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Wigner function approach to single electron coherence in quantum Hall edge channels
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Recent electron quantum optics experiments performed with on-demand single electron sources call for a mixed
time/frequency approach to electronic quantum coherence. Here, we present a Wigner function representation
of first-order electronic coherence and show that it provides a natural visualization of the excitations emitted
by recently demonstrated single electron sources. It also gives a unified perspective on single particle and two
particle interferometry experiments. In particular, we introduce a nonclassicality criterion for single electron
coherence and discuss it in the context of Mach-Zehnder interferometry. Finally, the electronic Hanbury Brown
and Twiss and the Hong-Ou-Mandel experiments are interpreted in terms of overlap of Wigner function, thus
connecting them to signal processing.
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I. INTRODUCTION

Recent experiments have demonstrated the importance of
single1,2 and two particle3–6 quantum coherence in the field
of quantum-coherent electronics. The advent of on-demand
single electron sources7–13 has opened the way to a new
generation of experiments dealing with excitations having
a finite spatial extension and various shapes instead of a
continuous stream of indistinguishable excitations. These
experiments open the way to the controlled preparation,
manipulation, and characterization of single to few electron
excitations in ballistic conductors, an emerging field called
electron quantum optics.14 Since these experiments access
time scales comparable to the coherence time of electrons
within conductors through finite-frequency current15,16 and
noise measurements,17,18 a time-resolved approach to elec-
tronic quantum coherence is required.

In this paper, we present a unified view of the various
representations of single electron coherence in quantum Hall
edge channels and we introduce in the present context a
time/frequency representation based on the Wigner func-
tion already introduced in quantum mechanics19 and signal
processing.20 The Wigner function is commonly used in
quantum optics21 and has been recently measured in cavity
QED to demonstrate the decay of quantum superpositions of
two quasiclassical states of the electromagnetic field.22

Although all the representations of electronic coherence
contain exactly the same information, each of them has its

advantages and drawbacks. First, the time domain represen-
tation of single electron coherence is suitable to analyze
time-dependent aspects as well as to define the proper notions
of coherence and dephasing times.23 However, information on
the electron or hole nature of excitations is hidden in the phase
of this quantity. On the other hand, the frequency domain
representation is perfect to discuss the nature of excitations
and is the natural representation for the electronic analog of
homodyne tomography24 but it is not well suited to describe
real time aspects. The mixed time/frequency representation
called the electronic Wigner function combines the advantages
of both representations: it gives a direct access to both the time
evolution and energy content of single electron coherence.
Moreover, it provides a natural nonclassicality criterion for
single electron coherence and, for example, enables us to
discuss nonclassicality in Mach-Zehnder interferometry in a
natural way.

Historically, the Wigner function was introduced in the the-
ory of quantum transport at the end of the 1980s to understand
the limits of a semiclassical treatment in semiconductors,25 to
study phonon interaction effects,26 and also to model various
quantum devices built from semiconductors.27,28 Although we
deal with the same concept, we consider here low-dimensional
conductors in which many-body effects as well as interactions
and decoherence in the presence of the Fermi sea are crucial.
Moreover, our primary motivation is to discuss the various
representations of single electron coherence and show the
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relevance of the electronic Wigner function for understanding
electron quantum optics experiments.

The price to pay is that the electronic Wigner function,
as of today, cannot be measured directly at a given time and
frequency contrary to cavity QED experiment.29,30 Neverthe-
less, we show that it provides a unified view of single electron
interference experiments as well as of two-particle interfer-
ence experiments based on the Hanbury Brown and Twiss31

(HBT) effect. These include the Hong-Ou-Mandel (HOM)
experiment32 which involves two electron interferences from
two different sources in full generality. Doing so, we greatly
simplify the discussion of the various reconstruction protocols
for single electron coherence. We show that the recently pro-
posed tomography protocol24 does indeed directly reconstruct
the electronic Wigner function. Moreover, providing a natural
visualization of single electron coherence, this approach
suggests that specifically designed alternative tomography
protocols may lead to single electron reconstruction from
fewer measurements than our generic homodyne protocol. We
finally sketch a possible connection between the search for
such optimized tomography protocols and the problematic of
compressed sensing in signal processing.33

This paper is structured as follows: In Sec. II, single
electron coherence and its relation to Glauber coherence in
quantum optics is revisited. We then discuss the time and
frequency representations of this quantity and we introduce the
electronic Wigner function. Section III is devoted to examples:
We first consider single electron coherence in the presence
of a classical voltage drive. The cases of a sinusoidal drive
and of Lorentzian pulses13,34 are discussed. We then discuss
the electronic Wigner function emitted by the mesoscopic
capacitor used as an on-demand single electron source.8

Section IV is devoted to interferometry experiments, starting
with Mach-Zehnder interferometry and then discussing the
HBT and HOM two-particle interference experiments.

II. SINGLE ELECTRON COHERENCE

A. Definition and simple examples

Mach-Zehnder interferometry has shown the importance
of first-order electron coherence. It is usually defined as the
Keldysh Green function, already used to describe electronic
coherence in the many-body approaches to the decoherence
problem in diffusive conductors:35

G(e)
ρ (x,t ; y,t ′) = Tr[ψ(x,t)ρ ψ†(y,t ′)], (1)

where ρ denotes the density operator of the electronic fluid. As
noticed by Glauber et al.,36 this correlator is also relevant for
atom-counting experiments with fermionic cold atom systems.
A similar quantity can be defined for hole excitations:

G(h)
ρ (x,t ; y,t ′) = Tr[ψ†(x,t)ρ ψ(y,t ′)]. (2)

The electron and hole coherences at coincident times are
related using the canonical anticommutation relations

G(e)(x,t ; y,t) = δ(x − y) − G(h)(y,t ; x,t). (3)

The first important difference with photon quantum optics
comes from the fact that, in a metallic conductor, the Fermi
sea, which plays here the role of the vacuum state, has a
nonvanishing single particle coherence whereas coherence

vanishes in the photon vacuum. At zero temperature, the Fermi
sea single electron coherence within a single chiral channel at
equal times is given by

G(e)
μ (x,t ; y,t) = i

2π

eikF (μ)(x−y)

y − x + i0+ , (4)

where kF (μ) denotes the Fermi momentum associated with the
chemical potential μ of the edge channel under consideration.
At nonvanishing electronic temperature Tel, these correlators
decay over the thermal length scale l(Tel) = h̄vF /kBTel where
vF denotes the Fermi velocity:

G(e)
μ,Tel

(x,t ; y,t) = i

2l(Tel)

eikF (μ)(x−y)

sinh
(

π(y−x)+i0+
l(Tel)

) . (5)

This suggests decomposing the single electron coherence into
a Fermi sea contribution, due to the chemical potential μ of
the conductor, and a contribution due to excitations above this
ground state:23,24

G(e)
ρ (x,t ; y,t ′) = G(e)

μ,Tel
(x,t ; y,t ′) + �G(e)

ρ (x,t ; y,t ′). (6)

The case of an ideal single electron excitation helps clarifying
the physical meaning of �G(e)

ρ . Let us consider a many-body
state obtained from a Fermi sea by adding one extra particle
in a normalized wave packet ϕe:

ψ†[ϕe]|F 〉 =
∫ +∞

−∞
ϕe(x) ψ†(x) |F 〉 dx, (7)

where |F 〉 denotes the Fermi sea at a fixed chemical potential.
In momentum space, ϕe has only components on single particle
states above the Fermi level. Then, Wick’s theorem leads to
single electron coherence at initial time:

�G(e)
ψ†[ϕe]|F 〉(x,0; y,0) = ϕe(x) ϕ∗

e (y). (8)

In the same way, the single electron coherence of the state
obtained by adding a single hole excitation to the Fermi
sea ψ[ϕh]|F 〉 [ϕh(k) = 0 above the Fermi level] is given by
�G(e)

ψ[ϕh] |F 〉(x,0; y,0) = −ϕh(x) ϕ∗
h(y). The minus sign reflects

the fact that a hole is the absence of an electron in the Fermi
sea.

The excess single electron coherence �G(e)
ρ (x,t ; y,t) con-

tains information on both the shape of the wave packet and its
phase dependence. More precisely, �G(e)

ρ (x,t ; x,t) encodes the
average density and thus the shape of the wave packet whereas
the x − y dependence encodes the phase dependence. The
shape of the wave packet gives access to its length (or duration
in the time domain) which we denote by l1 (resp. T1).23

But a realistic single electron source does not necessarily
emit a perfectly coherent wave packet: it can also emit
a statistical mixture of them or the electrons may have
experienced some decoherence due to Coulomb interactions.37

How can we measure the decay of single electron coherence?
As recently noticed by Haack et al.,23 the first degree of
coherence originally introduced by Mandel for photons78 can
be defined in the present context as

g(1)(x,l) = �G(e)
ρ

(
x + l

2 ,x − l
2

)√
�G(e)

ρ

(
x + l

2 ,x + l
2

)
�G(e)

ρ

(
x − l

2 ,x − l
2

) .

