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30-band k - p model of electron and hole states in silicon quantum wells
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We modeled the electron and hole states in Si/SiO, quantum wells within a basis of standing waves using
the 30-band k - p theory. The hard-wall confinement potential is assumed, and the influence of the peculiar
band structure of bulk silicon on the quantum-well sub-bands is explored. Numerous spurious solutions in the
conduction-band and valence-band energy spectra are found and are identified to be of two types: (1) spurious
states which have large contributions of the bulk solutions with large wave vectors (the high-k spurious solutions)
and (2) states which originate mainly from the spurious valley outside the Brillouin zone (the extravalley spurious
solutions). An algorithm to remove all those nonphysical solutions from the electron and hole energy spectra
is proposed. Furthermore, slow and oscillatory convergence of the hole energy levels with the number of basis
functions is found and is explained by the peculiar band mixing and the confinement in the considered quantum
well. We discovered that assuming the hard-wall potential leads to numerical instability of the hole states
computation. Nonetheless, allowing the envelope functions to exponentially decay in a barrier of finite height is
found to improve the accuracy of the computed hole states.
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I. INTRODUCTION

Silicon remains the technologically most important semi-
conductor and is used to build numerous electronic'? and
photonic devices.>® For almost four decades, the scaling
down of the dimensions of these devices has been driven into
the current nanoscale by Moore’s law. Therefore, modeling
transport and optical properties of silicon nanodevices should
take into account quantum-confinement effects. In silicon
quantum wells, the valence-band states can be modeled by
the six-band k- p theory,7 whereas, the conduction-band
states require application of more elaborate ab initio®'? or
tight-binding'3~'7 methods because of the indirect band-gap
nature of silicon. However, the latter calculations become
increasingly complex for larger structures, leading to slow
performance and the requirement for large computer memory.
These conditions are alleviated by the k- p theory, which
can successfully describe states close to the band extrema.
Yet, those k - p Hamiltonians usually are written for states
close to the I' point of the Brillouin zone!®20 and are,
therefore, suitable for nanostructures made of direct band-gap
materials.

The approach, which has recently been pursued as a
successful alternative to atomistic calculations, is the 30-band
k - p model.?!~2* This model was demonstrated to accurately
describe states in the whole Brillouin zone and was applied to
silicon nanostructures®?® and GaAs/AlGaAs superlattices.?’
Nevertheless, because of the large number of energy bands
which are taken into account, the 30-band calculations are
far from being trivial. Also, this Hamiltonian is not invariant
with respect to translational symmetry of the crystal, which
is a general drawback of the k-p theory. Moreover, the
results of k- p models can exhibit spurious solutions,?~!
which arise from the incorrectly determined bulk states and,
therefore, represent a considerable hurdle for calculations of
the electron and hole states in a nanostructure. As a matter
of fact, some of the envelope functions of the spurious
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solutions are highly oscillatory. A way to avoid them is to
cut off contributions of the bulk states with a large wave
vector.’® The use of a basis consisting of plane waves is a
natural choice for such a method as recent calculations have
demonstrated for InGaAs/InP superlattices.>* Also, spurious
solutions might also arise due to the lack of ellipticity of the
multiband Hamiltonian.>3* Unfortunately, no general method
for removing spurious solutions from the k - p calculation has
been proposed to date. Furthermore, almost all the proposed
methods for the removal of spurious solutions were tested
on the eight-band k - p Hamiltonian and for direct-band gap
semiconductors.

In this paper, we study the electronic structure of silicon
quantum wells by the 30-band k - p model.?> We consider
Si/Si0; quantum wells grown along the [001] direction.
Because the conduction- and valence-band offsets are quite
large, the electrons and holes are mainly confined in the silicon
layer. Therefore, for convenience, an infinite potential-well
confinement (hard-wall potential) was assumed, and the basis
of standing waves was used. The conduction-band states
of this quantum well have recently been considered by the
approximate effective two-band model.® The values of the
parameters were taken from Ref. 22 where the dispersion
relations of the bulk bands in the whole first Brillouin zone
(FBZ) were fitted to the results of ab initio calculations.
However, the symmetry between the FBZ and the second
Brillouin zone (SBZ) was not established in this fitting
procedure. Therefore, spurious solutions are found in the
energy spectrum. We explore their origin and, moreover,
formulate a procedure which removes them from the energy
spectrum of the analyzed quantum well. Also, the stability of
some of the solutions with respect to variation in the order of
the basis is discussed. Moreover, to explore, in more detail,
how the specific boundary conditions affect the solutions, we
supplement the analysis for the case of the finite band offset
between Si and SiO;. In all our results, the top of the silicon
bulk valence band is taken as the zero of energy.

