose emission wavelengths could be tuned independently.
Each laser emitted 1.5-ps pulses with a repetition rate of
75.6 MHz and the temporal jitter between the two linearly
polarized pulse trains was less than 1 ps. The temporal delay
�t between the pulses was altered with a mechanical delay
line with a precision of 100 fs. One laser with variable power
served as a pump that excited carriers in the GaAs barrier
at 1.55 eV. The other laser, the probe, tested the populations
in the QD states. The reference pump excitation density was
I0 = 40 W/cm2; the fixed probe density was ten times weaker.
The probe laser energy was tuned over a wide range, mapping
all QD-confined states including the WL. From comparison
of QD photoluminescence (PL) spectra taken at varying pump
excitation power (not shown), we estimate that the average
bright exciton occupation per QD is clearly below ∼2 per
excitation cycle with the reference density I0.

A pair of balanced photodiodes connected to a lock-in
amplifier was employed for detection. The resulting time-
resolved transmission signal gives the difference between the
probe beam sent through the sample, recorded with or without
pump illumination. Thereby the probe absorption under the
specific conditions initiated by the initial pump excitation
and the subsequent carrier dynamics is detected. The signal
is positive if the transmission is enhanced by the pump action,
whereas it is negative for pump-reduced transmission.

Our previous experiments6 on the TRDT dynamics of QD
resonances after pulsed optical excitation were performed at
10 K only and are now extended to elevated temperatures.
Results are summarized in Fig. 1 for a QD sample where the
confinement potential height as defined above is 90 meV. The
contour plots show the TRDT versus probe energy and pump-
probe delay. The signal as a function of energy provides a
mapping of the interband transitions involving the QDs and the
WL. The QD shell structure is reflected by the approximately
equidistant variation of the transmission amplitude in the
energy range from 1.36 to 1.46 eV at 10 K. Three features
corresponding to transitions between well-confined electron
and hole states are seen, with hints for a fourth confined shell
around 1.44 eV which is, however, very close to the WL.
This shell and the WL become more apparent in the 80-K
transmission plot, where two well-separated features are
observed around 1.45 eV. Signals corresponding to negative
differential transmission (DT) values arise from exciton states
that can be excited only in the presence of carriers excited

FIG. 1. (Color online) (a)–(c) Contour plot of the differential
transmission vs probe energy and pump-probe delay for T = 10, 80,
and 180 K, recorded on the QD sample with 90-meV confinement
potential height. Pump excitation density is I0 with excitation into the
GaAs barrier. (d)–(f) DT traces at the energies marked by the arrows
in the left-hand panels, corresponding to the different QD shells.

by the pump pulse. They appear at renormalized energies as
compared to the features for the unexcited-dot case due to the
influence of Coulomb interactions.

With increasing temperature the transmission features shift
in parallel to lower energies due to the band-gap reduction.33

Concurrently, considerable changes are observed in the tem-
poral evolutions of the TRDT peaks. Two distinct time regimes
can be distinguished: The signals rise fast on a few-tens-ps time
scale indicating a fast buildup of shell populations, whereas
the subsequent decays are much slower. During the short-time
range the carrier capture and relaxation dynamics take place,
which are the focus of the present paper. For completeness,
however, we also discuss the long-time behavior briefly in the
next section.

B. Long-time behavior

Variation of the temperature affects the different trans-
mission traces corresponding to the QD shells in a similar
manner at long delays. In general, the behavior in this
range is largely determined by the radiative recombination
of bright exciton complexes. At 10 K the TRDT signals can
be approximated by biexponential decays with a fast and a
much slower component, as seen from Figs. 1(d) and 1(c),
showing transmission traces as function of delay for the three
energies corresponding to the TRDT maxima of the confined
QD shells. From time-resolved photoluminescence we know
that the radiative ground-state exciton lifetime in the studied
sample with 90 meV confinement potential is 0.4 ns.34,35 This
time corresponds well to the decay time of the fast component
of the ground-state differential transmission, so we relate it
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to recombination of bright excitons. For the excited shells,
the fast decays occur on comparable time scales with a slight
acceleration in particular for the first excited shell, most likely
due to relaxation into lower-lying shells in addition to the
radiative decay.

The long-lived signal is particularly pronounced for the
ground state and can be assigned to dark exciton population.6,36

The exchange interaction splitting between dark and bright
excitons is on the order of 0.1 meV, leading to an exciton spin
relaxation between these two reservoirs that is slow compared
to the bright exciton radiative decay. The slow signals for the
excited states are contributed by an incomplete relaxation of
carriers. The decay times of both contributions exceed the
pump-pulse separation, giving rise to the TRDT signals at
negative delays reflecting the aftermath of the pump pulse
preceding the pulse at time zero by 13.2 ns.

With increasing temperature up to 80 K, the populations
surviving the pump-pulse separation disappear in all shells.
However, also the fast decaying component is slowed down,
so that the two-component behavior is smeared out indicating
coupling between the bright and dark exciton reservoirs. We
attribute this behavior to thermal activation of exciton spin
relaxation. At 80 K the spin-relaxation time apparently is in the
nanosecond range, comparable to the bright exciton radiative
decay, so that the bright exciton reservoir becomes efficiently
fed through dark exciton spin relaxation. As a result the fast-
decaying component of the ground state is decelerated. In
addition, also the corresponding TRDT decays of the excited-
shell signals become slower due to thermal population.

Further increase of the temperature up to T = 180 K leads
to a shortening of decays, so that basically only the fast compo-
nent is present, independent of the considered shell: The TRDT
amplitude evolutions of the three shells are almost identical so
a thermal exchange of carriers between the confined states
occurs. The third excited shell, quasiresonant with the wetting
layer, becomes depopulated particularly fast. At 180 K thermal
activation also leads to a long-lasting carrier population in the
WL, while at lower temperatures this population is rather short
lived, shorter than the QD populations, indicating efficient
carrier capture into the quantum dots. By contrast, at 180 K
traces of the wetting layer population can be seen even at
negative delays, so that carriers survive there over times
exceeding the pulse repetition period. From following the
transmission trace with time, also the influence of Coulomb
interactions and the resulting renormalization of transition
energies can be assessed, as discussed already above for the
negative DT values. As long as appreciable carrier populations
are present in the QD shells, the WL-related transmission
feature is shifted to lower energies compared to the times after
decay of the dot populations when the line appears at energies
about 5 meV higher.