(9)
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To see how it gives a direct access to the decay of single
electron coherence, let us consider a very simple description
of decoherence which consists in introducing a phenomeno-
logical decoherence coefficient in front of the excess single
electron coherence of a coherent wave packet:37

�G(e)(x,y) � D(x − y) ϕe(x)ϕe(y)∗. (10)

The decay length of this decoherence coefficient is denoted
by lφ and is called the dephasing length (the dephasing time
in the time domain). Let us recall that such an approach
to decoherence is justified only when the electron under
consideration can still be distinguished from electron/hole
pairs generated in the Fermi sea by Coulomb interactions.
In this case, Eq. (10) can be obtained in a model of a single
electron coupled to an harmonic environment.38 Otherwise, a
more complete approach should be used.39 Nevertheless, using
Eq. (10) into Eq. (9) shows that g(1)(x,l) decays over the same
length scale lφ as D(x − y).

It then follows from (9) that the length scale governing the
decay of the single electron coherence �G(e)

ρ (x,y) combines
the decaying length of the wave packet and lφ :

1

l2
= 1

2l1
+ 1

lφ
. (11)

This formula mimics the famous expression of the total
decoherence rate in NMR in terms of the relaxation and
dephasing rates.23,40

B. Analogy to Glauber’s coherences

In Glauber’s approach to photodetection,41 a photon detec-
tor is a quantum device designed to detect a single photon.
In such a detector, a single photon causes the photoionization
of an atom and the emitted electron is then amplified to give
a macroscopic signal. Old photomultipliers work exactly this
way: the incoming photon is absorbed, leading to the emission
of a single electron which is then amplified by the secondary
emission of electrons in dynodes. The initial photoemission
stage can be described using elementary time-dependent
perturbation theory. The resulting photodetection signal is then
obtained as

ID(t) =
∫ t

0
KD(τ,τ ′)G(1)

ρ (xD,τ ; xD,τ ′) dτdτ ′, (12)

where xD denotes the position of the detector. The quantity
G(1)

ρ (xD,τ |xD,τ ′) only depends on the quantum state of the
electromagnetic field and is indeed Glauber’s single photon
coherence function;42

G(1)
ρ (x,τ ; x ′,τ ′) = Tr[E(+)(x,τ ) · ρ · E(−)(x,τ ′)], (13)

where E(±) denotes the positive (resp. negative) frequency
part of the electric field operator and ρ is the electromagnetic
field initial density operator. The function KD(τ,τ ′) charac-
terizes the response of the detector to the absorption of a
single photon. Broadband detectors have a local response
in time KD(τ − τ ′) � δ(τ − τ ′) and therefore measure the
(integrated) photocount: ID(t) � ∫ t

0 G(1)
ρ (xD,t ′; xD,t ′) dt ′. On

the other hand, narrow-band detectors select a single frequency
and therefore measure the Fourier transform of Glauber’s
single photon coherence with respect to time.

The analogy between Glauber’s single photon coherence
in Eq. (13) and the single electron coherence function given
by Eq. (1) is then obvious. But what would be the analog of
photodetection for electrons? The idea is simply to extract
an electron from the conductor we want to probe and to
amplify the corresponding charge deposited into the detector.
Naturally, the stage corresponding to photoionization is simply
tunneling of electrons from the conductor into the detector
which could for example be a STM tip or a nearby dot. Of
course this approach does not take into account the electrostatic
coupling between the conductor and the detector. Assuming a
pointlike detector located at position xD , the average tunneling
current from the conductor to the detector contains two
contributions arising from an electron transmitted from the
conductor to the reservoir and vice versa:

ID(t) =
∫ t

0

[
G(e)

ρ (xD,τ ; xD,τ ′)Ka(τ,τ ′)

−G(h)
ρ (xD,τ ; xD,τ ′)Ke(τ,τ ′)

]
dτdτ ′. (14)

In this expression, Ka and Ke characterize the detector and
respectively account for both available single electron and hole
states within the reservoir and for the eventual energy filtering
of the detector. Such a detection scheme has been recently
implemented experimentally to study electron relaxation
in quantum Hall edge channels:43 in these experiments, a
quantum dot is used to filter energies. This corresponds to
a narrow-band detection in the quantum optics language.

C. Representations of single electron coherence

1. The time and frequency domains

Since measurements are usually performed locally, let us
consider the single electron coherence function at a given
position x: G(e)

ρ,x(t,t ′) = G(e)
ρ (x,t ; x,t ′). In the time domain, the

diagonal G(e)
ρ,x(t,t) is nothing but the average electronic density

at time t and position x. Consequently, in chiral edge channels
with Fermi velocity vF , the excess current with respect to the
chemical potential μ is

〈i(x,t)〉ρ = −evF �G(e)
ρ,x(t,t). (15)

The off-diagonal (t �= t ′) excess single electron coherence
�G(e)

ρ,x(t,t ′) is complex valued.23 Introducing t̄ = (t + t ′)/2
and τ = t − t ′, the decay of |�G(e)

ρ,x(t,t ′)| with increasing τ

defines the coherence time of the source at time t . So this
representation is indeed appropriate to discuss the coherence
time as well as to discuss time dependence. But it is not well
suited for understanding the nature (electron or hole) of the
excitations emitted by the source since it is encoded in the
t − t ′ dependence of the phase of �G(e)

ρ,x(t,t ′).
Going to the frequency domain gives access to the nature

of excitations. The single electron coherence in the frequency
domain is defined as the double Fourier transform:

G̃(e)
ρ,x(ω+,ω−) =

∫
G(e)

ρ,x(t,t ′) ei(ω+t−ω−t ′) dt dt ′. (16)

As shown in Fig. 1, the Fourier plane can then be divided into
four quadrants. The (e) or electron quadrant defined by ω+ > 0
and ω− > 0 contains the contribution of excitations that
correspond to single particle levels having positive energies
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Ω/2 = πnf

ω

ω+ω−

(e)

(e/h)

(h)

(e/h)

FIG. 1. (Color online) Decomposition of the Fourier plane
(ω,�) in four quadrants. The (e) quadrant (in blue) represents
the contribution of purely electronic excitations; the (h) quadrant
(in red) represents the contribution of hole excitations. The two
(e/h) quadrants (off-diagonal in gray) encode the contribution of
electron/hole coherences. The diagonal (� = 0, vertical axis) gives
the electron occupation number. For a periodically driven source
with period T = 1/f , � is a multiple of 2πnf . Restricting the single
electron coherence to the (e) [resp. (h)] quadrants and normalizing
properly provides an effective density operator for electron (resp.
hole) excitations.

with respect to the chemical potential μ = 0. The (h) or
hole quadrant defined by ω+ < 0 and ω− < 0 contains the
contribution of excitations that correspond to single particle
levels with negative energies with respect to the chemical
potential μ = 0. Finally, the (e/h) or electron/hole quadrants
defined by ω+ω− � 0 correspond to the coherence between
electronic and hole excitations. These coherences are produced
by a superposition of electron and hole excitations.24 At
this point, it is worth emphasizing that the electronic or
hole nature of excitations is defined with respect to a given
chemical potential, here chosen as μ = 0. With respect to
another chemical potential, excitations would be categorized
differently.

Using the Fourier decomposition of the single electron cre-
ation and destruction operators, the single electron coherence
in the frequency domain satisfies

vF

2π
G̃(e)

ρ,x(ω+,ω−) = 〈c†(ω−) c(ω+)〉ρ , (17)

where c(ω) and c†(ω) respectively denote the fermion destruc-
tion and creation operators at position x (see Appendix A). The
electron occupation number can thus be recovered from the
diagonal in the frequency domain. In particular, an equilibrium
state corresponds to a singular single electron coherence in the
frequency domain:

G̃(e)
μ,Tel

(ω+,ω−) = 2π

vF

δ(ω+ − ω−)fμ,Tel

(
ω+ + ω−

2

)
. (18)

A convenient way to visualize the (ω+,ω−) plane24 uses
ω = (ω+ + ω−)/2 and � = ω+ − ω− which are respectively
conjugated to t − t ′ and (t + t ′)/2. Figure 1 depicts the (e), (h),
and (e/h) quadrants with respect to μ = 0 in these coordinates.

The fact that, at zero temperature, the Fermi sea coherence
(18) is localized in the frequency domain leads to Cauchy-
Schwarz inequalities discussed in Appendix A. They imply

that, at zero temperature, a source that does not emit any excess
hole excitation (resp. electronic excitation) has nonvanishing
single electron coherence only within the (e) [resp. (h)]
quadrant.

To summarize, the frequency domain representation of the
single electron coherence is clearly well suited to visualize the
nature of excitations with respect to a given chemical potential.
But recovering time dependence is more difficult since it is
encoded in the phase dependance of the off-diagonal terms
G̃(e)

ρ,x(ω+,ω−) for ω+ �= ω−. Since it is difficult to detect a single
electron in one shot on a subnanosecond time scale, it may be
easier to access single electron coherence in the frequency
domain than in the time domain24 although a protocol has
recently been proposed using Mach-Zehnder interferometry.44

We shall come back to this question in Sec. IV.
However, working with sources that are able to inject

single to a few electrons and holes strongly raises the need
for a representation of the single electron coherence giving
access to real time phenomenon as well as to the nature of
excitations. Such a time/frequency representation has been
known for a long time in quantum statistical physics: it is the
Wigner function19,20 which we now discuss for single electron
coherence.

2. The Wigner function

In order to capture both the t̄ = (t + t ′)/2 dependence of
single electron coherence and the nature of excitations, we
define the Wigner distribution function as

W (e)
ρ,x(t̄ ,ω) =

∫
vFG(e)

ρ,x(t̄ + τ/2,t̄ − τ/2) eiωτ dτ, (19)

which is dimensionless owing to the presence of the velocity
vF . In a similar way, one defines the Wigner function for the
hole excitations by substituting G(h)

ρ,x into (19). Note that due
to the Hermiticity properties (A 1) of the single electron and
single hole coherences, these Wigner functions are real.

