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Edge reconstruction of fractional quantum Hall liquids with spin degrees of freedom
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We study the interplay of confining potential, electron-electron interaction, and Zeeman splitting at the edges
of fractional quantum Hall liquids, using numerical diagonalization of finite-size systems. The filling factors
studied include 1/3, 5/2, 2/5, and 2/3. In the absence of Zeeman splitting and an edge, the first two have spin
fully polarized ground states, while the latter two have singlet ground states. We find that with few exceptions,
edge instabilities of these systems are triggered by softening of edge spin waves for Abelian fractional quantum
Hall liquids (1/3, 2/5, and 2/3 liquids), and are triggered by softening of edge magnetoplasmon excitations
for non-Abelian 5/2 liquid at the smoother confinement side. Phase diagrams are obtained in the accessible
parameter spaces.
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I. INTRODUCTION

Quantum Hall edge states are not only responsible for
the dissipationless quantized Hall transport but also provide
a unique window to study the highly nontrivial topological
properties of the bulk. For example, it was predicted that for
a large class of fractional quantum Hall (FQH) states, their
edges exhibit universal low-energy properties that directly
reflect the bulk topological order.1 On the other hand various
complications, generally referred to as edge reconstruction,
can happen at the edge due to interplay between confining
potential (which tends to hold electrons together) and Coulomb
repulsion between electrons (that tends to spread out electron
charge).2 It was shown in earlier numerical work3,4 that FQH
edges are much more susceptible to reconstruction as com-
pared to their integer counterparts. When edge reconstruction
occurs gapless edge modes not required by bulk topological
order appear, and they can ruin the predicted universality.5

Earlier work3 on FQH edge reconstruction has mostly
ignored the electron spin degree of freedom (perhaps the
only exception is Ref. 6). On the other hand it is known
that spin can play a very active role at the edges of integer
quantum liquids.7,8 Motivated by this we study the effects of
confining potential, electron-electron interaction, and Zeeman
splitting on the charge and spin structures at the edge of FQH
liquids, by carrying out exact diagonalization calculations on
small electron systems using disk geometry. The model and
numerical methods are similar to the ones used in our earlier
work on the spin structure of integer quantum Hall edges.9

More specifically, we study FQH liquids with filling factors
ν = 1/3, 2/5, and 2/3, subject to positive background charge
confining potential, briefly reviewed in Sec. II. We also study
filling factor ν = 5/2, which is of very strong current interest.
In this case we use a model similar to Refs. 10 and 11 but also
include spin degrees of freedom. Details will be discussed in
Sec. II.

In our numerical studies, edge reconstruction is triggered by
a level crossing between the ground state and an edge excited
state (before reconstruction), or equivalently, softening of an
edge mode. Depending on whether this (softened) excitation
belongs to charge or spin edge mode, we can distinguish
the reconstruction as charge or spin edge reconstructions.
Therefore we need to know about all the edge excitations

of a FQH liquid before studying how they lead to edge
reconstructions. Within the framework of composite fermion
(CF) theory,12 we can map some of the FQH filling factors
to corresponding integer quantum Hall fillings of CFs and
use knowledge and intuition obtained from earlier extensive
studies of these integer quantum Hall states’ edges. For
example spin-polarized 1/3 state can be mapped onto filling
factor 1 of composite fermions. Therefore we expect that it
has a nonchiral edge spin wave (ESW) mode and a forward-
moving (chiral) edge magnetoplasmon (EMP) mode as the ν =
1 spin-polarized state.9 Spin-unpolarized 2/5 and 2/3 FQH
states are mapped onto filling factor 2 of composite fermions,
with an effective magnetic field parallel and antiparallel to the
original external field, respectively. As a result the 2/5 state
has one forward-moving ESW mode and one forward-moving
EMP mode as ν = 2 state.13 The situation of the 2/3 state
is less trivial, and a detailed study13 shows that it has one
backward-moving ESW mode and one forward-moving EMP
mode. At ν = 5/2, we find electrons in the half-filled first
excited Landau level condense into the spin-polarized Moore-
Read Pfaffian state in a certain range of confining strength.
Similar to the spin-polarized 1/3 state, the 5/2 state has a
nonchiral ESW mode and a forward-moving (chiral) EMP. In
addition, it also has a forward-moving (chiral) edge Majorana
fermion (EMF) mode.14,15 The intuitions of some qualitative
properties of edge reconstruction, like the relation between
the directions of the edge reconstructing mode and confining
strength, can be obtained from an electrostatic model described
in our previous work.9

Our most robust results are summarized as follows. Without
Zeeman coupling, the spin-polarized 1/3 Laughlin-like state,
spin-unpolarized 2/5, 2/3 Halperin-like states, and the spin-
polarized Moore-Read Pfaffian state appear as ground states
in certain regions of confining strength at corresponding
filling factors. The nonchiral ESWs of the spin-polarized 1/3
state can be mapped onto �S = −1 bosons on top of the
spin-polarized 1/3 state; the chiral ESWs of spin-unpolarized
2/5 and 2/3 can be mapped onto the pure spin excitations
predicted by SU(2) effective theory.16 In the spectra obtained
by exact diagonalization, these ESW modes are low lying
and well separated from the other edge charge modes and
bulk excitations. For each Abelian FQH liquid (ν = 1/3, 2/5,
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or 2/3), edge reconstruction is triggered by softening of the
ESW mode if the corresponding ESW mode exists, indicating
their importance. On the other hand, for the spin-polarized
Moore-Read Pfaffian state, we find spin plays no role in its
instabilities when confining potential strength is varied within
our model. We also find that it is an EMP excitation that
reconstructs the Pfaffian state at the smoother confinement
side. The critical parameters of all the instabilities are identified
in accessible finite size systems, and also estimated for the
thermodynamic limit. The effects of Zeeman coupling are
discussed whenever appropriate.