C. Short-time behavior

Let us turn now to the early time evolutions of the
TRDT signals, during which the pump excitation populations
build up due to carrier capture and relaxation. The inset
in Fig. 2 contains examples of TRDT traces for the three
studied temperatures at fixed excitation power I0/3. To
assess the underlying dynamics more quantitatively, we have

FIG. 2. Rise times extracted from TRDT transients of the QD
ground state, obtained at various excitation intensities for temper-
atures T = 10, 80, and 180 K. The inset shows DT traces at an
excitation density of I0/3. In the figure and inset, QD confinement
potential height is 90 meV, with excitation into GaAs at 1.55 eV
photon energy.

analyzed the DT signal increase by monoexponential fits. The
dependence of the rise times of the ground-state transition
signal determined thereby is shown in Fig. 2 versus excitation
intensity at temperatures T = 10, 80, and 180 K. The data for
T = 10 K underline the importance of carrier-carrier scattering
processes for relaxation, as seen from the strong drop of the
rise time with excitation density. In contrast, the rise times at
T = 80 K show a weaker variation with excitation density
and at T = 180 K almost no dependence remains. These
results indicate a relaxation pathway which opens up and
becomes efficient with increasing temperature. This behavior
is analyzed in more detail below in Sec. IV.

Another important parameter is the energy spacing of
the confined electron and hole QD levels, �Ee,h. When
applying perturbation theory, the LO-phonon scattering effi-
ciency should strongly depend on �Ee,h, becoming significant
only for the resonance case. However, in the nonperturbative
treatment based on the polaron picture, fast relaxation is not
limited to a strict resonance condition. As demonstrated in
Ref. 21 the spectral functions of a coupled carrier-phonon
system can lead to fast relaxation on a picosecond scale
even for considerable detuning of �Ee,h with respect to the
LO-phonon energy. Additional Coulomb scattering processes,
which exhibit a pronounced increase in efficiency with the
excitation density, further reduce the dependence of the
scattering processes on �Ee,h.

These findings are confirmed in our experiments. As a
measure for the confined level splitting we use two quan-
tities which are directly experimentally accessible. Besides
the already mentioned confinement potential height, this is
the approximately equidistant energy splitting between the
emission bands from different QD shells in high-excitation
photoluminescence. This splitting is determined by the sum
of the electron and hole confined level splittings modified by
Coulomb interaction effects. Both quantities are linked to each
other.
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FIG. 3. Rise times of the TRDT ground-state signal vs QD shell
splitting obtained from high-excitation PL. The shell splitting (bottom
axis) is intimately related to the confinement potential height given at
the top axis. The data sets correspond to different excitation intensities
in units of the reference density I0. All data points indicate excitation
into GaAs at 1.55 eV photon energy.

Different values for these two quantities are accessible
through the series of samples annealed at different temper-
atures. Figure 3 shows TRDT rise times of the ground-state
transmission versus different shell splittings (bottom axis) and
confinement potential heights (top axis), respectively, recorded
for different excitation powers. For all confinement potentials
the rise time considerably decreases with increasing excitation
density, which reflects the influence of Coulomb-mediated
scattering processes. Irrespective of this dependence, even for
the lowest excitation power a rapid buildup of the ground-state
population is observed for the different shell splittings studied
with a resonant shortening for a splitting around 28 meV.

The apparent weak dependence of the population rise
times on the energy splitting between the QD shells can
be highlighted also by another experiment. As mentioned,
the confined level structure of the QDs is reflected by
the equidistant TRDT features in Fig. 1. Application of a
longitudinal magnetic field leads to a splitting of the shells
that can be well described by the Fock-Darwin spectrum,37

even when including many-body effects. As a result the level
structure becomes anharmonic with widely varying splittings
between confined shells. Corresponding experiments for the
TRDT are shown in Fig. 4, recorded at a field strength of
5.5 T as compared to the zero-field case. The temperature was
180 K. The changes of the level structure by the magnetic
field are apparent from this contour plot. Still the rise times
of the different transmission features remain short as a result
of efficient carrier relaxation, even though the shell splittings
deviate considerably from the LO-phonon energy. The ground-
state population becomes even more dominant compared to the
higher-lying shell populations. The negative TRDT features
disappear when the field is applied. Note also that for the
wetting layer two well-separated transmission features show
up in the magnetic field which reflect Landau-level formation,
for which again pronounced shifts with time are observed due

FIG. 4. (Color online) Contour plots of the differential transmis-
sion vs probe energy and pump-probe delay for B = 0 (top) and
B = 5.5 T (bottom) at T = 180 K. Pump density is I0 with excitation
into the GaAs barrier at 1.55 eV photon energy. In both cases, the QD
sample with 90 meV confinement potential height was used.

to changes of Coulomb interaction with varying dot carrier
density.

III. THEORETICAL ANALYSIS

The temperature and excitation density dependence of
the experimental results for the rise time of the differential
transmission in Fig. 2 point to an interplay between carrier-
phonon and WL-assisted carrier-carrier relaxation processes.

To elucidate the role of different mechanisms, we evaluate
the QD carrier dynamics using two fundamentally different
approaches. Within a single-particle description the excitation
of the QD states is determined by one-particle occupation
probabilities fi , which are calculated from kinetic equations.
Alternatively, we use a configuration-picture description, in
which the QD carriers are represented by a density operator
ρ(t) in a many-particle configuration basis. The dynamical
evolution of ρ(t) follows from a direct solution of the von
Neumann equation. As we discussed in Ref. 32, this descrip-
tion accounts for Pauli and Coulomb correlations between the
few QD carriers, induced by the exclusion principle as well as
the Coulomb interaction between the QD carriers, respectively.