Originally, the Wigner function was introduced to provide
a bridge between classical and quantum mechanics for a
single particle.19 In classical mechanics, a particle has a
well-defined position and momentum and an ensemble of
such particles is represented by a probability distribution over
phase space. In quantum mechanics, the uncertainty principle
prevents the particle from being perfectly localized. Still, the
Wigner distribution function is the proper generalization of
the probability distribution: it is a real distribution over phase
space whose integration over position (resp. momentum) gives
the probability distribution of the momentum (resp. position).
The Wigner function is thus normalized but contrarily to the
classical probability distribution, it is not always positive.

Significant differences are expected for the Wigner function
associated with single electron coherence. In the stationary
case, the Wigner function defined by Eq. (19) is nothing but the
time-independent electronic distribution function at position x:

W (e)
ρ,x(t̄ ,ω) = fe(ω,x). (20)

For a Wigner function to be interpreted as a time-
dependent electronic distribution function, it has to satisfy
0 � W (e)

ρ,x(t̄ ,ω) � 1. The positivity condition is needed in order
to have an interpretation as a probability density. In a chiral
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system, the electronic and hole Wigner distributions are related
by

W (h)
ρ,x(t̄ ,ω) = 1 − W (e)

ρ,x(t̄ , − ω), (21)

where the minus sign in front of ω on the right-hand side
reflects the fact that W (h)

ρ,x(t̄ ,ω) is the Wigner function for
hole excitations at time t̄ and energy h̄ω. Consequently, the
upper bound on W (e)

ρ,x(t̄ ,ω) is also required for a probabilistic
interpretation of the hole Wigner distribution function. For a
probability distribution in the (t̄ ,ω) plane, this upper bound
expresses the Pauli principle.

In full generality, the Wigner function for conduction
electrons in a metal contains the Fermi sea: W (e)

ρ,x(t̄ ,ω) → 1
for sufficiently negative ω and W (e)

ρ,x(t̄ ,ω) → 0 at high enough
energy. In between, the Wigner function can get various values,
sometimes negative or larger than 1. In such cases, it cannot be
interpreted as a probability distribution. We shall come back
to this issue while discussing explicit examples in the next
section.

Note that a T -periodic system generates a single electron
distribution invariant in (t,t ′) 
→ (t + T ,t ′ + T ) which can
thus be decomposed as a Fourier transform with respect to
τ = t − t ′ and a Fourier series with respect to t̄ = (t + t ′)/2:

G(e)
ρ (t,t ′) =

+∞∑
n=−∞

e−2πinf t̄

∫
G(e)

ρ,n(ω)e−iωτ dω

2π
, (22)

where f = 1/T is the driving frequency. This single electron
coherence leads to a T -periodic Wigner function, W (e)

ρ (t̄ +
T ,ω) = W (e)

ρ (t̄ ,ω), whose expression as a Fourier series reads

W (e)
ρ (t̄ ,ω) =

+∞∑
n=−∞

vFG(e)
ρ,n(ω) e−2πinf t̄ , (23)

in which the position x has been dropped out for simplicity.
As we shall see, this expression is of great use in numerical
evaluations of the Wigner function in the framework of Floquet
scattering theory.

Integrating the Wigner function of a quantum particle over
position or momentum gives the probability distribution of
the conjugated variable. Here, partial integrals of the Wigner
function give access to physically relevant quantities such
as the average excess current with respect to a chemical
potential μ:

〈i(x,t̄)〉ρ = −e

∫
�W (e)

ρ,x(t̄ ,ω)
dω

2π
, (24)

where �W (e)
ρ,x(t̄ ,ω) denotes the excess Wigner function with

respect to the Wigner function �(μ/h̄ − ω) of the Fermi sea
at chemical potential μ. Note that measuring this quantity
requires broadband high-frequency measurements.15,16 In the
same way, averaging over time gives access to the electronic
distribution function at position x:

fe(ω,x) = 1

T

∫ T/2

−T/2
W (e)

ρ,x(t̄ ,ω) dt̄ . (25)

This quantity can be measured using dc current measurements
through an adjustable energy filter.43 Note that the Wigner
function for electrons in a conductor does not satisfy the
normalization condition satisfied by the Wigner function

of a single quantum particle: integrating over t̄ and ω the
excess Wigner distribution �W (e)

ρ,x(t̄ ,ω) with respect to a given
chemical potential gives the total excess charge in −e units.

Finally, let us point out that as of today, there is no
way to directly access the value of the Wigner function at
a given point (t,ω) in a quantum conductor. By contrast,
such direct measurements of the Wigner function in cavity
QED are possible and have indeed been performed45 but
they rely on the measurement of the parity of the photon
number,29 the equivalent of which is, as far as we know,
not accessible in electron quantum optics. The problem of
reconstructing the Wigner function for electrons in quantum
Hall edge channels through interferometry experiments will
be discussed in Sec. IV.

III. EXAMPLES

Let us now discuss several important examples of single
electron coherences emitted by various electronic sources. We
shall first consider the single electron coherence emitted by a
driven Ohmic contact.

A. Voltage drives

1. General properties

The single electron coherence emitted by an ideal Ohmic
contact driven by a time-dependent voltage V (t) is

G(e)
V

(
t + τ

2
,t − τ

2

)
= exp

(
ie

h̄

∫ t+ τ
2

t− τ
2

V (τ ′) dτ ′
)
G(e)

μ (τ ).

(26)

In the case of a T -periodic potential, the single electron
coherence can be obtained in terms of the photon-assisted
transition amplitudes pl[Vac] associated with the ac component
of the drive.13 The resulting Wigner function is then expressed
as

W (e)(t,ω) =
∑

(n+,n−)∈Z2

pn+ [Vac]pn− [Vac]∗ e2πi(n−−n+)f t

× fμ̄(ω − π (n+ + n−)f ), (27)

where μ̄ = μ − eVdc denotes the chemical potential shifted
by the dc component of the drive. The electronic occupation
number is obtained by averaging Eq. (27) over the time t . This
selects terms with n+ = n−, thus leading to

fe(ω) =
∑
n∈Z

|pn[Vac]|2fμ̄(ω − 2πnf ). (28)

This expression clearly shows the interpretation of the
|pn[Vac]|2 as the probabilities of photon-assisted transitions.
However, the Wigner function contains more information than
the photon-assisted probabilities. These are the terms with
n+ �= n− in Eq. (27) which are sensitive to the phases of the
photon-assisted transition amplitudes. They play a crucial role
in ensuring that the current noise of the driven channel is equal
to the current noise at thermal equilibrium as expected for a
coherent state of the edge magnetoplasmon modes.46

In the case of a sinusoidal drive Vac(t) = V0 cos (2πf t)
at frequency f , pn[Vac] = Jn(eV0/hf ), where Jn denotes
the Bessel function of order n. The Wigner function is then
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obtained as

W (e)(t,ω) =
∑
n∈Z

Jn

( 2eV0
hf

cos (2πf t)
)

eβelh̄(ω+πnf ) + 1
, (29)

where βel = 1/kBTel. At zero temperature, this Wigner func-
tion exhibits singularities in the variable ω each time h̄ω is a
multiple of hf/2. Quantum effects are expected to be dominant
in the regime of low temperature and low photon number. On
the contrary, for large photon number and high temperature,
quantum features are expected to be small. Let us now turn
to these two limiting regimes of small (eV0 � hf ) and large
(eV0  hf ) amplitude.

2. Small amplitude

The regime of small amplitude is most suitably discussed in
the sinusoidal case. Then, hf represents the energy of photons
absorbed or emitted by the electron gas and the condition
eV0 � hf expresses that the physics is dominated by single
photon processes. In this regime, the first-order contribution
in eV0/hf to the Wigner function is

∂W (e)(t,ω)

∂(eV0/hf )

∣∣∣∣
V0=0

= Fμ,Tel (ω) cos (2πf t), (30)

where Fμ,Tel (ω) = fμ,Tel (ω − πf ) − fμ,Tel (ω + πf ) is, at zero
temperature, the characteristic function of the interval [μ/h̄ −
πf,μ/h̄ + πf ]. Note that this contribution does not affect the
electronic occupation number fe(ω) but contributes to the
average current by (e2/h)V (t) as expected from the linear
response of a chiral edge channel. However, as we shall see in
Sec. IV B, it is a basic ingredient of proposed single electron
tomography protocol.24

The first nontrivial contribution to the electron distribution
function arises at second order in V0 and corresponds to
processes in which a single photon is absorbed to promote
one electron from the Fermi sea above the Fermi level:

∂2W (e)(t,ω)

∂2(eV0/hf )

∣∣∣∣
V0=0

= gμ̄,Tel (ω) cos2 (2πf t), (31)

where gμ̄,Tel (ω) = fμ̄,Tel (ω + 2πf ) + fμ̄,Tel (ω − 2πf ) −
2fμ̄,Tel (ω) is, at zero temperature, equal to 1 for
μ̄ < h̄ω � μ̄ + hf , equal to −1 when μ̄ − hf � h̄ω < μ̄ and
vanishes everywhere else.