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.88.205306

CUKARIC, TADIC, PARTOENS, AND PEETERS

0 5 10 15 20
k. (nm)

FIG. 1. (Color online) The bulk band structure of silicon along

the [001] direction. The vertical dot-dashed line is the boundary of

the first Brillouin zone. The extra valley which arises from the I';s,

band is denoted by ®, and the dashed curves denote the energy bands
with the proper symmetry.

II. THE BULK BAND STRUCTURE OF SILICON

Before presenting the results of our calculations for the
modeled silicon quantum well, we briefly discuss the silicon
bulk band structure as computed by the 30-band k - p model.?
The dispersion relations of a few bands with energies close to
the band gap in the whole FBZ and SBZ along the [001]
direction are displayed in Fig. 1. The highest-energy states
in the valence band are localized close to the I" point of the
FBZ (the I valley), whereas, the conduction-band states have
their energy minimum at k, = Ky, which is close to the X
point of the FBZ (the A valley). The parameters of the model
were fitted such that they reproduce the dispersion relations
in the full FBZ well.>?> However, such a parametrization fails
to produce the correct symmetry of the bands with respect
to the FBZ boundary as demonstrated by the solid lines in
Fig. 1. For k, beyond the X point, the dispersion relations
of all bands should be mirror symmetric to the dispersion
relations left of the X point (Refs. 34 and 35), such as the ones
shown by the dashed lines in Fig. 1. More specifically, a valley
labeled by A’ in Fig. 1 should appear in the ground conduction
band in the SBZ. However, this important detail is missing in
the 30-band model. Rather, the energy of this band steeply
increases with k, in the SBZ, and instead of the A’ valley,
there exists a valley of an upper conduction band, labeled by
® in Fig. 1, which is just 80 meV above the A valley. Also, it
is located close to the FBZ boundary, therefore, it can have an
important contribution to low-energy conduction-band states
in the quantum well. Note that the symmetries of the two
bands differ: The ground conduction band mainly has the I';s
zone-center symmetry, whereas, the upper conduction band
has the combined I'»5, 4+ 'y, symmetry.

In addition to the lack of the symmetry of the conduction
bands, the valence-band dispersion relations enter the band
gap for large wave vectors, which is also shown in Fig. 1.
Consequently, for a given energy E < 0, there exists an addi-
tional wave vector outside the FBZ. It was demonstrated that,
for quantum wells based on direct band-gap semiconductors
and using the eight-band k - p Hamiltonian, these high-k bulk
states, which are degenerate with the low-k bulk states, produce
spurious states in semiconductor quantum wells.>* As we will
see, the incorrect dispersions of the energy bands shown in
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Fig. 1 will have severe effects on the numerical calculations of
the quantum-well states.

III. THE QUANTUM-WELL STATES

For the hard-wall confinement potential, the quantum-well
states are obtained by solving the equation,

H3E = EE. (D

Here, H3, denotes the 30-band k - p Hamiltonian, which was
introduced in Ref. 22, and & is the 30-band envelope-function
spinor,

L X301 (2)

xj(z) denotes an envelope function of the zone-center periodic
part of the Bloch function u j(r).22 The full wave function of
the electron in the quantum well reads

E=[xx2-.-

30
Mk (1) = exp i (kex + ko)1 Y xj (@0, (3)
j=1
In order to satisfy the Dirichlet boundary conditions, a
basis of standing waves is chosen.?>*® Furthermore, for the
conduction band, the range of wave vectors of the basis states
is conveniently centered at k, = K (see Fig. 1),

N
x;j(z) = exp(iKoz)\/% Z cf,{') sin(mmz/W). 4)

m=1

Here, N denotes the order of the basis, and W is the well
(simulation box) width. We note that the conduction band of
silicon has two minima along the [001] direction, which occur
at Ko and —Kj. This leads to a double degeneracy, which,
along with spin, gives rise to fourfold degenerate states in the
silicon quantum wells. A valley-splitting phenomenon breaks
this degeneracy,?’ but this is a small effect due to both the
inversion symmetry of the confining potential and the large
separation between the equivalent A valleys at the Ky and
— K points. Therefore, it is discarded in our calculations.