These two approaches are further defined by the way the
interaction processes enter the evaluation of the scattering
rates. In both cases, carrier scattering processes are introduced
by the coupling of QD carriers to (i) a bosonic bath of
LO phonons and (ii) a fermionic bath of WL carriers. For
this purpose, we use a nonperturbative description of carrier
scattering processes, in which the central role is played by
the renormalized spectral functions. They include the joint
contributions of carrier-carrier and carrier-phonon interaction
to determine renormalized quasiparticle properties for the QD
carriers. The same spectral functions are then used for the
calculation of the carrier-phonon as well as the carrier-carrier
scattering rates. These rates enter both the von Neumann
equation via the Lindblad terms, and the kinetic equations via
single-particle scattering rates. Therefore, in what concerns

205309-4



COMBINED INFLUENCE OF COULOMB INTERACTION AND . . . PHYSICAL REVIEW B 88, 205309 (2013)

the transition rates, the two approaches are treated on equal
footing.

Additionally, for a direct comparison, in Sec. IV below we
also present results for the single-particle kinetic equations
using perturbative Boltzmann scattering integrals, as provided
by Fermi’s golden rule. In this case, the transition rates do
not include quasiparticle renormalizations and strict energy
conservation appears in terms of free-carrier energies. Then
the carrier-phonon and carrier-carrier scattering rates become
independent of each other and the population factors determine
only the availability of initial and final states.

A. Description of QD-carrier dynamics

The bound states in each QD consist of ground and
excited states in each band. These are the single-particle
states provided by the QD confinement potential. In the first
approach, a single-particle basis |i〉 is used for the QD and the
WL states and the excitation dynamics is described in terms
of single-particle occupation probabilities fi . If we restrict
ourselves to Markovian dynamics, the equation of motion for
fi can be written as

∂fi

∂t
= (1 − fi)S

in
i − fiS

out
i , (1)

with the rates S in
i and Sout

i describing in- and out-scattering
for the single-particle states, respectively. Considering the
quasicontinuous density of states of the environment, the latter
acts as an energy and particle reservoir for the QDs. In general,
the dynamics of phonons and WL carriers follows their own
kinetic equations. However, this is beyond the scope of this
paper and not necessary for the presented experiments. As a
result of ultrafast thermalization processes, it is assumed that
phonons and WL carriers are in thermal equilibrium with given
temperature and WL-carrier density. Then scattering rates have
to be calculated only for i being a QD state index.

In the past it has been pointed out that in QD systems, due
to the finite state space of the electronic excitations and the
strong Coulomb configuration interaction, carrier correlations
are of increasing importance and a configuration-picture
description should be more appropriate.38 Consequences for
QD laser threshold current densities39 or the QD gain recovery
dynamics40 have been discussed. This is the motivation for
our second theoretical approach, in which the QD carriers
are described by a density operator ρ(t) that is expressed in a
configuration basis. This leads to a full many-body description
of the QD excitations, in which the Coulomb configuration
interaction can be directly included. The multiexciton states
are the fundamental entities of this approach and their
occupation probabilities and transition amplitudes between
these configurations are determined.

Denoting the single-particle creation (annihilation) oper-
ators by a

†
i (ai), a given configuration |I 〉 is defined by

specifying which single-particle states are occupied (nI
i =

〈I |a†
i ai |I 〉 = 1) or empty (nI

i = 0). This approach contains
the full information about the QD system, in contrast to the
single-particle description. Considering the QD as an open
quantum system and, like in the single-particle approach, the
coupling to its environment of LO phonons and WL carriers,
one can describe the dynamics of the QD density operator by

the von Neumann–Lindblad (vNL) equation

ρ̇ = − i

h̄
[HS,ρ] +

∑
X

γX

2
[2sXρs

†
X − s

†
XsXρ − ρs

†
XsX]. (2)

The commutator part on the right-hand side represents the
quantum-mechanical evolution of the QD excitations, driven
by the system Hamiltonian,

HS = H0 + H
QD
Coul, (3)

which consists of the “free” part with the confinement energies
ε0
i ,

H0 =
∑

i

n̂i ε0
i , (4)

and the Coulomb interaction between the QD carriers,

H
QD
Coul = 1

2

∑
ijkl

Vijkl a
†
i a

†
j akal . (5)

As in Ref. 32, we simplify the picture by using an approximate
Coulomb Hamiltonian expressed in terms of the number
operators n̂i = a

†
i ai ,

H
QD
Coul ≈ H

diag
Coul =

∑
i,j

Dij n̂i n̂j , (6)

which is diagonal in the configuration basis:

HS |I 〉 ≈ (
H0 + H

diag
Coul

)|I 〉 = εI |I 〉. (7)

The interaction parameters Dij contain the Hartree and Fock
Coulomb integrals, Vijji and Vijij , respectively. In this picture
the mixing of configurations is neglected, but their energies
are renormalized as

εI =
∑

i

ε0
i n

I
i +

∑
i,j

Dijn
I
i n

I
j . (8)

Further details about this approximation are discussed in
Ref. 41.

Dissipative Lindblad terms are obtained by accounting for
the interaction between system and reservoirs with Hamilto-
nians of the general form

HSR =
∑
X

sX�X, (9)

with system and reservoir operators, sX and �X, respectively,
and summed over some appropriate set of indices. As shown
below, both the interaction with phonons and the Coulomb
interaction with WL carriers can be cast into this form.