The rest of the paper is organized as follows. In Sec. II, we
introduce the models and provide some numerical details of the
exact diagonalization calculation. In Sec. III, we study the edge
excitations and instabilities of the Abelian FQH liquids (1/3,
2/5, and 2/3 FQH liquids) in finite size systems. Section IV
considers the instabilities of the Pfaffian state in finite size
systems. Some conclusions and remarks are offered in Sec. V.

II. MICROSCOPIC MODELS

We consider interplay of two-body Coulomb interaction,
one-body rotationally invariant confining potential, and Zee-
man coupling in our problem. For studying the FQH states with
electrons confined to the lowest Landau level (LLL) (relevant
for 1/3, 2/5, and 2/3 states), the complete Hamiltonian in the
symmetric gauge is

H = 1

2

∑
m,n,l,σ,σ ′

V l
mnc

†
m+l,σ c

†
n,σ ′cn+l,σ ′cm,σ +

∑
m,σ

Ucp
m n̂m,σ

+ 1

2
gμBB

∑
m

(n̂m,↑ − n̂m,↓), (1)

where c
†
m,σ is the electron creation operator for the LLL

single-electron state with orbital angular momentum m and
spin σ , n̂m,σ = c

†
m,σ cm,σ is the occupation number operator of

the mth orbital with spin σ . μB is the Bohr magneton and g

is the electron spin g factor. V l
mn are the corresponding matrix

elements of Coulomb interaction for the symmetric gauge,
and U

cp
m are the matrix elements of the rotationally invariant

confining potential. We assume a uniformly distributed neu-
tralizing positive background charge layer at a distance d above
the two-dimensional electron gas (2DEG) to model the real
2DEG’s confinement of a modulation-doped AlGaAs/GaAs
heterostructure. Therefore

Ucp
m = eρ

2π2mm!

∫∫
r2<R

d2r1d
2r2

1√
d2 + r2

12

r2m
1 e−r2

1 /2, (2)

where ρ is the charge density of the background, and ε is
the dielectric constant. d/lB is the dimensionless ratio that
tunes the relative strength between confining potential and
electron-electron interaction. In addition we assume there is a
sharp cleaved edge,17 and we model its effect by restricting the
LLL orbitals to those with angular momentum from m = 0 to
mmax = N/ν − 1 (we make mmax = N/ν when we study the
2/3 state for a reason discussed later). Additional details of
this model can be found in Ref. 3 and also our previous work
for integer quantum Hall states.9 Total angular momentum M ,
total spin S, and its z-axis component Sz are good quantum

numbers, because the Hamiltonian (1) has rotational symmetry
and also commutes with S2 and Sz.

To study the 5/2 state, we use the same treatment as in
Refs. 10 and 11. We explicitly keep the electronic states in the
half-filled first Landau level (1LL) and neglect the spin-up and
-down electrons in the LLL by assuming that they are inert.
The amount of charge in the positive background charge disk
is chosen to neutralize the electrons’ charge in the 1LL. The
disk encloses exactly 2N magnetic flux quanta, in which N is
the number of electrons in the 1LL. With this simplification,
the Hamiltonian used to study the 5/2 state still has the form of
Eq. (1). But there are some differences: m labels the mth orbital
in the 1LL; V l

mn, Um are the corresponding matrix elements of
Coulomb interaction and confining potential for the electronic
states of the 1LL.

In GaAs, Coulomb interaction dominates the Zeeman
coupling energy in the magnetic fields of interest. We will
treat the Zeeman coupling in a similar way as our previous
study of integer quantum Hall states.9 At first the Zeeman
term is ignored when studying the edge spin excitations. So for
each energy level with quantum number S, it has degeneracy
2S + 1 with different values of Sz. When the Zeeman term
is added back, the eigenstates will not change, but the
original degenerate energy levels will be split corresponding to
different Sz. We will also consider the effects of such splitting
in the following.

III. EDGE EXCITATIONS AND RECONSTRUCTIONS
OF ABELIAN FQH LIQUIDS

In this section, we study the edge excitations and recon-
structions of the spin-polarized 1/3 Laughlin-like state, and
spin-unpolarized 2/5, 2/3 Halperin-like states. These three
FQH states all appear as ground states in certain regions
of corresponding parameter spaces. We also find that in the
absence of Zeeman splitting, in all cases edge reconstruction
is triggered by softening of ESW mode if the corresponding
ESW exists. More specifically if forward-moving ESW exists
in a FQH liquid, edge reconstruction is triggered by it at
the smoother confinement side; if backward-moving ESW
exists, edge reconstruction is triggered by it at the stronger
confinement side.