At higher amplitude, multiphotonic processes contribute.
At zero temperature, the Wigner function exhibits singularities
for ω multiple of πf but only the even multiples contribute to
singularities in the occupation number as expected from the
theory of photon-assisted noise.47

3. Large amplitude

Let us now turn to the opposite regime of large voltage
amplitude where the physics is dominated by multiphotonic
processes. In this case, let us make the discussion slightly more
general by considering a smooth time-dependent periodic volt-
age drive that varies on a scale �V = max[V (t)] − min[V (t)]
over a time scale T = 1/f , where f denotes the driving
frequency.

To discuss the features of the Wigner function on energy
scales of the order e�V , we have to consider G(e)(t + τ/2,

t − τ/2) over time scales such that |f τ | � 1. We can then
assume that V (τ ′) is constant and equal to V (t) between
t − τ/2 and t + τ/2. This immediately leads to an adiabatic
expression for the Wigner function as a time-dependent Fermi
distribution:

W (e)(t,ω) � fμ,Tel (ω + eV (t)/h̄) (32)

corresponding to a time-dependent chemical potential μ(t) =
μ − eV (t). However, at zero temperature, quantum interfer-
ence effects lead to quantum corrections to this expression.
They arise from the time dependence of the voltage drive
over the interval [t − τ/2,t + τ/2]. Considering a time t such
that V ′′(t) �= 0, the ω dependence of W (e)(t,ω) exhibits a
Fresnel-like diffraction pattern. At zero temperature, assuming
that V ′′(t) > 0, we find

W (e)(t,ω) �
∫ +∞

ω+eV (t)
δω(t)

Ai(x) dx, (33)

where Ai(x) denotes the Airy function48 and

δω(t) = 1

2

(
e|V ′′(t)|

h̄

)1/3

. (34)

The Wigner function thus exhibits quantum ripples on the
Fermi plateau around the value 1 and an exponential decay
at high energy. These ripples are clearly visible in Fig. 2(a)
showing the Wigner function generated by a sinusoidal drive
for eV0/hf = 20 at zero temperature. On this figure, they
appear as oscillations on the top part of the waves of the driven
Fermi sea [the semiclassical potential is μ(t) = μ − eV (t) and
therefore V ′′(t) > 0 corresponds to μ′′(t) < 0]. Due to them,
the Wigner function can be greater than 1. For V ′′(t) < 0, a
similar computation shows that

W (e)(t,ω) �
∫ − ω+eV (t)

δω(t)

−∞
Ai(x) dx. (35)

On Fig. 2(a), the corresponding ripples correspond to the
oscillations in the bottom of the wave part of the driven Fermi
sea. They lead to negative values of the Wigner function.

The energy scale h̄ δω(t) associated with these ripples
compares to hf through

h̄ δω(t)

hf
= 1

4π

(
2πeT 2|V ′′(t)|

hf

)1/3

. (36)

For a moderately varying voltage such as a sinusoidal drive,
T 2V ′′(t) is of the order of the total drive amplitude �V .
Therefore in the case of a large amplitude e�V  hf , the
scale h̄ δω(t) is significantly larger than hf as can already be
seen in Fig. 2(a).

When h̄ δω(t)  hf , this energy scale gives the tempera-
ture above which the quantum ripples disappear. A convenient
way to understand finite-temperature effects is to remark
that thermal fluctuations will smooth the Wigner function
over an energy scale equal to kBTel. The quantum ripples
are thus expected to disappear at finite temperature, when
kBTel � h̄ δω(t). In this regime, the adiabatic result given by
Eq. (32) is recovered as can be seen from Fig. 2(b).

Finally, one might consider a voltage drive that is strongly
peaked around specific times. In this case, the local energy
scale h̄ δω(t) might become of the order of eV (t) itself and
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(b) Tel = 0.25eV0/kB

FIG. 2. (Color online) Density plot of the Wigner function for a
sinusoidal drive V (t) = V0 cos (2πf t) in terms of t/T and h̄ω/hf

for eV0/hf = 10 at (a) zero temperature and (b) kBTel = eV0/4.
Quantum ripples discussed in the text are visible at Tel = 0 K. The
pixelization corresponding to the scale h̄ω/hf = 0.5 is also only
visible on graph (a) at zero temperature.

the Wigner function is locally dominated by these interference
effects. In such a situation, one would not be able to see the
overall picture of the Fermi step at chemical potential μ̄(t) =
μ − eV (t). As we shall see in Sec. III B2, Lorentzian pulses
realize such a situation.

B. Single electron sources

1. The mesoscopic capacitor

An on-demand single electron source can be realized using
a mesoscopic capacitor operated in the nonlinear regime. This
source was demonstrated in 2007 by Fève et al.8 Properly

operated, it emits a single electron and a single hole excitation
per period at GHz repetition rate. One of its main advantages is
that these excitations are energy resolved and that their average
energies and width can be tuned to some extent.

A description of this source can be achieved within a non-
interacting electron approximation using the framework of the
Floquet scattering theory. This approach has been developed
by Moskalets and Büttiker to describe quantum mechanical
pumping in mesoscopic conductors49 and since then has been
applied to a variety of systems among which is the mesoscopic
capacitor.50 In particular it has been used to predict the low-
and finite-frequency noise emitted by a periodically driven
mesoscopic conductor.51,52 These theoretical results have been
compared to experimental results on finite-frequency noise of
the source.53 The Floquet scattering amplitude for electrons
propagating through a driven quantum conductor is

SFl(t,t
′) = exp

(
ie

h̄

∫ t

t ′
Vd (τ ) dτ

)
S0(t − t ′), (37)

where Vd (τ ) is the periodic ac driving voltage applied to the dot
and S0(t − t ′) is the scattering amplitude across the undriven
conductor, expressed in real time. Knowing the Floquet
scattering amplitude (37) leads to the real time single electron
coherence emitted by the driven mesoscopic conductor24 in
terms of the Floquet scattering amplitudes Sn(ω) defined as

cout(ω) =
+∞∑

n=−∞
Sn(ω) cin(ω + 2πnf ). (38)

A Fourier transform then leads to the general expression for
the Wigner function emitted by a source described within the
framework of Floquet scattering theory:

W (e)(t,ω) =
+∞∑

n,k=−∞
Sk(ω + πnf )Sn+k(ω − πnf )∗

× fμ(ω + 2πf (k + n/2)) e−2πinf t . (39)

This expression can be used to compute either analytically
or numerically the Wigner function within Floquet scattering
theory.

Let us now discuss the numerical results for the mesoscopic
capacitor driven by a square voltage: V (t) = Vd for 0 < t �
T/2 and V (t) = −Vd for T/2 < t � T . We namely consider
realistic values of the parameters of the mesoscopic capacitor:
hf/� = 0.06, kBTel/� = 0.01, and eVd = �/2 so that the
voltage step corresponds to the level spacing of the dot �.
These results are obtained by evaluating the single electron
coherence numerically using a specific form for the scattering
amplitude of the dot S0(ω) already used to interpret the
experimental data:15

S0(ω) =
√

1 − D − e2πih̄(ω−ω0)/�

1 − √
1 − D e2πih̄(ω−ω0)/�

. (40)

Here D denotes the dot to lead transmission controlling the
tunneling between the dot and the chiral edge channel. Another
tunable parameter is the position h̄ω0 of the energy levels of
the dot which can be controlled by applying a dc voltage to its
top gate. Note that electron/hole symmetry is realized when
h̄ω0 is an integer multiple of �. Depending on D, various
behaviors are expected.
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FIG. 3. (Color online) Density plot of the Wigner function emit-
ted by the mesoscopic capacitor at D = 1, hf/� = 0.06, kBTel/� =
0.01 and for a square voltage drive of amplitude eVd = �/2 in the
symmetric situation (ω0 = 0).

At D = 1, electrons go around the dot only once and feel the
effect of the voltage drive during a very short time τ0 which is
the time of flight around the dot. As shown on Fig. 3, excitation
emission is concentrated at the times where the voltage drive
changes. This is expected since it is precisely when the drive
changes that the electrons going through the dot feel a sudden
change of the electrical potential. Between two changes, the
dot acts as a purely elastic scatterer and therefore we expect to
see the emission of electrons as if they were coming straight
out of the reservoir. Consequently, the average current should
be a succession of current pulses of duration τ0 centered on
the sudden changes of the voltage drive.

From an edge magnetoplasmon perspective, the state
generated by the mesoscopic capacitor at D = 1 is a coherent
state. It is a coherent superposition of many electron/hole pairs
and therefore the single electron coherence is expected to
have an important contribution in the (e/h) quadrants. We thus
expect that excitations are created close to the Fermi level as
can be seen on Fig. 3.

When D decreases, the density of states within the dot
becomes more and more textured.8 Consequently we expect
the source to emit electron and hole excitations that are better
and better resolved in energy and time shifted by a half period.
Figure 4 confirms this physical picture: it clearly shows the
succession of electronic and hole excitations emitted by the
mesoscopic capacitor near its optimal point.

The shape of these pulses can indeed be understood very
simply by considering Lorentzian wave packets in energy,
truncated to energies above the Fermi level:

ϕ̃e(ω) = Ne �(ω)

ω − ωe − iγe/2
, (41)

where Ne ensures normalization and γe denotes the electron
escape rate from the quantum dot. For |h̄ω0| < �, we expect
the electron to be emitted by the mesoscopic capacitor at
energy h̄ωe = �/2 + h̄ω0 whereas the hole is expected at
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FIG. 4. (Color online) Density plot of the Wigner function
emitted by the mesoscopic capacitor at D = 0.4, hf/� = 0.06,
kBTel/� = 0.01 and for a square voltage drive of amplitude eVd =
�/2 in the symmetric situation (ω0 = 0).

energy h̄ωh = h̄ω0 − �/2. The electronic escape rate is then
given by54,55 γe = 2D�/h(2 − D).