The operator sX describes a transition between two
eigenstates of the system Hamiltonian HS and the energy
change associated with this transition is h̄ωX. The usual
treatment of the system-reservoir interaction, based on the
Born-Markov approximation,42 is our starting point which is
extended subsequently. The transition rate appearing in the
corresponding Lindblad term of the vNL equation is

γX(t) = 2

h̄2 Re
∫ t

0
dt ′ e−iωX(t−t ′)〈�†

X(t)�X(t ′)〉R, (10)

with the time dependence in �X(t) defined by the reservoir
Hamiltonian HR and the average 〈· · · 〉R taken on the reservoir
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state. Assuming a reservoir in thermal equilibrium, the
reservoir correlator depends only on the time difference and
is typically fast decaying with it. Then the lower limit of the
time integral can be extended to minus infinity (completed
collision approximation23), making the transition rates time
independent:

γX = 2

h̄2 Re
∫ ∞

0
dτ e−iωXτ 〈�†

X(τ )�X(0)〉R. (11)

As seen from Eq. (11), the transition rate picks up from the
spectrum of the reservoir correlator 〈�†

X(t)�X(t ′)〉R precisely
the energy lost or gained in the transition. In this sense the
Born-Markov rate obeys the rule of exact energy conservation:
The energy change in the system is compensated by the
reservoir. Examples are encountered below.

The Born-Markov approximation for the transition rates,
used in Eqs. (10) and (11), corresponds to the level of
Boltzmann scattering rates. When used in the vNL equation
these transitions occur between QD configurations while in
the Boltzmann equation transitions between single-particle
states are considered. Indeed, if in the vNL equation Coulomb
and Pauli correlations between the QD carriers are treated in
factorization approximation, the Boltzmann equation in the
single-particle picture is recovered, as we have discussed in
detail in Ref. 32.

Due to the discrete nature of the QD states, the dispersion-
less phonon spectrum, and the presence of strong interaction
processes, it is necessary to use nonperturbative scattering rates
in order to prevent unphysical results. This applies to both
the single-particle and the configuration-picture description.
Specifically we refer to QD polarons and their modification in
the presence of Coulomb scattering.

In the following sections we briefly discuss the two types
of system-reservoir coupling, namely carrier scattering by
LO phonons (including QD-WL and QD-QD transitions) and
carrier-carrier Coulomb scattering (in which among the two
initial and two final states one, two, and three WL states
can contribute). Note that Coulomb interaction solely between
QD states is part of the system Hamiltonian. Subsequently,
we introduce an ansatz to include renormalizations in the
Lindblad rates beyond perturbation theory and discuss the
renormalizations that are used for the numerical results in
this paper.

B. QD-WL carrier-carrier scattering

The QD in contact with the WL carriers is subject to
various Auger-like processes. Carriers are captured or ejected
from the QD and they scatter between localized states due to
the Coulomb interaction with WL carriers; the latter provide
the necessary energy for the transition processes. A detailed
analysis of these processes and the corresponding rates have
been given in Ref. 32. Here we summarize the used results.

The WL carrier reservoir Hamiltonian is HR = ∑
k εka

†
kak ,

with k representing both momentum and band index. The
system-reservoir Hamiltonian describes the Coulomb interac-
tion between QD and WL carriers. The Coulomb interaction
between the QD carriers themselves, Eq. (5), is part of the
system Hamiltonian HS and all indices involved refer to QD

states. The system-reservoir interaction has the same form,

HSR = 1

2

∑
ijkl

Vijkl a
†
i a

†
j akal , (12)

but with the difference that now the summation contains both
QD and WL indices. To take a specific example, consider the
transition of a QD carrier from |j 〉 to |i〉 facilitated by a WL
carrier scattered from |k′〉 to |k〉. This is controlled by the terms

∑
k,k′

Vikk′j a
†
i a

†
kak′aj +

∑
k,k′

Vikjk′ a
†
i a

†
kajak′

= a
†
i aj

∑
k,k′

[Vikk′j − Vikjk′] a
†
kak′ , (13)

which contains two QD and two WL operators. Similarly, the
WL-assisted capture into or ejection out of the QD would
contain one QD and three WL operators.

One would be tempted to identify in Eq. (13) sX with a
†
i aj

and �X = ∑
k,k′[Vikk′j − Vikjk′] a

†
kak′ . However, this is not

the case, since the operator a
†
i aj describes many transitions

between QD configurations and the energy change is not
the same for all. Therefore, the frequency ωX in Eq. (10) is
different for the various possible configurations involved. This
is because the initial and final configuration energies depend
also on the “spectator” carriers, which do not take part in the
transition. A transition event contained in a

†
i aj takes place

between configurations |J 〉 = a
†
j |�〉 and |I 〉 = a

†
i |�〉. Here

|�〉 is a reference state which specifies the spectator carriers
and in which, of course, the single-particle states i,j are left
empty. The corresponding energies are εJ and εI calculated
according to Eq. (8). One has now a given transfer energy
h̄ωIJ = εI − εJ for each transfer operator |I 〉〈J | contained in
a
†
i aj .

As a consequence one identifies the appropriate system
operators in HSR as sX = sIJ = |I 〉〈J | with �IJ = �X given
above. The corresponding transition rate obtained from
Eq. (10) is then

γIJ = 2π

h̄

∑
k,k′

|Vikk′j − Vikjk′ |2(1 − fk)fk′δ(h̄ωIJ + εk − εk′)

(14)

in accordance with Fermi’s golden rule. The transition from |J 〉
to |I 〉 in the QD is energetically compensated by the scattering
from k′ to k in the WL reservoir, described with the occupation
probabilities fk .