A. Spin-polarized 1/3 state

In our numerical results, the spin-polarized 1/3 Laughlin
state is distinguished by having the same quantum numbers
M = M1/3 ≡ 3N (N − 1)/2, S = N/2 as the 1/3 Laughlin
state, and it appears as ground state in a region of parameter
space. For brevity, we abbreviate this 1/3 Laughlin-like state to
1/3 state in the following. Similar to the spin-polarized ν = 1
state,9 the spin-polarized 1/3 state has two branches of edge
excitations. One of the two branches is the (nonchiral) ESW
mode. In the spectrum, these ESWs are well separated from
the other excitations. As shown in Fig. 1, the ESW excitations
enclosed by boxes obey boson counting in each subspace M ,
and the other low-lying states are combinations of the ESWs.
The spin configuration in each subspace M tells us that each
ESW of 1/3 state would change the system’s total spin by
−1. Through checking the charge and spin density profiles
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FIG. 1. (Color online) Low energy spectrum of 7-electron system
with ν = 1/3 and d/lB = 1.1. The spin quantum numbers’ differ-
ences compared to the spin-polarized state �S of the eigenstates
are labeled by different colors as the annotation. The ground state
is spin-polarized 1/3 Laughlin-like state at M = 63 (enclosed by a
circle). Two branches of edge spin waves with opposite dispersions
are enclosed by boxes. The number below each box is the number of
states inside the box, and each state has degeneracy 2S + 1 based on
its spin quantum number S. The spin-polarized edge magnetoplasmon
excitations are labeled by arrows and merge into other bulk excitations
because of high velocity.

like those in Fig. 2, we verified that these ESWs do have spin
textures localized at the edge. Besides the ESW mode, the
well studied EMP mode merges into the bulk excitations in
the spectra of small systems because of its high velocity.

With changing confining potential, the softening of ESWs
reconstructs the edge of the spin-polarized 1/3 state at both
smoother and stronger confinement sides as shown in Fig. 3.
Since each single 1/3 state’s ESW changes the system’s total
spin by −1, and the initial reconstructing state with �S = −1
is a single ESW with modulation angular momentum �M =
M − M1/3 = 1 at the smoother confinement side, or �M =
−1 at the stronger confinement side. From the correlation of S

and M of all the states appearing in the phase diagram (Fig. 3),
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FIG. 2. (Color online) Charge density and spin density profiles
of 1/3 spin-polarized ground state and its edge spin wave with
modulation angular momentum �M = 1 at d/lB = 1.12 in the
7-electron system. The blue and green lines are the normalized charge
density functions 2πl2

Bρ(r) of ν = 1/3 spin-polarized ground state
and its �M = 1 edge spin wave; the red line is the z axis component
of normalized spin density function 2 × 2πl2

B�sz(r) of the �M = 1
edge spin wave.
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FIG. 3. (Color online) Phase diagrams of small electron systems
with electron numbers 5–9 at ν = 1/3. Spin-polarized states at 1/3
filling are distinguished by having the same angular momentum
quantum number M1/3 = 3N (N − 1)/2 as the Laughlin state. �S =
S − N/2 (�M = M − M1/3) is the change of the total spin (angular
momentum) compared to ν = 1/3 spin-polarized state. Due to
limitation of growing size of Hilbert space, the phase diagrams of
8- and 9-electron systems are obtained by assuming that the state
destabilizing 1/3 state has �S = −1. Different �S of ground states
are labeled by different colors as in the annotation.

we can deduce that with further smoothing (strengthening)
confinement, the ESWs with �M = ±1 will be generated one
by one to reconstruct the 1/3 state. (There is one exception in
the 5-electron system at the stronger confinement side because
of the finite size effect of this very small system.) We also find
with increasing particle number from 5 to 9, the two critical
parameters dc1/lB and dc2/lB of edge reconstructions have
small fluctuations ∼0.01 as shown in Fig. 3. These enable us
to predict that in the thermodynamic limit dc1/lB is between
0.6 and 0.7 while dc2/lB is between 1.1 and 1.2. The 1/3 state
is stable when dc1/lB < d/lB < dc2/lB .

The low-lying excitations’ pattern of the spin-polarized 1/3
state is identical to that of the spin-polarized ν = 1 state for
small systems in our previous numerical study.9 This is not a
surprise, because in composite fermion theory, ν = 1/3 state of
electrons can be viewed as ν = 1 state of composite fermions
under a (reduced) effective magnetic field. One difference
about the reconstructions is that the backward-moving ESW
can destabilize the spin-polarized 1/3 state at the stronger
confinement side, while the spin-polarized ν = 1 state is
stable as parameter d/lB approaches zero. This difference
originates from a quantitative difference, namely the electrons
in spin-polarized ν = 1 state has stronger exchange effect,
resulting in stronger stability of the polarized state.