The dominant component of the envelope-function spinor
Xa = X is determined according to the criterion that it has the
largest C; = (x;|x;) out of 30 envelope functions which are
the solutions of Eq. (1).

IV. RESULTS AND DISCUSSION

A. The origin of spurious states

The obtained spectra for quantum wells with thicknesses
of W =2 and W = 5 nm are shown in Figs. 2(a) and 2(b),
respectively. To obtain these results, the order of the basis
N in Eq. (4) is chosen such that the ground-state energy is
converged up to an accuracy of 1 meV. We found N =7
satisfies the convergence criteria. However, this leads to the
presence of basis states outside the FBZ and inside the SBZ.
For the conduction-band states (cbss) in the W = 2-nm-wide
quantum well, out of the seven basis functions, just a single
basis state belongs to the FBZ. It is a cumbersome detail related
to the small separation of the A valley from the X point.
Furthermore, the I'}s states around the A point are expected
to mostly contribute to the low-energy conduction-band states
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FIG. 2. (Color online) The dispersion relations of the sub-bands
above the valence-band top for the (a) W = 2-nm-, (b) W = 5-nm-
wide silicon quantum well. The solid lines denote the regular sub-
bands, whereas, the dashed lines denote the spurious solutions. The
basis size is N = 7.

in the quantum well. However, the extra ® valley is close in
energy to the A valley, hence, some quantum-well states will
be mainly I'»s, + 'y like. Not all states shown in Figs. 2(a) and
2(b) are physically relevant solutions, i.e., some spurious states
are found in the energy spectrum. These states are denoted by
dashed lines and are classified into two types as explained
below.

Next, we look at the localization of the electron in a few
states of the W = 5-nm-wide quantum well for k, = k, = Oas
shown in Fig. 3. In order to find both types of spurious solutions
in the energy spectrum, we increased the basis sizeto N = 15.
The probability densities of these states are displayed in the left
panels [Figs. 3(a)-3(c)], whereas, the right panels [Figs. 3(d)—
3()] show %4(z) = xa(z)/ exp(i Koz). The probability density
of the cb ground state and the dominant envelope function
shown in Figs. 3(a) and 3(d) resemble those of the ground
state of the infinite rectangular quantum well according to the
single-band model. It implies that the dominant contribution
to the cb ground state arises from the bulk states whose wave
vectors are around the K point.

On the other hand, the spurious solution with an energy
of 453 meV has both a highly oscillatory probability density
and the dominant envelope function as depicted in Figs. 3(b)
and 3(e), respectively. The dominant envelope function is
almost regularly periodic with a period of 0.7 nm, therefore,
it is mainly composed of the bulk state with the wave vector
k. = 27/(0.7 nm) + Ky ~ 18 nm~'. Such a high-k value is
outside the FBZ where the 30-band model previously was
demonstrated to fail. Therefore, such states are named high-k
spurious solutions and are abbreviated by hksss (denoted by
the short dashed lines in Fig. 2). They are found in both the
conduction and the valence bands.