C. QD carrier scattering by LO phonons

A second type of reservoir is provided by the phonon
system. In polar semiconductors the strongest contribution to
carrier scattering processes is due to LO phonons, for which we
assume a dispersionless spectrum ωq = ωLO. The LO-phonon
reservoir Hamiltonian is given by

HR =
∑

q

h̄ωLOb†qbq (15)
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and the interaction between the QD system and the phonon
reservoir is described by the Hamiltonian

HSR =
∑
i,j,q

gi,j
q a

†
i aj (bq + b

†
−q) (16)

with the Fröhlich coupling matrix elements g
i,j
q .43

In Eq. (16) we have to distinguish between two cases.
First, when both indices i,j refer to QD states, electronic
transitions |j 〉 → |i〉 inside the QD assisted by the emission
or absorption of phonons are described, leading to the intra-QD
carrier relaxation. The second case involves a QD and a WL
state and corresponds to the carrier capture from or reemission
into the WL, again assisted by phonons.

Considering for illustration the first case, we encounter
here the same situation as in the previous section, namely that
one cannot apply the usual Born-Markov procedure directly
to a

†
i aj . Again, the many-body correlation description is

retained by treating separately the transitions |I 〉〈J | between
all possible configurations, which include the movement of
a carrier from |j 〉 to |i〉. With the reservoir operator �IJ =∑

q g
i,j
q (bq + b

†
−q) one obtains from Eq. (11) the transition

rate in the form

γIJ = 2

h̄2 Re
∫ ∞

0
dτ e− i

h̄
(εI −εJ )τ

×
∑

q

∣∣gi,j
q

∣∣2{(1 + NLO)e−iωLOτ + NLOeiωLOτ }

= 2π

h̄2

∑
q

∣∣gi,j
q

∣∣2{(1 + NLO) δ(ωIJ + ωLO)

+NLO δ(ωIJ − ωLO)}. (17)

NLO is the phonon population at the given lattice temperature.
The first term corresponds to processes with phonon emission,
the second to absorption.

In Eq. (17) one encounters a problem that is specific to
the LO-phonon-driven carrier kinetics in discrete electronic
systems. The strict energy-conserving condition expressed
by the δ functions is in general not met. In QDs only
coincidentally the phonon frequency is resonant with the
transition energy. In early theoretical considerations,44,45 this
observation has led to the prediction of a “phonon bottleneck”.
However, only in lowest-order perturbation theory (Fermi’s
golden rule) is the scattering rate vanishing. Equation (17)
corresponds to this level due to the applied Born-Markov
approximation. Nonperturbative treatments lead to the polaron
picture with nonvanishing scattering rates.12,19–22 For the polar
coupling in QDs, one even encounters a strong-coupling
situation with efficient scattering rates.21,22 The quasiparticle
renormalization effects of the nonperturbative treatment can
be included in a generalized form of Eq. (17) via spectral
functions, which are the subject of the following section.

D. Quasiparticle renormalizations

A systematic inclusion of interaction processes of arbitrary
order is offered by the quantum kinetic theory,23,24,46 expressed
in terms of Kadanoff-Baym equations. In the following, we
present an ansatz to combine the configuration-picture descrip-
tion with quantum-kinetic methods and systematically include

quasiparticle renormalizations in the QD-carrier interaction
with LO phonons and WL carriers.

The Kadanoff-Baym equations lead to results similar
to Eq. (17) and corresponding equations for carrier-carrier
scattering, but with the exponentials oscillating with the system
energies replaced by more complex retarded Green’s functions
(GFs),

1

ih̄
e− i

h̄
εI t =⇒ Gr

i (t). (18)

Here, |i〉 is the single-particle state which is occupied in the
configuration |I 〉, but not in the reference configuration |�〉;
see above. Of course, the same replacement goes for the
oscillatory exponential containing εJ . Note that for certain
Coulomb scattering processes this can also be true for two
single-particle states, so that a product of two GFs appears in
Eq. (18). The above replacement corresponds to a substitution
of free particles by quasiparticles with a complex spectral
structure, which is due to the interaction processes included in
the retarded GF,

Gr
i (t) = − θ (t)

i

h̄
〈�|ai (t) a

†
i + a

†
i ai (t)|�〉. (19)

To simplify the calculation of the retarded GF, often a
definite state |�〉 is used for the averaging, e.g., the vacuum
state corresponding to the unexcited system. In contrast, our
ansatz is to perform the replacement in Eq. (18) but calculate
the retarded GF by taking the average on the particular
reference state |�〉 of the transition from |J 〉 = a

†
j |�〉 to

|I 〉 = a
†
i |�〉. Hence, the transition between the single-particle

states, that defines the transition |J 〉 =⇒ |I 〉, is assumed
to take place in the presence of the actual arrangement of
“spectator” carriers and the renormalizations they cause. The
ansatz ensures that the states occupied by the spectator carriers
are Pauli blocked during the evolution and also that the proper
Coulomb renormalization is included. On the other hand, one
has to keep in mind that Gr

i (t) depends on the reference
state; i.e., for a given QD state |i〉 one has several such
GFs, and in calculating γIJ the appropriate ones need to be
used. For notational simplicity we omit in the following the
configuration index of the GFs as being obvious from the
context.

The retarded GFs obey the spectral Kadanoff-Baym
equation23,24,46

(
ih̄

∂

∂t
− εI

)
Gr

i (t) = δ(t) +
∫ t

0
dt ′�r

i (t − t ′)Gr
i (t ′), (20)

with the self-energy

�r
i (t − t ′) = δ(t − t ′)

{
�HF

i (t)
∣∣
Coul + �H

i (t)
∣∣
LO

}
+ θ (t − t ′){�>

i (t − t ′)|Coul − �<
i (t − t ′)|Coul

+�>
i (t − t ′)|LO − �<

i (t − t ′)|LO}, (21)

where the instantaneous term describes the Hartree-Fock
energy renormalization due to Coulomb interaction between
QD and WL carriers as well as the Hartree-like one due to LO
phonons. The propagators �>

i and �<
i contain the quasipar-

ticle renormalizations introduced by the scattering processes.
A central ingredient of our theoretical approach is that we
include here self-consistently simultaneous contributions from
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both carrier-phonon and carrier-carrier interactions. This leads
to the fully renormalized spectral functions discussed earlier,
which include polaronic as well as Coulomb effects. With
these spectral functions the nonperturbative transition rates are
calculated. (Note that only the Coulomb interaction processes
involving WL states lead to dissipative carrier scattering.)