A finite Zeeman term increases the energies of ESWs
compared to the spin-polarized 1/3 FQH state. The dimen-
sionless parameter g̃ = gμBB/(e2/εlB) is the ratio of the
Zeeman energy to the typical Coulomb energy. For large
enough g̃ = g̃c the spin-polarized state will be destabilized
by its spin-polarized excitations at the smoother confinement
side, and softening of EPM will replace ESW to become the
initial instability of the spin-polarized state. The critical values
of this transition are shown in Table I. The normalized critical
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TABLE I. Critical values of charge edge reconstruction of the
spin-polarized 1/3 state in finite size systems. g̃c = gcμBB/(e2/εlB )
is the normalized critical g factor in which charged edge magnetoplas-
mon instead of neutral edge spin wave becomes the initial instability
of spin-polarized ν = 1/3 state at critical parameter dc/ lB ; Bc is the
magnetic field corresponding to g̃c in a AlGaAs/GaAs heterostructure
with dielectric constant ε = 12.8.

N g̃c Bc(T ) dc/ lB

5 0.0034 0.34 1.44
6 0.0038 0.43 1.5
7 0.0025 0.19 1.35
8 0.0022 0.14 1.36
9 0.0029 0.25 1.44

g factor has the same order 10−3 as that of the ν = 1 state.9

In a AlGaAs/GaAs heterostructure with dielectric constant
ε = 12.8, such a critical g factor corresponds to the magnetic
field strength ∼0.1T . We thus conclude that unless the g factor
is tuned to be very close to zero, edge instability at the smoother
confinement side will be triggered by charge reconstruction in
typical samples.

B. Spin-unpolarized 2/5 state

In our numerical results, the spin-unpolarized 2/5 Halperin-
like state is distinguished by having the same quantum number
M2/5 = N (5N − 6)/4 and S = 0 as the 2/5 Halperin state18

�
(H )
2/5 =

∏
i<j

(z↑i − z↑j )3
∏
i<j

(z↓i − z↓j )3
∏
i,j

(z↑i − z↓j )2

× e
− 1

4l2
B

(
∑

i |z↑i |2+
∑

j |z↓j |2)
, (3)

where zσi is the complex coordinate of the ith electron with
spin σ (σ = ↑ or ↓). This 2/5 Halperin-like state appears as
ground state from d = 0 to critical parameter dc in our exact
diagonalization results. It also has a large overlap with the 2/5
Halperin state [Eq. (3)] (0.92 in 6-electron system and 0.84 in
8-electron system at d/lB = 0.9). For brevity, we abbreviate
this 2/5 Halperin-like state to 2/5 state in the following. In
the spectrum Fig. 4, some low energy excitations in subspaces
�M = M − M2/5 > 0 are well separated from the other ex-
citations. By comparing these excitations’ spin quantum num-
bers in each subspace �M with the ones predicted by SU(2)
effective theory,16 we verified that these excitations are pure
spin excitations and constitute the (forward-moving) chiral
ESW branch. The other polarized EMP excitations have high
velocity and merges into bulk excitations in small systems.
They can be distinguished by calculating the overlaps to
corresponding composite fermion wave functions.13 We will
not distinguish the EMP mode of 2/5 state in this paper
because in the M subspaces close to 2/5 state, ESWs always
have much lower energies and thus are the ones reconstructing
the edge of 2/5 state.

Through exact diagonalization, we find that the critical
parameters dc/ lB at which the spin-unpolarized 2/5 state is
reconstructed by softening of ESW is 0.92 for both 6- and
8-electron systems. dc/ lB for larger systems are not accessible
due to numerical difficulty. Previous numerical works show
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FIG. 4. (Color online) Low energy spectrum of an 8-electron
system at ν = 2/5 and d/lB = 0.9. The different total spin quantum
numbers S of the eigenstates are labeled by different colors as in the
annotation. The ground state is spin-unpolarized 2/5 Halperin-like
state at M = 68 (enclosed by a circle). Low energy spin excitations
are enclosed by boxes. The number below each box is the number of
states inside the box, and each state has degeneracy 2S + 1 based on
its spin quantum number S.

that the critical points of FQH liquids’ edge reconstructions
converge to thermodynamic limit very fast.3 Based on this
experience and consistency of results from 6- and 8-electron
systems, we expect that in thermodynamic limit, at critical pa-
rameter dc/ lB ≈ 0.9, the spin-unpolarized 2/5 state is recon-
structed by softening of its ESW. Different from the case in the
1/3 state, the ESW excitation initially reconstructing the 2/5
state is not the one with minimum angular momentum �M =
1, but the one in subspace �M = 3 (�S = 0) for 6-electron
system and �M = 4 (�S = 0) for 8-electron system. Given
more orbital numbers, �M of the initially reconstructing ESW
state will not decrease, because the energy of the state with
larger �M decreases more as the orbital number increases.

The low-lying excitations’ pattern of spin-unpolarized 2/5
state is identical to the one of ν = 2 spin-unpolarized state
for small systems in our previous numerical study.9 This can
be easily understood by composite fermion theory, because
ν = 2/5 state of electrons can be mapped onto ν = 2 state of
composite fermions under a (reduced) effective magnetic field.
In both cases, without Zeeman coupling, softening of ESW
mode triggers the initial edge reconstruction of QH liquid.