Figures 3(c) and 3(f) display the state, whose energy is
1275 meV, which sets in between the cb and hkss states
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FIG. 3. (Color online) (Left panel) The probability density as a
function of z for a few states in the silicon quantum well of width
W =5nm: (a) the cb ground state with energy E = 1193 meV;
(b) the high-k spurious solution (hkss) with energy £ = 453 meV,
(c) the extravalley spurious solution (evss), whose energy equals
E = 1275 meV. (Right panel) The dominant components of the
envelope-function spinors of the states shown in the left panel are
divided by exp(i K¢z): (d) cb, (e) hkss, and (f) evss. The imaginary
part in the cb state is 2 orders of magnitude smaller than the real part.
The basis size is N = 15.

shown in Fig. 3. As a matter of fact, its probability density
shown in Fig. 3(c) resembles the cb ground state shown
in Figs. 3(a) and 3(d) and, therefore, could solely indicate
that the state is a regular one. However, the dominant
component of the envelope-function spinor, shown in Fig. 3(f),
is more oscillatory than j, displayed in Fig. 3(d). Yet, these
oscillations are less regular and of the larger period than for
the hkss state [compare Figs. 3(e) and 3(f)]. Nevertheless,
they are composed of the wave vectors outside the FBZ [k, =
27 /(1.7 nm) + Ko ~ 13 nm~!] and are mainly contributed by
the bulk states of the ® valley. Therefore, such states are
spurious but of another type, which are named evss. They are
denoted by the long dashed lines in Fig. 2 and are found only
in the conduction band.

In order to further illustrate the origin of the states displayed
in Fig. 3, in Fig. 4, we show the corresponding distributions of
the probability over the different components of the envelope-
function spinor (x;|x;). Figure 4(a) shows (x;|x;)’s for the
electron ground state and demonstrates that this state mainly
is composed of the I'js zone-center states. However, it has a
large contribution from the I';,, band.?” This result is consistent
with the approximate two-band model proposed in Ref. 6. On
the other hand, the main contribution to the hkss of Fig. 3(b)
comes from the I',s; states as shown in Fig. 4(b), and the largest
{(xjlx;) in the evss displayed in Fig. 3(c) belongs to the I's,
and I"y; bands as Fig. 4(c) shows. The latter two bands mainly
form the ® valley just outside the FBZ (see Fig. 1), which is an
artifact in the SBZ, thus, such states are classified as spurious.
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FIG. 4. (Color online) The envelope-function spinor dominant
component of the states shown in Fig. 3: (a) cb, (b) hkss, and (c) evss.

B. The spurious solutions removal

We developed a scheme to automatically remove both types
of spurious solutions. It is based on the following observations.
In addition to contributions of different zone-center states
to quantum-well states, which were illustrated in Fig. 4, the
absolute value of the expansion coefficients |cf,{) | is found to be
an important figure of merit for classifying quantum-well states
as regular and spurious ones. We checked the distributions
of (x;lx;) over j and |c,(,{)| over both j and m and were
able to formulate the set of empirical rules for extracting a
few (three to five) low-energy spurious solutions from the
conduction-band spectrum of the quantum well. The regular
states in the conduction band are found to mainly originate
from the I';s band. We label the regular conduction-band
states by the counter n. Furthermore, xr,, envelope functions
were found to mostly be composed of the low-m basis states.
For example, the electron ground state for the range from
W =2 to W =20 nm is found to mainly be composed of
the m = 1 basis function. Furthermore, the m values of the
expansion coefficients with the largest magnitudes in the
conduction-band states n and n + 1 are found to differ by
not more than unity. Also, the quantum-well states, whose
dominant envelope function x, is due to bulk states different
from I';s, are found to be composed dominantly of the basis
functions with wave vectors outside the FBZ. Therefore, they
are spurious in origin and may be of the hkss or evss type.

The proposed modus operandi is as follows. The calculation
starts by choosing the value of the order of the computational
basis N to achieve a reasonable energy accuracy as previously
explained. The Hamiltonian is then diagonalized, and the
envelope functions with the largest (x;|x;)’s are selected for
all the computed states. The index of the dominant envelope
function is labeled by jnax. Furthermore, for the determined

Jmax, the largest expansion coefficient |c,(nj"““)| is found and is
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labeled by m = mmax. The myax value will be compared with
m, which is the reference value of mp,x, and is set to unity
when the procedure starts. The procedure for eliminating the
spurious solutions from the spectrum of the conduction-band
states reads:

(1) Set the reference value of the maximal index of the
dominant basis function to 77 = 1; set the number of the regular
states ton = 0.