The LO-phonon contribution to �>
i and �<

i is
the polaron self-energy in self-consistent random-phase
approximation:23,24

�>
i (t − t ′)|LO =

∑
j

(1 − fj )Gr
j (t − t ′)D>

i,j (t − t ′),

(22)
�<

i (t − t ′)|LO = −
∑

j

fjG
r
j (t − t ′)D<

i,j (t − t ′),

which describes quasiparticle renormalizations of the carriers
due to their exchange of phonons with the surrounding crystal.
The summation runs over both QD and WL state indices. In
the former case fj = n�

j is the occupancy in the single-particle
state j of the reference state |�〉. For the WL case we take as
fj the thermal equilibrium values. Also the WL retarded GFs
are calculated in the absence of the QD, in accordance with the
general assumption that the small system does not influence
the bath. The phonon propagators in thermal equilibrium are
given by

D
≷
i,j (t − t ′) =

∑
q

∣∣gi,j
q

∣∣2
d≷(t − t ′),

(23)
d≷(t − t ′) = {(1 + NLO)e∓iωLO(t−t ′) + NLOe±iωLO(t−t ′)}.

For �>
i |Coul and �<

i |Coul in Eq. (21) we use the second-order
Born self-energies.23,24 In Ref. 31 these have been formulated
for the Coulomb interaction between QD and WL carriers
using self-consistently renormalized spectral functions. As a
result, the Coulomb scattering contributes to damping and
thus to collision broadening and changes the polaronic GF in a
nontrivial way. This in turn modifies all the transition rates.31

Replacing the exponential factors in Eq. (17) yields the
following expression for the transition rate:

γIJ = 2Re
∫ ∞

0
dt Gr

i (t)Gr,∗
j (t)D>

i,j (t). (24)

The importance of the quasiparticle renormalization is seen
by recasting Eq. (24) in terms of the spectral functions, which
are obtained from the Fourier transform of the retarded GFs,
Ĝi(ω) = −1/π Im Gr

i (ω),

γIJ = 2π

h̄2

∑
q

∣∣gi,j
q

∣∣2
∫ ∫

dω dω′Ĝi(ω)Ĝj (ω′)

×{(1 + NLO)δ(ω − ω′ + ωLO) + NLOδ(ω − ω′ − ωLO)}.
(25)

As a result, the carrier scattering rate due to LO-phonon
emission or absorption is determined by the overlap of the
spectral functions for the initial and final states,∫

dω Ĝi(ω ∓ ωLO) Ĝj (ω). (26)

Finally, we abandon the completed-collision approxima-
tion, contained for example in Eqs. (17) and (24), and use
time-dependent scattering rates, which further softens the
energy-conserving condition at small times.

When considering the interaction with both reservoirs
simultaneously, the rate of a given transition is

γIJ = γ Coul
IJ + γ LO

IJ . (27)

This does not mean that the total effect of the two reservoirs
is additive, since the transition rates themselves contain com-
bined influences due to the above-discussed renormalizations.

In the case of phonon scattering the details of the retarded
GFs are essential, since Fermi’s golden rule with bare-particle
energies—usually the dominant contribution in the evaluation
of transition rates—is vanishing. This is not the case for the
Coulomb rates γ Coul

IJ . Nevertheless, to be consistent, we use
the same retarded GF (containing carrier-phonon and carrier-
carrier influences) to modify the Coulomb rates as we used for
the carrier-phonon rates.

E. Examples for spectral functions

The quasiparticle GFs show a rich spectrum of Fourier
components, instead of the single frequency of the bare
particle. This makes the difference between Eq. (17), which
predicts the phonon bottleneck, and the renormalized result,
Eq. (25), where the energy δ conditions can be met by the
spectral continuum of Ĝ(ω).

Examples for the QD spectral functions are provided in
Fig. 5, where the energy is given in units of the phonon
energy h̄ωLO. The QD model assumes two confined states,
s and p, for which in the left-hand column a separation
by 1.1 h̄ωLO has been chosen. The nominal ground state
is 2.2 h̄ωLO below the WL. The spectral functions show
phonon satellites, representing higher-order processes due to
multiphonon emission and absorption. The peaks are further
broadened by Coulomb interaction between the carriers, even
at the considered low WL-carrier density. In the left-hand
column, the hybridization emerges since the phonon satellites
of one shell are located in the vicinity of the other shell. The
right-hand column corresponds to a situation in which the
level spacing is considerably smaller than the phonon energy.
Nevertheless, in both cases, a substantial overlap according
to Eq. (26) is obtained, which facilitates efficient carrier
scattering. The increased broadening of the peaks for higher
temperatures is an important contribution to the experimentally
observed temperature dependence of the transition rates. This
effect is missing in the perturbative Boltzmann scattering rates.

IV. NUMERICAL RESULTS

A. QD model

In the subsequent calculations, we consider an ensemble of
identical QDs which are randomly distributed with a density of
1 × 1010 cm−2, containing a confined ground state and a first
excited energy shell. Thus, we omit higher excited confined
states, indicated by the experimental results, for numerical
simplicity. Assuming a cylindrical symmetry and parabolic
in-plane confinement, the excited shell is twofold degenerate.
The energy-level spacing in the QD is chosen as 20 meV for
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FIG. 5. (Color online) Spectral functions of the electronic ground
state (GS) and excited state (ES) with the empty QD as reference state
|�〉 for different temperatures and a WL-carrier density of 3.2 ×
109 cm−2. For their calculation, both polaronic and carrier-carrier
renormalizations are utilized. The left-hand (right-hand) column is
for a QD-level spacing of 40 meV (20 meV) for electrons and
15 meV (8 meV) for holes. The energy is given relative to the WL
band edge in units of the LO-phonon energy.

electrons and 8 meV for holes, with the same values for the
distance of the excited shell below the continuum. The re-
sulting interband energy differences correspond to the studied
experimental situation. For the calculations, standard InGaAs
material parameters for the effective masses, dielectric con-
stants, and the LO-phonon energy of 36 meV have been used.