To understand the limit γe/ωe � 1, let us first neglect the
truncation of the wave packet. Within this approximation, the
associated excess Wigner function is given by

�W (e)(t,ω) ∼ 2γe�(t)
sin [2(ω − ωe)t]

ω − ωe
e−γet . (42)

This expression leads to a triangular shape which reflects
the Heisenberg time/energy uncertainty principle: right after
emission, the spreading in energy is large and then becomes
sharper. As expected the duration of the excitation is governed
by τe = 1/γe. This Wigner function also exhibits some
negative values appearing as dark quantum ripples on Fig. 5(b)
but apart from these, it is mainly a positive bump. Taking
into account the truncation of the Lorentzian in Eq. (41)
alters this image at low energy: it leads to the vanishing
of the single electron coherence outside the (e) quadrant as
shown on Fig. 5(a). Consequently, for ω � ωe/2, the Fourier
transform of �W (e)(t,ω) with respect to t is much smaller for
pulsation lower than ωe/2 as can be seen on Fig. 5(b). The
residual interference pattern shows broader and fainter fringes
as ω goes to zero. These time oscillations at fixed ω arise
from the residual coherence in the (e) quadrant (ω± > 0) and
ω+ + ω− = 2ω.

This explains the band seen for |ω| � �/2 on Fig. 4 for
|ω| � |ωe|/2: the positive bump gives way to a fainter pattern
of interferences fringes. This truncation effect, which can be
interpreted as an expression of the Pauli principle, is of course
sharper when γe � ωe. Its consequences in the time domain
are discussed in Appendix B. The same remarks apply to hole
excitations which appear as dips in the Fermi sea.

When decreasing D, the escape times of the electron and
hole increase as one enters the shot noise regime of the
source. When they become comparable to the half period
T/2, the electron and the hole do not have the time to
escape before the voltage drive changes again. In this case,
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FIG. 5. (Color online) Density plots associated with the three representations of single electron coherence: (a) |�G(e)(ω + �

2 ,ω − �

2 )|, the
frequency domain representation [dashed lines delimit the (e), (h), and (e/h) quadrants]. (b) �W (e)(t̄ ,ω), the Wigner function representation
(horizontal dashed line is the Fermi level). (c) |�G(e)(t + τ

2 ,t − τ

2 )|, the time domain representation (dashed lines correspond to t = 0 and
t ′ = 0). These density plots correspond to an energy-resolved electronic wave packet given by (41) with ωeτe = 10.

electron/hole coherences are expected to reappear since the
capacitor generates a superposition of various electron/hole
pair excitations of the form24 |F 〉 + ψ†[ϕe]ψ[ϕh]|F 〉. The
(e/h) coherences for such a superposition are of the form
ϕe(t)ϕ∗

h(t ′) and ϕh(t)ϕ∗
e (t ′). In the Wigner distribution function,

they appear at ω � (ωe + ωh)/2 and oscillate in time at
pulsation ωe − ωh (remember that ωe > 0 for an electronic
excitation and ωh < 0 for a hole excitation). We thus expect
fast oscillations in time at mid position between the electron
and hole energies.

To confirm this picture, Fig. 6 depicts the Wigner function
emitted by the mesoscopic capacitor in the low-D regime with
a shift in the energy levels of the dot (ω0 �= 0). As expected, it
exhibits fast oscillations precisely at the mid position between
the electron and hole peaks. Note also how the triangular shape
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FIG. 6. (Color online) Density plot of the Wigner function
emitted by the mesoscopic capacitor as a function of t/T and h̄ω/�

for D = 0.4, kBTel/� = 0.01, hf/� = 0.06 and when the energy
levels of the dot are shifted by 0.3�.

of the hole excitation dips are truncated close to the Fermi
surface due to the Pauli exclusion principle. Note that such
oscillations are also visible in Fig. 4 but they are exactly at the
Fermi energy since for this figure, the capacitor is assumed to
be operated at an electron/hole symmetric point.

2. Lorentzian pulses

More recently, another source of single to a few electronic
excitations in a 2DEG at zero magnetic field has been
developed34 based on ideas by Levitov, Ivanov, Lee, and
Lesovik.56,57 The idea is to use Lorentzian voltage pulses carry-
ing a quantized charge in units of e to generate purely electronic
excitations. Experimentally, minimizing the partition noise
of these excitations is used to minimize the production of
spurious electron/hole pairs.13,58 Contrary to the excitations
studied in the previous paragraph, these electron pulses are
not well separated from the Fermi sea: their spectral weight
is concentrated near the Fermi energy. Moreover, excitations
carrying more than an elementary charge under the form of a
coherent wave packet of n electrons can be generated. More
precisely, such an excitation is a Slater determinant built from
the 1 � k � n mutually orthogonal electronic wave functions
given by46

ϕ
(τ0)
k (ω) =

√
2τ0 �(ω)e−ωτ0Lk−1(2ωτ0), (43)

where τ0 denotes the duration of the Lorentzian pulse and Lk is
the kth Laguerre polynomial.48 Their single electron coherence
can be computed analytically in the case of a single pulse and
also from the Floquet scattering theory in the case of a periodic
train of pulses.46

For a single Levitov excitation of charge −ne (n � 1) and
width τ0, the associated excess Wigner function is given by

�W (e)(t,ω) =
√

4π�(ω)e−2ωτ0

n−1∑
k=0

k∑
l=0

(
2ωτ0√

ωt

)2l+1

× L
(2l)
k−l(4ωτ0)

l!
Jl+ 1

2
(2ωt), (44)
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FIG. 7. (Color online) Density plot of the Wigner functions of
trains of Lorentzian pulses of width τ0 such that f τ0 = 0.05, at zero
electronic temperature and for increasing values of α: (a) α = 1,
(b) α = 2, (c) α = 0.5, (d) α = 1.5. The thin horizontal black line
corresponds to the Fermi level. The same color map applies to all the
graphs: negative values are depicted in blue tones, values over 1 in red
tones. The unit value is in white to emphasize the hole contributions
for noninteger values of α [see (c) and (d)].

where Jl+ 1
2

denotes the Bessel function of order l + 1/2 and

L(m)
n is the generalized Laguerre polynomial48 of order n. Note

that for n = 1, the wave function ϕ
(τ0)
0 being exponential in

energy, one expects the Wigner distribution function to have a
form similar to that of Eq. (42) up to the exchange of t and ω.

However, in order to discuss the physics of these Lorentzian
pulses, it is more convenient to consider a periodic train of
excitations since, in this case, noninteger values of the charge
can easily be considered.13,46 Using Eq. (39), we plot the
Wigner function of a train of Lorentzian pulses f τ0 = 0.05 at
zero temperature and for increasing values of α which denotes
the average charge per pulse in units of −e.

Figure 7 shows trains of time-resolved excitations that
are not separated in energy from the Fermi level (compare
with Fig. 4) as expected. Time-energy uncertainty leads to the
spreading of the excitation in time close to the Fermi surface.
Increasing the amplitude of the drive or equivalently α, we see
that these excitations grow in the energy direction. We also see
the appearance of local maxima that are indeed the quantum
ripples discussed in Sec. III A3. But in the present case, they
are more prominent since we are not in an adiabatic limit in the
sense of Sec. III A3. More interesting, we see that the Fermi
sea is left pristine each time α is an integer confirming that
for positive integer α, the source is emitting a train of purely
electronic excitations.

On the contrary, when α > 0 is not an integer, hole
excitations are expected since in this case, each pulse should
be understood as a collective excitation. Comparing α = 1/2
and α = 3/2, we see that the hole contribution diminishes: this
is not surprising in view of the Pauli principle since one adds
a half electronic excitation on top of a Slater determinant in

which more and more electronic states close to the Fermi level
are populated.

IV. INTERFEROMETRY

Let us now discuss interferometry experiments, starting first
with single particle interferences (Mach-Zehnder interferome-
try) and then going to two-particle interferometry experiments
based on the Hanbury Brown and Twiss effect.

A. Mach-Zehnder interferometry

We consider a Mach-Zehnder interferometer built from two
QPCs A and B (see Fig. 8) whose scattering matrices S(j )

(j = A, B) are of the form

S(j ) =
(√

1 − Tj i
√

Tj

i
√

Tj

√
1 − Tj

)
. (45)

The two arms of the MZI encircle a region threaded by a
magnetic flux �B = φB × (h/e). The length of the two arms
of the MZI are l1,2 and here, we assume that electronic
propagation is ballistic and nondispersive within each arm,
thus leading to respective times of flights τ1,2. An electronic
source (S) is located onto the incoming channel 1 and both
incoming channels are at chemical potential μ when the source
is off. In this case, the outcoming channels are at the same
chemical potential μ.