In the thermodynamic limit, since the values of momentum
becomes continuous and the ESW mode is gapless, the ESW
mode (with finite spin quantum number) will destabilize the
singlet 2/5 state with any finite Zeeman coupling. We note in
passing that edge reconstruction of the spin fully polarized 2/5
state has been studied before.4

C. Spin-unpolarized 2/3 state

In our numerical results, the spin-unpolarized 2/3 Halperin-
like state is distinguished by having the same quantum number
M2/3 = N (3N − 2)/4 as the 2/3 Halperin state18

�
(H )
2/3 =

∏
i<j

(z↑i − z↑j )
∏
i<j

(z↓i − z↓j )
∏
i,j

(z↑i − z↓j )2

× e
− 1

4l2
B

(
∑

i |z↑i |2+
∑

j |z↓j |2)
, (4)
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where zσi is the complex coordinate of the ith electron with
spin σ (σ = ↑ or ↓). The 2/3 Halperin-like state appears
as ground state in a region of parameter space. Unlike 2/5
Halperin-like state, this 2/3 Halperin state obtained by the
Coulomb Hamiltonian [Eq. (1)] has a very small overlap with
the 2/3 Halperin state [Eq. (4)], which is 0.1702, 0.0154,
0.0004 for a 6-, 8-, 10-electron system, respectively, at d/lB =
1.0. The main reason for this small overlap is that the 2/3
Halperin state does not have a good spin quantum number S.19

Compared with the 2/3 Halperin state, spin-unpolarized 2/3
composite fermion state (with the same angular momentum M

and topological property as Halperin state) has a good quantum
S and a much larger overlap with the Coulomb state.13

In effective theory,20 the K matrix of 2/3 state is given by

K2/3 =
(

1 2

2 1

)
. (5)

Its one positive and one negative eigenvalue imply one
forward-moving and one backward-moving edge mode. Al-
though not intuitive, a detailed study of composite fermion
theory can also derive one forward-moving EMP mode and
one backward-moving ESW mode.13 In spectrum Fig. 5, some
low energy excitations in subspaces �M = M − M2/3 < 0 are
well separated from the other excitations. By checking these
excitations’ spin quantum numbers in each subspace �M with
the ones predicted by SU(2) effective theory,16 we verified
that these excitations are pure spin excitations and constitute
the (backward-moving) chiral ESW branch.21 The forward-
moving chiral EMP excitations with �M > 0 have high
velocity and merges into bulk excitations in small systems.

In our numerical calculation, 3N/2 + 1 orbitals are given
to each system so that the 2/3 spin-unpolarized state’s initial
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FIG. 5. (Color online) Low energy spectrum for a 10-electron
system at ν = 2/3 and d/lB = 1.0. The 10 electrons are confined
in 16 orbitals. The different total spin quantum numbers S of the
eigenstates are labeled by different colors as in the annotation. The
ground state is spin-unpolarized ν = 2/3 Halperin-like state at M =
70 (enclosed by a circle). Low energy spin excitations are enclosed
by boxes. The spin-polarized edge magnetoplasmon excitations
merge into the bulk excitations because of high velocity. With
stronger confinement, the ESW excitation will reconstruct the spin-
unpolarized 2/3 Halperin-like state. With smoother confinement, the
lowest state (quasihole) at subspace M = 75, S = 1 will destabilize
the spin-unpolarized 2/3 Halperin-like state.

TABLE II. Critical parameters of spin-unpolarized 2/3 Halperin-
like state’s edge reconstructions in finite size systems. dc1/lB
is the critical parameter in which (backward-moving) edge spin
wave (ESW) reconstructs the spin-unpolarized 2/3 Halperin-like
state; dc2/lB is the critical parameter in which quasihole excitation
destabilize the spin-unpolarized 2/3 Halperin-like state.

N dc1/lB dc2/lB

6 0.7 1.26
8 0.69 1.23
10 0.68 1.21

destabilizing states will not change along with further increas-
ing orbital number. With stronger confinement, the backward-
moving ESW will soften and destabilize the spin-unpolarized
2/3 state at a critical parameter dc1/lB (shown in Table II).
The ESW excitation initially reconstructing the 2/3 state is
the one with modulation angular momentum �M = −1. With
smoother confinement, the 2/3 state is destabilized by a state
with S = 1 and �M = N/2 in the finite size systems at a
critical parameter dc2 (shown in Table II). These quantum
numbers are the same as a charge −e/3 quasihole with spin
up or down.22 In the next paragraph we will verify that the
instability at the smoother confinement side is a quasihole
located at the center of the 2/3 liquid.