(2) The composition of all the states from zero energy
onward is determined; a state with the largest contribution
of the I';5 band is selected for further consideration;

(3) For the selected state, cﬁ,{;:iﬁ) is determined.

(4) If mpmax > m, the state is classified as spurious.

(5) If mmax = 1, increase #1 by 1, i.e., i1 = i + 1; such a
state is classified as regular, thus, n = n + 1.

(6) If mmax < 11, the state is classified as a regular state, and
therefore,n =n + 1.

(7) Go back to step 2 to proceed with checking the other
states.

Note that no regular state is misclassified by this procedure.
In other words, we found that the states which do not have the
dominant I"js component are dominated by standing waves
with wave vectors outside the FBZ. However, the proposed
procedure may be applied to only remove a few lowest-energy
spurious states, which is three to five for W ranging from 2
to 5 nm. Mixing between the I'js and the I';s, + [, zone-
center states, which form the A and ® valleys, respectively,
becomes larger when the electron energy increases, and the
explained algorithm cannot be adopted. Furthermore, the
proposed algorithm cannot be applied to thin quantum wells,
and W = 2 nm was found to be a practical lower limit. For
quantum wells thinner than approximately 2 nm, convergence
of the electron energy to within 1 meV is not reachable.

Both the hksss and the evsss are found to exist in the range
of W from 2 to 5 nm for the chosen basis size. When W
increases, the evss energies cross the energies of the regular
states as shown in Fig. 5. Similar to Fig. 3, the (k,k,) = (0,0)
states are shown in this figure. The number of the regular
states, whose energies are lower than the lowest-energy evss,
increases with W. Therefore, when W tends to infinity, which
is the bulk silicon case, all the regular states will be below all
evsss. In the energy range displayed in Fig. 5, only two hksss
are above the ground conduction-band states for W = 2 nm,
and their energies sharply decrease with W such that, already

‘ ——— —
So k=k~0 nm

cb
— ——— evss

~—_

W (nm)

FIG. 5. (Color online) The dependence of the regular energy
levels (solid lines), evsss (long dashed lines), and hksss (short dashed
lines) for k, = k, = 0 on the quantum-well width for the N = 7 basis
size.
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for W = 2.1 nm, these hksss enter the band gap where they can
easily be recognized and removed from the energy spectrum.

As discussed, Fig. 2(a) shows the dispersion relations of the
sub-bands which have energies close to the conduction-band
bottom in the 2-nm-wide well. Because of band folding, the
minimum of the conduction band is at k, = k, = 0. Some
spurious solutions evidently are found in the band gap, and
all of them are of the high-k type and are, therefore, easily
removed. On the other hand, a few evsss are found in the
conduction band, whose dispersion relations appear to be
similar to the dispersion relations of the regular states. It is
because evsss are formed out of the states of the ® valley,
which is similar to the real conduction-band states which
mainly arise from the states of the A valley. In other words, the
bulk states of both the real states and the evsss do not exhibit
appreciable band mixing.

C. The hole states

Let us now consider the hole states. The presented proce-
dure can also be adopted to remove the spurious solutions
in the energy range of the valence band, except that the
real valence-band states are found to mainly be composed
of the I'»5; zone-center states. But, in addition to the spurious
solutions, the hole states in the silicon quantum well suffer
from an instability in the calculation with respect to the basis
order as Fig. 6 demonstrates. Notice that the hole ground-state
energy level oscillates with the size of the basis. The amplitude
of the oscillations can be as large as 100 meV, and its value
decreases when the well width increases as Figs. 6(a)—6(c)
show for W = 2, 5, and 20 nm, respectively.