In full generality, a source generates an excess single
electron coherence that propagates through the MZI. The
excess Wigner function in the outcoming channel 1 is then
given by

�W
(e)
1,out(t,ω) =

∑
j=1,2

Mj,j�W
(e)
1,in(t − τj ,ω)

+ 2|M1,2| cos (ωτ12 + φ) �W
(e)
1,in(t − τ̄ ,ω),

(46)

where τ12 = τ1 − τ2 and τ̄ = (τ1 + τ2)/2 respectively denote
the difference and the average of the two times of flight and
φ = Arg(M1,2) + 2πφB accounts for the magnetic phase and
for eventual phase shifts at the QPC. Note that this translates
into the Wigner function formalism the discussion of the ideal
MZI interferometer by Haack et al.23 The coefficients Mi,j

are associated with the beam splitters and, in the present case,

ΦB

τ1

τ2

FIG. 8. (Color online) Schematic view of a Mach-Zehnder inter-
ferometer: two incoming channels arrive on a beam splitter A and
fly along two paths 1 and 2 with respective times of flight τ1 and τ2

enclosing a magnetic flux �B and recombine at a beam splitter B. An
electronic source (S) is placed on the incoming channel 1.
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are given by

M1,1 = (1 − TA)(1 − TB), (47)

M2,2 = TATB, (48)

M1,2 =
√

TA(1 − TA)
√

TB(1 − TB). (49)

In Eq. (46), the first two terms represent the contribution
of electrons traveling classically along the two arms of
the interferometer whereas the last term represents quantum
interference effects associated with propagation along both
arms. This quantum term exhibits oscillations in ω taking place
over a scale 2π/|τ12|. Changing the magnetic flux through
the MZI interferometer sweeps the phase of these quantum
oscillations. These quantum fringes in the Wigner function
are indeed characteristic of quantum superpositions. They
have been recently observed for Schrödinger cat states in
cavity QED22 and they are now routinely seen in circuit QED
experiments.59–61

Figure 9 shows the Wigner functions obtained by sending
through an ideal MZI an energy-resolved single electron
wave packet given by Eq. (41). The two time-shifted wave
packets are clearly visible. We have chosen the time of
flight difference τ12 larger than the duration of each wave
packet so that the quantum fringes are clearly visible. In
this regime, the two classical components of �W

(e)
1,out(t,ω)

are clearly separated from the quantum interference features.
Due to the quantum interference contribution, the Wigner
function exhibits pronounced regions with negative values thus
preventing any quasiclassical interpretation.

Although they could be observed in a full quantum
tomography of the single electron coherence,24 these fringes
could also be observed through their impact on the marginal
distributions of the Wigner function, that is to say, the average
current (24) and the electron distribution function (25).

In order to observe the effect on the average current,
the typical scale 2π/|τ12| of quantum oscillations in the
Wigner function must be comparable or larger than the energy
spread of the excess coherence of the source so that these
oscillations are not averaged to zero when integrating over ω.
This condition expresses that quantum interferences can be
observed in the time domain only when the difference of times
of flight τ12 is comparable or smaller than the coherence time of
the source.44 In the case of a perfectly balanced MZI (τ12 = 0),
a single peak would be observed in the electron distribution
function and in the average current and their heights would
be globally modulated by the magnetic flux. In the case of
a moderately unbalanced MZI (τ12 = 2 τe) depicted on on
Fig. 9(a), the average current shows two overlapping peaks
whereas the electron distribution exhibits mainly one peak
with some side structure. Changing the magnetic flux by half a
quantum decreases the size of the second peak of the average
current and also slightly changes the shape and size of the
central peak of the electron distribution function.

On the other hand, in the case of a strongly unbalanced
MZI (τ12 = 10τe), such as the one depicted on Fig. 9(b),
interferences cannot be observed using a time-resolved mea-
surement. The average current depicted in Fig. 9(b) (iii)
exhibits two peaks that correspond to the two classical
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(a) Partly overlapping wave packets: τ12 = 2 τe
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(b) Nonoverlapping wave packets: τ12 = 10 τe

FIG. 9. (Color online) Excess single electron coherence at the
output of an ideal Mach-Zehnder interferometer for energy-resolved
wave packets (41) emitted at energy h̄ωe and with duration τe = γ −1

e

such that ωeτe = 10 and two differences of time of flights τ12: (a) τ12 =
2 τe, (b) τ12 = 10 τe. Each subplot is organized as follows: (i) Density
plot of the excess Wigner function �W

(e)
1,out(t,ω) given by Eq. (46)

for φ = 0 as a function of t/τe and ωτe, (ii) excess electron dis-
tribution function δfe(ω) in the outcoming channel (arbitrary units),
(iii) average current 〈i(t)〉 in units of −e/τe. On all graphs, the full line
corresponds to φ = 0 whereas the dotted line corresponds to φ = π .

contributions to the excess Wigner function. These two peaks
do not change when the magnetic flux is varied. In this
case, a frequency-resolved detector able to restore the overlap
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between electronic wave packets is more appropriate to reveal
the interferences. As shown in Fig. 9(b) the quantum fringes of
the Wigner function can be observed by measuring the electron
distribution function. This is the single electron version of the
channeled spectrum observed in optical interferometers using
white light.

In practice, observing these effects might be quite challeng-
ing due to decoherence within the interferometer itself,2,62–64

although a proper design of the sample leads to partial
protection against decoherence.65,66 Moreover, observing a
channeled spectrum requires an unbalanced interferometer
in which |τ12| is greater than the inverse of the typical
energy spreading of the electrons sent into the interferometer.
Therefore, the best way to observe a channeled spectrum
would be to use a nonequilibrium distribution spreading over
a broad energy range such as a double step generated by
a QPC43 or the one generated by an ac sinusoidal voltage.
A typical energy range of 100 to 500 μeV corresponds to
frequencies from 24 to 120 GHz so that an imbalance of a
few μm could be sufficient to observe a channeled spectrum.
However, such an experiment would rely on a continuous
stream of undistinguishable electrons. In order to observe a
channeled spectrum with a single electron source, a larger
imbalance is required and excitations that are spread in energy
such as Lorentzian pulses34 with short duration (typically
10 ps) may be appropriate. An alternative approach is to
use energy-resolved excitations8 and change their energies
to probe the interferences at the single electron level. But
discussing the observability of these effects in a realistic
situation would require computing the Wigner distribution
function at the output of a Mach-Zehnder interferometer in the
presence of interactions, which would go beyond the scope of
the present paper.

B. HOM and HBT interferometry

1. Noise and correlations from coherences

Two particle interferences are at the heart of the Hanbury
Brown and Twiss (HBT) and Hong-Ou-Mandel (HOM) exper-
iments recently demonstrated with single electron excitations
emitted by an on-demand single electron source.37,67 They
enable us to imprint information about the single electron
coherence into the current noise and correlations issued
from an electronic beam splitter of respective reflection and
transmission probabilities R and T (see Figs. 10 and 11). This
remark underlies the recently proposed single electron tomog-
raphy protocol aimed at reconstructing an unknown single
electron coherence from noise measurements.24 Predictions
have been made for HOM noise signals within the Floquet
scattering theory13,68,69 due to electron and hole coherence70

and also for the ν = 2 edge channel system with short-range
interactions.71

The aim of this section is to revisit all these HBT
interferometry experiments in terms of the Wigner function.
We show that the Wigner function provides a simple and
unified view of all these experiments and that it is the quantity
of interest for their interpretation.

In the HBT interferometry setup depicted on Fig. 10, the
outcoming current correlation between edge channels α and β

FIG. 10. (Color online) Hanbury Brown and Twiss setup for
single electron tomography: This setup is designed to characterize
the single electron coherence of an on-demand single electron source
present on the incoming branch 1 close to the QPC (here μ1 = 0)
and driven by the voltage Vexc(t). A reservoir with a time-dependent
chemical potential μ2(t) = −eV (t) = μ2 − eVac(t) is connected to
the incoming branch 2. One measures the low-frequency correlation
S

exp
12 of the outcoming current I1 and I2.

is defined as

Sout
αβ (t,t ′) = 〈

iout
α (t) iout

β (t ′)
〉 − 〈

iout
α (t)

〉〈
iout
β (t ′)

〉
. (50)

The final expressions for outcoming current correlations are24

Sout
11 = R2S in

11 + T 2S in
22 + RT Q, (51a)

Sout
22 = T 2S in

11 + R2S in
22 + RT Q, (51b)

Sout
12 = Sout

21 = RT
(
S in

11 + S in
22 − Q

)
, (51c)

where for simplicity we have omitted the (t,t ′) arguments.
These outcoming correlations involve the incoming ones
S in

αβ(t,t ′) and a contribution Q(t,t ′) coming from two-particle
interferences. This contribution Q(t,t ′) involves the incoming
single particle coherences right upstream the QPC:

Q(t,t ′) = (evF )2
(
G(e)

1 G(h)
2 + G(e)

2 G(h)
1

)
(t ′,t), (52)

where, for HBT interferometry, G(e)
2 and G(h)

2 are the electron
and hole coherences emitted by a reservoir at chemical
potential μ2 and electronic temperature Tel.