Besides smoothing the confinement, the same instability (at
subspace �M = N/2, S = 1) can also be excited by adding a
Gaussian impurity potential HW on the 2/3 state:23

HW =
∑
m

Ug
mc†mcm, (6)

and

Ug
m = Wg exp(−m2/2s2), (7)

where Wg with the unit e2/εlB is the amplitude, and the
dimensionless s is the width of the Gaussian impurity. Take the
8-electron system under a confining potential with d/lB = 1.0
in which the spin-unpolarized 2/3 state is a ground state as an
example (Fig. 6). If we add the Gaussian impurity potential
HW with width s = 3 and increase the amplitude Wg from 0 to
0.06(e2/εlB), the 2/3 state will be destabilized by a quasihole
at the center of the electron droplet (Fig. 6). This quasihole is
in the same subspace �M = 4, S = 1, and also has a large
overlap (0.9923 for their Sz = 0 wave functions) with the
state without Gaussian impurity potential which is 2/3 state’s
destabilizing state we observed above. In 6- and 10-electron
systems, the destabilizing state can also be excited by adding
a Gaussian impurity potential with slightly different width s

and amplitude Wg . For this reason, we conclude that in finite
size systems the destabilizing state of the spin-unpolarized
2/3 state at the smoother confinement side is actually a charge
−e/3 quasihole with a certain spin located at the center of the
electron droplet. In thermodynamic limit, edge excitations’
energies are lowered and will replace it to destabilize the 2/3
spin-unpolarized state. Therefore the critical parameter dc2 in
which the 2/3 state is destabilized obtained in a finite size
system (as shown in Table II) is not reliable when we consider
the systems in thermodynamic limit.
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FIG. 6. (Color online) Orbital occupation number 〈nm〉 of a single
spin component for 2/3 spin-unpolarized ground state (red bar) at
d/lB = 1.0 in 8-electron system, and its quasihole instability with
angular momentum M , spin S = 1, z component of spin Sz = 0 (blue
bar) generated by an extra Gaussian impurity potential with width
s = 3 and amplitude Wg = 0.06(e2/εlB ) (black curve). Although the
Gaussian impurity potential is a discrete function of orbital number
m, we plot it as a continuous function in this figure.

IV. EDGE EXCITATIONS AND RECONSTRUCTIONS
OF 5/2 NON-ABELIAN FQH LIQUIDS

In our numerical result, the spin-polarized Moore-Read
Pfaffian state is distinguished by having the same angular
momentum quantum number MP = N (2N − 3)/2 as the
Pfaffian state proposed by Moore and Read for a half-filled
LLL,24

�Pf = Pf

(
1

zi − zj

)∏
i<j

(zi − zj )2 exp

(
−

∑
i

|zi |2
4l2

B

)
, (8)

where the Pfaffian is defined by

Pf

(
1

zi − zj

)
= 1

2N/2(N/2)!
A

(
1

z1 − z2

1

z3 − z4
· · ·

)
, (9)

in which A is the antisymmetrization operator. Since in the
Pfaffian state electrons form p-wave pairs, we only study the
finite size systems with even numbers of electrons. The Pfaffian
state appears as ground state in a region of parameter space.
In the low energy spectra of ν = 5/2 small systems, finite size
effect is so serious that all the edge excitations [nonchiral ESW,
forward-moving (chiral) EMP, and edge Majorana fermion
(EMF) excitation] mix with the bulk ones as shown in Fig. 7.
For this reason, it is hard to distinguish the edge excitations of
the Pfaffian state.

With stronger confinement, the Pfaffian state is destabilized
by a spin fully polarized excitation at critical parameter dc1/lB .
Both the critical parameter dc1/lB and �M of the destabilizing
state change a lot as the particle number increases from 6 to
12 as shown in Table III. Since all the spin-polarized edge
excitations of the Pfaffian state are chiral with �M > 0, the
state destabilizing the Pfaffian state at the stronger confinement
side in Table III (with �M < 0) is a bulk excitation. As shown
in Ref. 11, in the filling factor ν = 5/2 some other bulk states
compete with the Pfaffian state to become the ground state
with changing confining potential. This competition is very
sensitive to the particle number in finite size systems, which
is the reason why the critical parameter dc1/lB and �M of
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FIG. 7. (Color online) Low energy spectrum of ν = 5/2 for
8-electron in 16 orbitals with Coulomb two-body interaction and
confining potential at d/lB = 0.7. �S = S − N/2 is the spin quan-
tum number’s difference compared to the spin-polarized state. The
ground state is spin-polarized Pfaffian state at M = 52 (enclosed by
a circle). It is hard to distinguish the edge excitations because they
mix with the bulk excitations in finite size system. With smoother
confinement, the state destabilizing the Pfaffian state is the low lying
polarized state in subspace M = 57.

the destabilizing state change a lot with different particle
number N .