E(eV)

E(eV)

10 20
z(nm)

0 10 20 30 40
N

FIG. 6. (Color online) The hole ground-state energy as a function
of the basis size N for (a) W =2 nm, (b) W =5 nm, (c) and W =
20 nm. The yellow color displays the area outside the FBZ. The insets
show the dominant component of the hole ground-state envelope-
function spinor.
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These zigzag-shaped convergences can be explained as
follows. First, note that the diagonal elements of the 30-band
Hamiltonian are equal to the kinetic-energy term for a free
electron. Therefore, without band mixing, the dispersion
relations of all bands in silicon are concave. The curvature
of the valence band alters sign through the band mixing.
The analyzed silicon quantum well is symmetric, and for
ky =k, =0, the envelope functions are classified strictly
with respect to inversion of the z coordinate as even or
odd. The dominant component of the hole ground state is
even, therefore, it is composed of the m = 1,3,5, ... basis
states. These basis states are dominantly coupled with the
odd (m = 2,4,6, . ..) basis functions by the off-diagonal terms
which are proportional to k,. It is obvious from the form
of the 30-band Hamiltonian given in Ref. 22 that the finite
overlap between the even and the odd envelope-function spinor
components leads to a change in the sign of curvature of the
sub-band dispersion relation.

To further illustrate the zigzag variation in the hole
eigenstates observed in Fig. 6, we focus on a result obtained
with a basis of size N and one with size N + 1, where N is
an odd number. The extra basis function in the N + 1 basis
is an odd function. Because the slope of this (N + 1)th basis
function is largest close to the boundary where the oscillatory
Nth basis function reaches its maximum, the value of the
matrix element between the two states can be large and,
therefore, can substantially modify the eigenenergy value. For
odd N, the basis is, in fact, not effective in establishing the
appropriate curvature of the quantum-well sub-bands. Also,
the dominant envelope function in the spinor of the ground
hole state has extra zeros close to the well boundary as the
inset in Fig. 6(a) shows for N = 7 and the W = 2-nm quantum
well. However, if N is an even number, the dominant envelope
function of the ground hole state becomes less oscillatory,
and the extra zeros of the envelope function do not exist
as the inset in Fig. 6(c) demonstrates for N = 20 and the
W = 20-nm-wide quantum well.

The demonstrated instability of the valence-band solutions
with the size of the basis essentially is a consequence of the
inappropriate curvature of the hole states as modeled by the
diagonal terms of the 30-band model. Such problems do not
exist in the six-band model where the sign of curvature of
the valence-band dispersion relation is appropriate even if
modeled by only the diagonal terms. The problem cannot be
solved by increasing the size of the basis, i.e., by taking states
outside the FBZ as shown in Figs. 6(a) and 6(b) into account.
In fact, it arises from the need of the envelope function to drop
exactly to zero at the boundary.

D. The case of the finite band offset

In order to explore how the assumption of the infinite barrier
affects the stability of the hole state calculations, we extend our
analysis to the case of a finite-depth Si/SiO, quantum well.
The valence-band offset in Si/Si0, systems has been found to
amount to 4.5 eV.*®3° However, no values for the parameters
of the 30-band model have been extracted, therefore, they are
assumed to be equal to the parameters of silicon, except for the
value of the band gap at the I point, which equals 8.9 eV.334
In these calculations, we assume that the Si well of width D is
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FIG. 7. (Color online) A few hole states in the D = 5-nm-wide
quantum well of finite depth as a function of the basis size N for
(a) W = 15 and (b) W = 10 nm. (c) Convergence of the hole energy
levels with N for three values of the valence-band offset.

centrally positioned with respect to the simulation box, whose
width is denoted by W. As an example, we assume that the Si
well is D = 5-nm wide and choose k, =0 and k, =0 nm~ L.

The obtained eight highest hole energy levels for W = 15
and W = 10 nm as functions of the basis order N are shown
in Figs. 7(a) and 7(b), respectively. Quite interestingly, the
oscillations previously found for the case of the infinite
quantum well do not take place when the valence-band offset
is finite. For both values of W, the results improve by
increasing N, and as expected, the smallest basis is needed
to compute the ground state. Furthermore, no big change is
observed when the size of the simulation box decreases from
W =15 to W = 10 nm, except that a slightly larger basis is
needed when the simulation box is wider. Therefore, allowing
the envelope functions to exponentially decay stabilizes the
energy-level dependence on N. It confirms our previous claim
that the steep descents of the envelope functions near the
quantum-well boundaries cause numerical instabilities with
the hard-wall potential shown in Fig. 6. Furthermore, as
Fig. 7(c) demonstrates, when N is sufficiently large (N > 14),
we found that quite reliable results are produced irrespective
of the value of the valence-band offset. In this figure, the
ground-state energies in two unrealistic cases, Vo = 0.5
and Vo = 8 eV, are shown along with the ground state for
Vote = 4.5 eV, which was previously shown in Fig. 7(b). This
figure demonstrates that, if the envelope function is allowed to
exponentially decay to zero inside the barrier, computation of
quantum-well states becomes quite stable with respect to the
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FIG. 8. (Color online) (a) The hole ground-state energy in the
D = 5-nm-wide quantum well of finite depth as a function of the box
size for N = 20. (b) The probability density of the hole ground state
for W = 10 nm and N = 20.