As discussed in Sec. II A, electron quantum optics differs
from photon quantum optics on the nature of the vacuum. Even

FIG. 11. (Color online) Sketch of the usual Hong-Ou-Mandel
experiment (Ref. 37): On demand single electron sources are
present on each incoming branch and are driven by time-shifted
voltages: Vexc,2(t) = Vexc,1(t − �t). One measures the low-frequency
correlation S

exp
12 of the outcoming current I1 and I2.
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when sources are switched off, a nonvanishing single electron
coherence is present and, at nonzero temperature, leads to a
nonzero current noise. We shall thus consider situations in
which no source is switched on (off/off), one of the two is
switched on (cases on/off and off/on), and both are switched
on (on/on). Denoting by �X the difference between X in the
situation under consideration and X when the two sources are
off, we obtain

�S
on/off
11 = R2�S in

11 + RT (�Q)on/off, (53a)

�S
off/on
11 = T 2�S in

22 + RT (�Q)off/on, (53b)

where the HBT excess contribution in Eq. (53a) is given by

(�Q)on/off(t,t
′) = (evF )2

(
�G(e)

1 G(h)
2 + �G(h)

1 G(e)
2

)
(t ′,t),

(54)

with a similar expression for (�Q)off/on(t,t ′). These expres-
sions are relevant when one of the incoming channel is
populated by an equilibrium distribution. Since an equilibrium
state is the analog of the vacuum for photons in the electron
quantum optics channel; such a situation is analogous to the
historical table-top HBT experiment.31 It has been recently
demonstrated with an on-demand single electron source.67

In the case of an HOM experiment (see Fig. 11), the two
sources are switched on. In this case, the excess outcoming
noise �S

on/on
11 is the sum of the excess HBT noises and of an

HOM contribution corresponding to two-particle interferences
between excitations emitted by both sources:

�S
on/on
11 = �S

on/off
11 + �S

off/on
11 + RT (�Q)HOM. (55)

This HOM contribution (with respect to the situation where
the two sources are switched off) is defined as

(�Q)HOM(t,t ′) = (evF )2
(
�G(e)

1 �G(h)
2 + (1 ↔ 2)

)
(t ′,t).

(56)

In electronic transport, one can only access the time average
of current correlations at a given frequency �:

S
exp
αβ (�) =

∫
Sout

αβ (t̄ + τ/2,t̄ − τ/2)
t̄
ei�τ dτ. (57)

Although the experiments are often performed at low fre-
quency (� � 0), recent progress in finite-frequency noise
measurements18 motivates considering the case of finite-
frequency noise. As a consequence, the HBT and HOM excess
contributions to the experimental signals are given by overlaps
in time of two excess coherences. Thanks to Plancherel’s
theorem, they can also be expressed as overlaps of the
corresponding Wigner functions. As we shall see, this makes
the physical interpretation of the HBT and HOM two-particle
interferometry experiments extremely transparent.

2. A Wigner view on the HBT and HOM experiments

To begin with, let us first consider the HBT excess contri-
bution given by Eq. (54). Rewriting excess hole coherences
in terms of electronic coherences and performing the time
averaging and Fourier transform as in Eq. (57) leads to the
excess HBT contribution of the outcoming noise under the

form

(�Q)on/off(�) = −e〈i1〉 − e2
∫

δf1(ω) g2(ω,�)
dω

2π
, (58)

where 〈i1〉 denotes the average dc current of source 1, δf1(ω) =
�W

(e)
1 (t,ω)

t

is the excess electron distribution function in the
incoming channel 1, and

g2(ω,�) = f2(ω − �) + f2(ω + �) (59)

is a double step going from zero for ω  |�| to 2 for
ω � −|�| through an intermediate plateau at 1 for |ω| � |�|.
The steps are thermally broadened over an energy scale kBTel.
Let us first remark that the result depends on the excess
electron distribution function δf1(ω) which is precisely the
time average of the excess electronic Wigner function in the
incoming channel 1. This is expected since we are measuring
a time-averaged quantity and the incoming channel 2 is
populated with a stationary (equilibrium) state.

The first contribution on the right-hand side of Eq. (58)
corresponds to classical (Poissonian) partitioning of electrons
and hole excitations sent in the incoming channel 1. Since
this noise has a white spectrum, the corresponding term is
independent from �.

The second term on the right-hand side of Eq. (58) is an even
function of �. Its minus sign arises from the fermionic statistics
of electrons and expresses antibunching. In fact, Eqs. (51) and
(52) are also valid for bosons but the relation between particle
and antiparticle coherences would lead to a plus sign in the case
of bosons in Eq. (58). In an experiment with bosons, g2(ω,�)
would involve the bosonic occupation number in a stationary
reference beam arriving from input arm 2. To understand the
frequency dependence, we rewrite the average dc current in
terms of the excess electron distribution function. Equation
(58) then becomes

(�Q)on/off(�) = e2
∫

δf1(ω) [1 − g2(ω,�)]
dω

2π
. (60)

This shows that at zero temperature, the excess HBT contri-
bution is given by the sum of electronic excitations and of
hole excitations whose energies exceed h̄|�|. This expression
generalizes the formula known for the outcoming current noise
at zero frequency.67

Let us now discuss the case of an HOM experiment. The
same line of reasoning shows that the HOM contribution given
by Eq. (56) is the overlap of the excess Wigner functions
arriving from the two incoming channels:

(�Q)HOM(�) = −e2
∫ [

�W
(e)
1 (t,ω) �W

(e)
2 (t,ω + �)

t

+�W
(e)
2 (t,ω) �W

(e)
1 (t,ω + �)

t]dω

2π
. (61)

This simple expression immediately suggests what happens
physically: this term will contribute only when the excitations
emitted by the two sources overlap up to the frequency
shift at which outcoming current noise or correlations are
measured. Consequently, the noise and correlation in the
HOM experiment contains interesting information about the
single electron coherences injected in the HBT interferometer.
Whereas the usual HOM experiment gives access to the overlap
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of the excess Wigner functions of the two sources mod-
ulo an experimentally controlled time shift, finite-frequency
measurements enable us to probe a shift in energy. As a
consequence, such measurements, although notably difficult,18

could be used to obtain qualitative information on relaxation
mechanisms.

Finally, in the case of two ideal single electron sources,
each one emitting a single electron wave packet per period
characterized by its wave function ϕ1,2, the HOM contribution
at low frequency reduces to38

(�Q)on/on(� = 0) = −2e2f |〈ϕ1|ϕ2〉|2. (62)

However, note that this interpretation of the HOM contribution
as a wave packet overlap is specific to ideal sources emitting
well-defined and coherent single electron wave packets. But
this is not true in general:13,46 in full generality, the proper
way to understand the outcome of an HOM experiment is in
terms of overlaps of single electron coherences even in the
case where many electron/hole pairs are present. The Wigner
representation provides a transparent way to visualize what
contributes to the experimental HOM signals.

3. Single electron tomography revisited

Expressions (58) and (61) enable us to understand the
recently proposed single electron tomography protocol24 in
a very simple way. As in the case of optical homodyne
tomography,72,73 the key is to find a controlled source which, by
varying its parameters, will enable us to reconstruct the single
electron coherence emitted by the source to be characterized
or, equivalently, �W

(e)
1 (t,ω).

A natural source that spans the whole space of single
electron states is an equilibrium reservoir: depending on its
chemical potential, some states will be filled and others will
be empty. Its Wigner function is constant in time and equal
to the equilibrium Fermi distribution of the reservoir. Let
us assume zero temperature for simplicity: by increasing the
chemical potential, the second term on the right-hand side of
Eq. (58) will include an additional small slice in frequency of
the unknown Wigner function. Equation (58) expresses that the
change in current noise when increasing the chemical potential
from μ2 to μ2 + dμ2 is proportional to the population of single
electron states within the incoming channel 1 whose energies
are between μ2 and μ2 + dμ2. If such a state is populated, the
incoming electrons from both sides antibunch and the noise
does not change. If such a state is empty, the electron emitted
by the battery into this interval will be partitioned at the beam
splitter adding a contribution to the noise. This is the idea of
shot noise spectroscopy originally discussed in the context of
photon-assisted shot noise74,75 and more recently in the context
of electron quantum optics.24,76

To capture the time dependance of the unknown excess
Wigner function �W

(e)
1 (t,ω), a time-dependent source is re-

quired. As seen in Sec. III A2, in the limit of small drive (eV0 �
hf ), the Wigner distribution issued by a reservoir driven by a
small sinusoidal voltage Vd (t) = V0 cos (2πnf t + φ0) is given
at first order by

∂�W
(e)
2 (t,ω)

∂(eV0/hf )
= −2 cos (2πnf t + φ0)Fμ,Tel (ω), (63)

where Fμ,Tel (ω) is the convolution of the characteris-
tic function of the interval [μ/h̄ − πf,μ/h̄ + πf ] with
−[4kBTel cosh2 (h̄ω/2kBTel)]−1. Equation (63) combined with
Eq. (61) at zero frequency shows that in the Wigner distribution
point of view, the response of the low-frequency noise to a
small dc drive applied on the incoming channel 2 contains
the information about the Fourier transform in time of the
excess Wigner distribution of the source to be characterized. In
practice, the finite electronic temperature introduces a blurring
of the Wigner function along the energy direction over a scale
kBTel.

Approaching single electron tomography from the Wigner
function point of view immediately raises the question of
alternative tomography protocols based on other reference
signals. This question is strongly motivated by the problem
of efficiency: single electron tomography based on HOM-
like experiments relies on ultrahigh-sensitivity current noise
measurements which can be quite costly in terms of acquisition
time.37

Our generic tomography protocol24 reconstructs the un-
known excess Wigner function �W

(e)
1 (t,ω) by extracting from

noise measurements its t dependence at fixed ω as a Fourier
series. The various examples discussed in the present paper
suggest that getting an accurate view of these coherences
may require heavy sampling in ω as well as in the number
of harmonics. It would thus be highly desirable to design
alternative protocols based on a different controlled source so
that a much lighter sampling is required to obtain an accurate
picture of the Wigner function. This problem is reminiscent
of the problematic of compressive sensing33,77 but here we
deal with single electron coherence which is a “quantum
signal.” The HOM experiment automatically generates the
overlap between two such “quantum signals.” The practical
problem is then to find which controlled source could lead to
an accurate approximation of the unknown Wigner function
through a minimal number of noise measurements in an HOM
experiment.