For the calculation of the Coulomb matrix elements,
the QD states are described by a two-dimensional in-plane
confinement and a finite-height potential confinement in the
growth direction.47 Orthogonalized plane waves are used for
the WL states.27,48

When calculating the time evolution of the QD carrier
population, we consider as the initial state empty QDs. For
optical excitation of the delocalized states with short laser
pulses, it is assumed that the carriers thermalize rapidly on a
time scale that is faster than the considered time for the QD
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FIG. 6. (Color online) Rise time of the TRDT signal for the
QD ground state calculated as a function of the WL carrier density
for different temperatures. Both carrier-carrier and carrier-phonon
interactions are considered within a nonperturbative theory including
joint quasiparticle renormalizations. Results for the multiexciton
configuration-picture description (solid circles) and single-particle
description (open circles) are shown. For 80 and 180 K the
corresponding results are practically identical.

carrier capture, thus leading to the discussed quasiequilibrium
situation for the reservoir population.

B. Comparison with experimental results

Figure 6 collects the results for the rise times of the total
electron plus hole ground-state occupancies, calculated for
various temperatures and WL carrier densities in the presence
of the interactions with both reservoirs. As a general trend
we find a higher temperature sensitivity at lower WL carrier
densities, which points to a dominant role of the phonon
scattering in this regime. For low temperatures, the transition
rate increases strongly with the WL carrier density due to
more efficient carrier-carrier scattering (Auger-like processes
assisted by WL carriers). The latter also causes stronger
broadening of the spectral functions, which in turn accelerates
carrier-phonon scattering as well. For elevated temperatures,
the density dependence is weak due to a strong phonon
contribution. These general trends as well as the quantitative
results for the transition rates are in good agreement with the
experiment; see Fig. 2. As we show below, renormalization
effects are of critical importance for this agreement: Phonon
and Coulomb scattering cannot be considered separate entities.
Also a more detailed discussion of the temperature and
carrier-density dependence of the scattering processes is given
below.

A direct comparison between the many-particle
configuration-picture description of QD excitations (solid
symbols) and the single-particle description (open circles)
in Fig. 6 shows a small difference for low temperatures
and a negligible difference at elevated temperatures. This
is due to the fact that the rise-time dynamics is mostly
determined by carrier capture processes, which are slower
than the subsequent relaxation processes of carriers within
the QD. For the capture, the dominant processes are the
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FIG. 7. (Color online) Same as Fig. 6 using the single-particle
description. Results are compared for the inclusion of both spin
subsystems (solid circles) and when considering only one spin
subsystem, i.e., neglecting the influence of the other spin polarization
(open circles).

carrier transitions from the WL to a QD state, assisted either
by LO phonons or another WL carrier moved to higher
energies. Only one of the involved states belongs to the
QD, while the other states represent quasicontinuous degrees
of freedom. Then the approximate treatment of QD carrier
correlations in the single-particle description (corresponding
to a factorization approximation for carrier correlations)
seems to be a reasonable approach for these processes when
compared to the full treatment of QD carrier correlations
within the von Neumann equation (which accounts for the
transition of the QD between two many-body configurations).
To simplify the numerical treatment of the latter, we have
considered in Fig. 6 only one spin subsystem.

Since, in the present situation, the carrier dynamics is well
represented within a single-particle description, we proceed
on this level to extend the calculation to both spin subsystems.
As can be seen in Fig. 7, except for low densities as well as
low temperatures, the rise time increases only weakly when
including the contributions of both spin subsystems. On a
perturbative level, the carrier-phonon interaction would be
unaffected. Within our nonperturbative description, the inclu-
sion of both spins enters via quasiparticle renormalizations.
As it turns out, this is the origin for the observed changes
at low carrier densities in Fig. 7: Correlation contributions
to the QD energy renormalizations reduce the energetic
distance between the QD and WL states, thus increasing
the efficiency of carrier-phonon interaction. This underscores
the importance of considering Coulomb renormalizations
for the states involved in carrier-phonon interaction processes.
For the Coulomb processes, the other spin subsystem provides
additional scattering partners, but also additional screening
of the Coulomb interaction. The net result is a small in-
crease in the Coulomb scattering rate at higher WL carrier
densities.

As a last step, we use in the single-particle description
transition rates calculated from Fermi’s golden rule. In this
case, the rates depend only on free-carrier energies, and energy
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FIG. 8. (Color online) Same as Figs. 6 and 7 using the single-
particle description and both spin subsystems. Instead of nonpertur-
bative transition rates, now Boltzmann scattering integrals are used.

renormalizations due to excited carriers (both in the QD and
WL) are absent. This precludes not only energy shifts and
polaron sidebands, but also the self-consistent level broadening
associated with the scattering itself. The corresponding rise-
time results in Fig. 8 exhibit a completely different behavior
with a density and temperature dependence clearly deviating
from the experimental results in Fig. 2.

As it turns out, the use of renormalized spectral functions
for the calculation of transition rates substantially increases
the number of scattering possibilities in comparison to the
available scattering channels in terms of free-particle energies.
Polaron renormalizations lead to additional phonon sidebands
and the Coulomb interactions broaden these resonances. This
also softens the resonance conditions for the processes involv-
ing monoenergetic LO phonons, as illustrated in Fig. 9(a).
When considering only the interaction between WL and QD
carriers via LO phonons within a nonperturbative treatment
(using renormalized spectral functions), scattering is not
restricted to the case where the energy difference of the elec-
tronic levels matches the LO-phonon energy. However, at the
considered low temperature, the resonance condition is well
pronounced (green symbols). When additionally including in
the used spectral functions the broadening due to Coulomb
interaction between QD and WL carriers, the LO-phonon
resonance is less pronounced (blue circles). Including the
Coulomb scattering itself (with fully renormalized spectral
functions), even at the considered low carrier density, the
phonon resonance is further weakened (red squares). Also the
phonon resonance is much less pronounced at elevated carrier
densities [Fig. 9(b)] and temperatures (not shown).