number of basis functions. Even for a valence-band offset as
large as 8 eV, the convergence of the hole ground-state energy
level towards the numerically exact value is found to be quite
steady, and only N = 13 basis states are needed to produce
the energy value with a negligible error.

The value of the valence-band offset Vo = 4.5 eV is large
such that the envelope functions decay fast in the barrier.
Hence, the energy of the hole ground state is almost constant
for W > 6 nm as Fig. 8(a) shows for N = 20. The energies
of the other states depend similarly on W. However, some
of them clearly exhibit oscillations. The reason is as follows.
Since lower states of the valence band are more oscillatory, we
need a broader k interval than for the ground state to accurately
describe them. With increasing box size (and fixed basis size
N), we narrow the covered k space (since k ~ 1/ W), so these
low states are not described accurately. Nevertheless, we need
a wider box for these states than for the ground state. When
the difference between W and D is not large, the confining
potential is like in the infinite quantum well. Consequently,
the results for the highest-energy states become quite unstable
when N varies as Fig. 6 previously showed.

Figure 8(a) indicates that, if one is interested in computing
only three highest-energy states, even the choice of W = 6 nm
produces a good result. Varying width and depth of the
quantum well might modify this finding and could depend on
the values of the material parameters. But Fig. 8(b) shows that
the probability density of the hole ground state is quite confined
inside the well (which ranges between 2.5 nm < z < 7.5 nm).
It accounts for why the energy of the ground state in Fig. 8(a)
does not vary much for W > 6 nm. Moreover, we found that,
even for a small barrier width, the highest-energy states can be
computed quite accurately, and the accuracy of the calculation
of the lower-energy states can be improved by increasing the
basis order. Hence, thin silicon layers embedded between thick
barriers can be modeled accurately by the employed 30-band
theory, providing the width of the simulation box and the basis
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size is large enough. We note that, for finite band offsets,
Richard et al. previously employed 40 basis functions in the
30-nm-wide box to compute the hole states in the Ge/SiGe
quantum well with 1-meV accuracy.?

V. CONCLUSION

We used a basis consisting of standing waves within the
30-band k - p model to solve the electronic structure of a
Si/Si0; quantum well grown in the [001] direction. For
the assumed infinite potential steps at the well boundaries,
we found that numerous spurious solutions are present in
the computed electron and hole spectra. These spurious states
are classified into two categories: the high-k states which arise
from the contribution of the states outside the first Brillouin
zone and the extravalley spurious states which arise from the
spurious valley outside the first Brillouin zone. The missing
symmetry of the conduction band in bulk silicon as modeled
by the 30-band k - p Hamiltonian is found to be the cause
of the extravalley spurious states in the conduction band.
Furthermore, we devised a procedure which is able to remove
the low-energy spurious states from both the conduction-band
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and the valence-band energy spectra. The latter is found to
exhibit instabilities due to a peculiar band mixing and the
specific boundary conditions when the order of the employed
basis varies. This failure of the 30-band k - p model might
heuristically be accounted for by a large difference in the
electron confinement in the hard-wall silicon quantum well
and the silicon bulk. However, if the hard-wall confinement
is made softer, the deficiencies in the 30-band k - p approach
are found to disappear for the adequately chosen size of the
simulation box and the basis order. Furthermore, the choice
of the numerical method is not relevant for the demonstrated
instability of the hole states, i.e., we found that it also exists if
the finite-difference or finite-element methods are adopted to
solve the 30-band eigenvalue problem.
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