This problem may lead to some interesting theoretical
developments but in practice, very few well controlled sources
are available. The ac and dc drive lead to our generic to-
mography protocol. The energy-resolved excitations discussed
in Sec. III B1 cannot be considered as controlled due to
decoherence between the mesoscopic capacitor and the QPC.
Indeed, characterizing decoherence effects on single electron
excitations is precisely one of the main motivation for single
electron tomography. On the contrary, voltage pulses can
be considered as controlled to some extent: high-frequency
current measurements16 can be used to control the shape of the
pulse arriving onto the QPC, although in a limited bandwidth.
Moreover, noise measurement can help characterizing purely
electronic pulses.13,34 Specific voltage pulses may thus provide
interesting families of functions to reconstruct single electron
coherence at minimal cost in some cases. However, finding
out the appropriate family of excitations requires an a priori
knowledge of the signal to be measured. Forthcoming and
foreseeable experiments will certainly involve decoherence
effects. Therefore, designing alternative tomography protocols
based on HOM experiments requiring less measurements
calls for an in depth modeling of decoherence in the Wigner
function formalism. This would go beyond the scope of the
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present paper but is of clear interest from this signal-processing
perspective.

V. CONCLUSION

In this paper, we have introduced the time-frequency
representation of the single electron coherence in quantum Hall
edge channels generalizing the quasiprobability distribution
function introduced in quantum mechanics19 and commonly
used in quantum optics. We have shown that this real valued
function of time and frequency provides a very convenient way
to image single electron coherence in a quantum conductor. It
gives access to both the energy content and real time devel-
opment of excitations emitted by electron sources, shedding
new light on electron coherence and discussing it in a signal-
processing language. It also provides a natural framework
to deal with the quantum nature of electron excitations, in
which quantum interferences effects have a clear signature as
pronounced nonclassical regions where the Wigner function
violates the bounds required by the Pauli principle and to
interpret it as a probability distribution. Along the same lines,
it leads straightforwardly to the emergent semiclassical picture
of the quasiparticle dynamics.

Moreover, the celebrated HBT and HOM interferometry
experiments have a very simple interpretation in terms of
overlaps of Wigner functions. Consequently, Wigner function
computations are directly useful to interpret the results of
these experiments at both qualitative and quantitative levels.
In fact, our main message is that the Wigner function is
a very relevant representation of single electron coherence
because it provides a simple and unified view of many
single and two particle interference effects that have been
experimentally demonstrated in electron quantum optics and
quantum nanoelectronics over the last fifteen years.1,2,6,37,67

Experimentally, measuring single electron coherence or
equivalently the Wigner function is an important but difficult
challenge for electron quantum optics. However, as discussed
in the present paper, we think that a variety of techniques
is now available to recover information on the Wigner
function ranging from amplitude interferometry23,44 to the
HOM experiment and its many possible variants among which
is the recently proposed single electron tomography protocol.24

To conclude, an important and still open question in electron
quantum optics is to compute the Wigner function taking
into account the effects of interactions experienced by the
excitations emitted by a single electron source. In the case
of pure single electron excitations, the bosonization technique
already used to discuss the problem of quasiparticle relaxation
in quantum Hall edge channels39 can be adapted. This leads
to a complete unraveling of decoherence scenarios of single
electron excitations in quantum Hall edge channels which will
be discussed in a future publication.

ACKNOWLEDGMENTS

We thank B. Roussel from ENS Lyon and Q. Lavigne
from Telecom St. Etienne for their valuable help in data
visualization. We also thank J. M. Berroir and B. Plaçais from
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APPENDIX A: PROPERTIES OF SINGLE
ELECTRON COHERENCE

1. Basic properties

As in photon quantum optics, first-order coherences satisfy
the Hermiticity property:

G(e)
ρ (x,t ; y,t ′)∗ = G(e)

ρ (y,t ′; x,t), (A1a)

G(h)
ρ (x,t ; y,t ′)∗ = G(h)

ρ (y,t ′; x,t). (A1b)

In a region of free chiral ballistic propagation at velocity vF ,
the single electron coherence obeys

G(e)
ρ (x + vF τ,t + τ ; x ′ + vF τ,t ′ + τ ) = G(e)

ρ (x,t ; x ′,t ′).
(A2)

When considering coherences at a position x where propaga-
tion can be assumed to be free, Eq. (3) translates into a relation
between electron and hole coherences in the time domain:

G(e)
ρ,x(t,t ′) = v−1

F δ(t − t ′) − G(h)
ρ,x(t ′,t). (A3)

Taking the Fourier transform of this equation with respect to
t − t ′ immediately leads to the relation between electron and
hole Wigner functions (21).

In order to connect single electron coherence to the
fermionic occupation number, we decompose

ψ(x,t) =
∫

e−iωt c(ω)
dω√
2πvF

, (A4)

where c(ω) and c†(ω) respectively create and destroy an
electron at energy h̄ω with respect to the reference Fermi
energy. These operators satisfy the canonical anticommutation
relations: {c(ω),c(ω′)} = 0 and {c(ω),c†(ω′)} = δ(ω − ω′).

2. Cauchy-Schwarz inequalities

Finally, the single electron coherence satisfies a Cauchy-
Schwarz inequality associated with the Hermitian product on
the operator space: (A|B) = Tr(BρA†). Due to the nonzero
coherence of the Fermi sea, this inequality is most useful in the
frequency domain at zero temperature. Using A = c(ω−), B =
c(ω+), and Eq. (17), we write the Cauchy-Schwarz inequality:∣∣G̃(e)

ρ,x(ω+,ω−)
∣∣2 � G̃(e)

ρ,x(ω+,ω+) G̃(e)
ρ,x(ω−,ω−). (A5)

Decomposing G̃(e)
ρ,x into a Fermi sea contribution at chemical

potential μ = 0 and an excess contribution which we assume
to be regular

G̃(e)
ρ,x(ω+,ω−) = 2π

vF

δ(ω+ − ω−)�(−ω+) + �G̃(e)
ρ,x(ω+,ω−)

(A6)

and taking ω+ and ω− positive shows that the Fermi sea
contribution vanishes and leads to the following inequality
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satisfied over the (e) quadrant (see Fig. 1):

∣∣�G̃(e)
ρ,x(ω+,ω−)

∣∣2 � �G̃(e)
ρ,x(ω+,ω+) �G̃(e)

ρ,x(ω−,ω−). (A7)

Considering the hole coherence and ω± < 0, the same line of
reasoning shows that the inequality (A7) is also true in the (h)
quadrant.

Finally, let us consider ω− < 0 and ω+ > 0 and assume that
the excess single electron coherence does not contribute to the
electron occupation below the Fermi level �G̃(e)

ρ,x (ω−,ω−) = 0.
Then, the general inequality (A5) implies that �G̃(e)

ρ,x(ω+,ω−)
also vanishes: there are no electron/hole coherences. The
same reasoning can be done on hole coherences and shows
that there are no electron/hole coherences if the source does
not contribute to the excess occupation number of electrons.
Finally, the inequality (A7) also shows that if a source does
not contribute to the excess hole (resp. electron) occupation
number, it has vanishing coherence in the (h) quadrant [resp.
(e) quadrant]. This proves that, at zero temperature, as soon as
a source does not lead to an excess of electrons (resp. holes),
it only contributes to the excess coherence in the (h) [resp.
(e)] quadrant. In other words, it only generates hole (resp.
electronic) excitations.

APPENDIX B: ENERGY-RESOLVED
ELECTRONIC WAVE PACKET

It is possible to obtain an analytic formula for the truncated
Lorentzian wave packet (41) in the time domain. Depending
on the sign of t , we build a closed contour that contains the
positive real axis and either the positive or negative imaginary
axis. The integral over the imaginary half axis can then be
expressed in terms of the exponential integral function48 Ei(x).
This leads to

ϕe(t) = −iNe√
vF τe

e−γet/2−iωet

(
�(t) − i

2π
Ei

[(γe

2
+ iωe

)
t
])

,

(B1)

where Ne = [ 1
2 + 1

π
arctan ( 2ωe

γe
)]−1/2 is the normalization

factor. The exponential integral part is responsible for the
nonvanishing of the wave packet for t < 0 and for the
oscillations of its envelope at t > 0. These features can be
observed on the numerical evaluation of excess single electron
coherence ϕe(t̄ + τ/2)ϕ∗

e (t̄ − τ/2) depicted in Fig. 5(c) as well
as on the current density vF |ϕe(t)|2 computed from the Wigner
function [see panels (iii) in Fig. 9]. Note that Eq. (B1) predicts
a log (t/τe) singularity of ϕe(t) at t = 0 which is not visible in
the numerics due to the UV cutoff in numerical integration.
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92, 026805 (2004).

6I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and
V. Umansky, Nature (London) 448, 333 (2007).

7F.-J. Ahlers, O. Kieler, B. Sagol, K. Pierz, and U. Siegner, J. Appl.
Phys. 100, 093702 (2006).
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A. Cavanna, Y. Jin, and G. Fève, Science 339, 1054 (2013).
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Rev. B 84, 081303 (2011).
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