C. Density and temperature dependence
of the population dynamics

So far we have only discussed the rise time of the ground-
state population. The population dynamics itself provides addi-
tional information about the efficiency of scattering processes
and its nontrivial interplay. As we show, the efficiency of
carrier-phonon scattering increases faster with temperature
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FIG. 9. (Color online) (a) Rise time of the TRDT signal for the
QD ground state calculated as a function of the electron confinement
energy for a WL carrier density nWL = 1.1 × 1010 cm−2 and 5 K.
Results including both carrier-carrier and carrier-phonon interactions
within a nonperturbative theory using joint quasiparticle renormal-
izations (red squares) are compared with nonperturbative scattering
rates considering only the interaction with LO phonons but including
in the spectral functions also Coulomb shifts and broadenings (black
circles) and nonperturbative scattering rates only for LO phonons
(green circles). In the latter case, instantaneous Coulomb energy shifts
are included for better comparison. (b) Carrier-density dependence
of the rise time based on the full calculation. For all curves, the
single-particle description including both spin subsystems is used.

than the Coulomb scattering. Nevertheless, also the Coulomb
scattering has its own temperature dependence, mainly via
the population functions of the initial WL states, which are
more spread out at elevated temperatures. In turn, the Coulomb
scattering efficiency increases faster with carrier density than
the carrier-phonon scattering. But the latter also has a clear
carrier-density dependence via the population factors of the
initial states for the scattering processes and via the carrier-
density dependence of Coulomb renormalizations entering in
the spectral functions.

This general trend and further details are provided in
Fig. 10, where we compare the QD ground-state population
dynamics due to the separate interaction with each reservoir
(WL carriers, LO phonons) to those in which the reservoirs
co-act self-consistently.

The top graph of Fig. 10 shows the time evolution of the
sum of the QD electron and hole ground-state population for
low temperature and WL carrier density. When considering
carrier scattering due to LO phonons alone (in a nonpertur-
bative theory using spectral functions only with LO-phonon
renormalizations; green dash-dotted line), the rise time is
much smaller than if carrier-carrier Coulomb scattering is used
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FIG. 10. (Color online) Time evolution of the sum of the
QD electron and hole ground-state population for various carrier
densities and temperatures. Results considering only nonperturbative
carrier-phonon scattering (dash-dotted green line), nonperturbative
carrier-phonon scattering with spectral functions containing polaron
and Coulomb (Hartree-Fock and scattering) renormalizations (dashed
black line), solely Coulomb scattering with accordingly renormalized
spectral functions (dotted blue line), and the full result including
mutual renormalizations (solid red line) are provided. In all cases, the
single-particle description including both spin subsystems is used.
Exponential fits for the rise time are given for each curve.

alone (in a nonperturbative theory using spectral functions
only with Coulomb renormalizations; blue dotted line). On
the other hand, the phonon scattering alone leads to a much
smaller QD population. When both Coulomb and LO-phonon
scattering co-act self-consistently, the population increase
is considerably faster than if one would add independent
processes. In the present case, the LO-phonon scattering gains
a lot from the Coulomb broadening of the spectral functions.
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This can be seen from the black dashed line, which represents
the LO-phonon scattering contributions alone, calculated with
spectral functions containing both polaron and Coulomb
renormalizations. The latter case is rather close to the full
result. Hence LO-phonon scattering is dominant in this regime,
but only with the help of broadening effects in the spectral
functions due to Coulomb scattering.

The middle graph addresses the same situation for increased
temperature. Then the LO-phonon scattering alone becomes
considerably more efficient. The Coulomb scattering alone
is also faster albeit with reduced stationary population. Both
effects are the result of the changes in the WL population,
which provides additional capture processes as well as
increased possibility for the reverse processes (QD carrier
escape). The self-consistent rate considering both processes
(red line) is again faster but the carrier escape lowers the
stationary population.

This trend continues at elevated carrier densities (bot-
tom graph). Clearly the Coulomb scattering benefits more
strongly from the increasing WL carrier density, but the
carrier-phonon scattering is also accelerated (different ab-
scissas should be noted). In this case, both Coulomb and
LO-phonon scattering contribute comparably to the full
dynamics.

As a general observation from the shown results, we
conclude that the interplay of carrier scattering due to
Coulomb and LO-phonon interaction is not additive and has a
nontrivial dependence on excitation conditions and QD level
spacing. Coulomb interaction can further accelerate the carrier
scattering due to LO-phonon interaction; it may, however,
reduce the achievable QD population.

V. CONCLUSIONS

The QD carrier dynamics under the influence of Coulomb
scattering and interaction with LO phonons was studied in
an experiment-theory comparison. Fast population of the QD
states after optical excitation into the barrier states is observed.
The rise time of the QD population strongly changes with
temperature for weak excitation and is temperature insensitive
for strong excitation. In the used theoretical model, LO
phonons and WL carriers play the role of reservoirs, which
ensure irreversible dissipation and population redistribution of
the QD carriers toward equilibrium. The results of two theo-
retical formalisms are compared: the von Neumann–Lindblad
equation for the full QD density operator and kinetic equa-
tions for the single-particle occupation probabilities. For the
considered carrier-capture processes from a quasicontinuum
of delocalized states and the subsequent relaxation processes
within the QDs, mediated by the reservoirs, both formalisms
lead to identical results except for low temperatures and carrier
densities. Agreement with the experimental results is only
obtained when—in both cases—nonperturbative scattering
rates are used. The latter account for polaron renormalization
effects of the electronic states and additional broadening
effects due to Coulomb scattering processes.
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