With smoother confinement, the Pfaffian state is destabi-
lized by a polarized excitation at critical parameter dc2/lB as
shown in Table III. To figure out whether this destabilizing
state is edge or bulk excitation instead of pure Coulomb
Hamiltonian, we consider the following mixed Hamiltonian11

Hmix = λH3B + (1 − λ)Hc, (10)

in which the parameter λ (0 � λ � 1) interpolates smoothly
between the limiting cases of a pure three-body Hamiltonian
H3B (λ = 1) and a pure Coulomb Hamiltonian Hc (λ = 0) (in-
cluding electron-electron interaction and confining potential).
Pfaffian state is the exact zero energy eigenstate of the H3B

with the minimum angular momentum, and its edge excitations
also have zero energy with a gap to other bulk excitations. As

TABLE III. Critical parameters of the Pfaffian state’s destabi-
lizations in finite size systems with orbital numbers 2N . d1(2)c/ lB
is the critical parameter in which the Pfaffian state is destabilized
at the stronger (smoother) confinement side. �M1(2) ≡ M1(2) − MP is
the angular momentum number’s change compared to Pfaffian state’s
angular momentum MP = N (2N − 3)/2 for the states which initially
destabilize the Pfaffian state. For the 6-electron system, Pfaffian state
is stable as d/lB approaches zero, so d1/lB is not applicable (NA) in
this system. The spin of the destabilizing states is �S ≡ S − N/2 = 0
(polarized). For numerical difficulty, only −2 � �S � 0 states are
calculated in the 10-electron system and only −1 � �S � 0 states
are calculated in the 12-electron system.

N dc1/lB �M1 dc2/lB �M2

6 NA NA 0.8 4
8 0.01 −8 0.78 5
10 0.55 −4 0.58 5
12 0.47 −5 0.7 6

205128-6



EDGE RECONSTRUCTION OF FRACTIONAL QUANTUM . . . PHYSICAL REVIEW B 88, 205128 (2013)

shown in Refs. 25 and 11, the three-body Hamiltonian can be
written in terms of projection operators:

H3B =
∑
M

∑
i<j<k

|ψM(i,j,k)〉〈ψM(i,j,k)|, (11)

in which M is the total angular momentum of a 3-electron
cluster. For fermions, the normalized 3-body wave function is

ψM(z1,z2,z3) = BM(z1 + z2 + z3)M−3J (z1,z2,z3), (12)

where J (z1,z2,z3) = (z1 − z2)(z1 − z3)(z2 − z3) and the nor-
malization factor is

BM = 1

(2π )3/2

√
3M−4

2M+2(M − 3)!
. (13)

In occupation space, the three-body interaction H3B has a
rather simple form11

H3B =
∑

m1>m2>m3

∑
m4<m5<m6

U ({mi})c†m1
c†m2

c†m3
cm4cm5cm6,

(14)

and

U ({mi}) = V (m1,m2,m3)V (m4,m5,m6). (15)

With M = m1 + m2 + m3, the antisymmetric function

V (m1,m2,m3) =
√

(M − 1)!

2 × 3Mm1!m2!m3!
A{m2m1(m1 − 1)},

(16)

and A is the antisymmetrizer in m1, m2, and m3. Explicit
construction of the basis of Pfaffian state’s edge excitations14

shows that to obtain the “right” degeneracy of edge excitations
in a subspace �M for the exact diagonalization calculation,
a certain number of orbitals is needed. With pure three-
body Hamiltonian H3B and 2N + 4 (instead of 2N ) orbitals,
the degeneracies of zero energy levels (number of edge
excitations) in subspaces 1 � �M � 6 will not be reduced
by the finite orbital number. Even so, the number of edge
excitations in some subspace �M are still reduced by the small

TABLE IV. The degeneracies of the Pfaffian state’s edge excita-
tions in subspaces 1 � �M � 6 for finite size systems with 2N + 4
orbitals. N is the particle number; �M ≡ M − MP is the angular
momentum number’s change compared to Pfaffian state’s angular
momentum MP = N (2N − 3)/2 for the edge excitations. The orbital
numbers are chosen as 2N + 4, so that the finite orbital number will
not revise edge excitations’ degeneracies in subspaces 1 � �M � 6
compared with the ones in infinite orbital system. The different
degeneracies in some subspaces �M come from the effect of small
particle number. The degeneracies of N = 12 system in subspaces
1 � �M � 6 are the same as the ones in thermodynamic limit (also
with large enough orbital number).

�M 1 2 3 4 5 6

N = 6 1 3 5 9 13 21
N = 8 1 3 5 10 15 25
N = 10 1 3 5 10 16 27
N = 12 1 3 5 10 16 28

126 127 128 129 130 131 132

0.00

0.05

0.10

0.15

0.20

M

E
e
2

∋ l B

1
3 5 10 16 28

FIG. 8. Low energy spectrum of ν = 5/2 for polarized 12-
electron in 28 orbitals system with mixed Hamiltonian (d/lB = 0.7,
λ = 0.5). Unlike the pure Coulomb interaction case, edge excitations
are well separated from the bulk ones (in this case some edge
excitations in �M > 0 already destabilize the Pfaffian state). They
are enclosed by boxes. The number below each box is the number of
edge excitations inside the box, which is consistent with Table IV.

particle number, because the generations of Majorana fermion
require the destruction of electron pairs. The degeneracies of
zero energy levels (number of edge excitations) in subspaces
1 � �M � 6 for small systems are shown in Table IV.

If we tune λ from 1 (pure three-body Hamiltonian) to 0.5,
the edge excitations can still be distinguished from the spectra,
because they are separated from the bulk ones as shown in
Fig. 8. Then we calculate wave functions’ overlaps between the
destabilizing state ψd at the smoother confinement side (with
pure Coulomb Hamiltonian), and the states with the λ = 0.5
mixed Hamiltonian at the same subspace �M (d/lB = 0.7).
As shown in Table V, the destabilizing state ψd has much
larger overlap with the lowest state than any other states with
mixed Hamiltonian. This indicates that as λ is tuned from 0 to
0.5, the destabilizing state adiabatically evolves to the lowest
state with the λ = 0.5 mixed Hamiltonian, and there is no
energy level crossing in this process. From this we conclude
that this destabilizing state is an edge state, and the instability

TABLE V. Wave functions’ overlaps between the destabilizing
state ψd with pure Coulomb interaction, and the lowest five states in
the same subspace �M2 with λ = 0.5 mixed Hamiltonian. �M2 ≡
M2 − MP is the angular momentum number’s change compared to
the Pfaffian state’s angular momentum MP = N (2N − 3)/2 for the
states which initially destabilize the Pfaffian state at the smoother
confinement side. The strength of confining potential is d/lB = 0.7.
The destabilizing state wave function ψd has the largest overlap with
the lowest state with λ = 0.5 mixed Hamiltonian for the N = 6, 8,
10, and 12 systems.

lowest state N = 6 N = 8 N = 10 N = 12

1st 0.9147 0.8147 0.5458 0.5108
2nd 0.0938 0.0003 0.0000 0.0000
3rd 0.0416 0.0034 0.0001 0.0001
4th 0.0001 0.0014 0.0003 0.0001
5th 0.0140 0.0007 0.0001 0.0000
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FIG. 9. (Color online) Orbital occupation numbers 〈nm〉 of (a) the
Pfaffian state and (b) the initial destabilizing state at �M = 6 for 12-
electron system when d/lB = 0.7. The destabilizing state occupies
two more orbitals than the Pfaffian state. In exact diagonalization
calculation’s results, the occupation number of any orbital is nonzero.
But when we count how many orbitals a state occupies, we neglect the
orbitals with very small occupation number (〈nm〉 < 0.01). So we say
there are 22 orbitals occupied in (a) and 24 orbitals occupied in (b).

at the smoother side of the confining potential is an edge
instability.

Earlier work10 found that the spectrum of the (neutral)
EMF mode is very close to being linear, while the (charged)
bosonic EMP mode deviates from linear dispersion and
bends downward as momentum increases; we thus expect this
destabilizing state to be an EMP mode. This expectation is
further supported by the following observation. For systems
with particle number from 6 to 12 (even numbers), the lowest
state in subspace �M occupies one or two more orbitals
than the Pfaffian state (as shown in Fig. 9). The EMF wave
functions constructed in Ref. 14 tell us in subspaces �M > 1
EMF excitations occupy at least three more orbitals than the
Pfaffian state, while the EMP excitations allow the electrons
to occupy less orbitals. Therefore, the destabilizing state with
pure Coulomb Hamiltonian which adiabatically evolves into
the lowest state with mixed Hamiltonian, is also an EMP of the
pure Coulomb Hamiltonian. By the calculation and argument
above, we conclude that the state destabilizing Pfaffian state
at the smoother confinement side is a Pfaffian state’s EMP

excitation (instead of ESW as the Abelian FQH states or EMF).
Since the critical parameter dc2/lB of this edge reconstruction
has no big change as the particle number increases from 6 to
12 as shown in Table III, we predict that dc2/lB is between 0.5
and 1 in the thermodynamic limit. The finite Zeeman coupling
will further support polarized edge excitations to reconstruct
the Pfaffian state with changing confinement.

V. CONCLUDING REMARKS

In this paper, we have studied the low-energy excitations
and edge reconstructions of FQH liquids with spin degrees of
freedom. For the Abelian FQH liquids at the filling factors ν =
1/3, 2/5, and 2/3, we find that spin plays a prominent role in
edge instabilities, at least when the Zeeman splitting of g factor
is tuned to be sufficiently small. These results are also relevant
to systems with other internal degrees of freedom (often
referred to as pseudospins), including systems with valley
degeneracy like graphene or Si, and multilayered systems.

On the other hand, for the non-Abelian Moore-Read Pfaf-
fian state that may describe the FQH state at ν = 5/2, we find
that spin plays no role in its instability in finite size systems.
Our results thus suggest that if the Moore-Read Pfaffian state is
realized at ν = 5/2, it is likely to be spin polarized not only in
the bulk,26 but also at the edge. Furthermore we clarified that its
instability is triggered by softening of edge magnetoplasmon
excitation on the smoother side of the confining potential,
while on the sharp side it results from competition with other
bulk states, in agreement with an earlier study.11 We need to
caution though that within the way we model the 5/2 FQH
liquid, we have not been able to access the anti-Pfaffian state,
which has a more complicated edge structure. We cannot say
anything about the role spin plays there, should that state be
the one actually realized experimentally.

We conclude by stating that building upon earlier theoretical
and numerical works, we have shown spins (and possibly other
internal degrees of freedom) play an active role at the edge
of many FQH liquids, including triggering their instabilities.
They deserve more theoretical and especially experimental
studies in the future.
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