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The real-time electronic dynamics on material surfaces is critically important to a variety of applications.
However, their simulations have remained challenging for conventional methods such as the time-dependent
density-functional theory (TDDFT) for isolated and periodic systems. By extending the applicability of TDDFT
to systems with open boundaries, we achieve accurate atomistic simulations of real-time electronic response to
local perturbations on material surfaces. Two prototypical scenarios are exemplified: the relaxation of an excess
electron on a graphene surface and the electron transfer across the molecule-graphene interface. Both the transient
and long-time asymptotic dynamics are validated, which accentuates the fundamental importance and usefulness
of an open-system TDDFT approach. The simulations also provide insights into the characteristic features of
temporal electron evolution and dissipation on surfaces of bulk materials.
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I. INTRODUCTION

How electrons evolve at the surfaces or interfaces of
materials is fundamentally significant to a variety of applica-
tions, including photovoltaics, nanoelectronics, heterogeneous
catalysis, etc. Consider a prototypical system in which a
molecule is adsorbed on a surface of a material. For instance,
in a dye-sensitized solar cell,1 photoexcited electrons transfer
from the dye molecule to the semiconductor surface and then
drain into the bulk.2 In a biomimetic water-splitting complex, a
catalytic molecule acquires electrons by oxidation of water and
then feeds them into the supporting conductor.3 Apparently,
for these systems the real-time electronic processes on material
surfaces are crucially important to their functionality. Accurate
simulations at the atomic level will be very helpful for
understanding the key features of the real-time electronic
dynamics and the underlying mechanisms.

Considering the size and complexity of a system involving a
material surface, the time-dependent density-functional theory
(TDDFT)4–7 is potentially suitable for carrying out the theo-
retical studies, due to its favorable balance between accuracy
and efficiency. TDDFT has been successfully implemented in
both frequency8 and time domains.9,10

For practical application of TDDFT, a boundary condition
should be imposed explicitly or implicitly. So far the success
of TDDFT has been largely restricted to isolated and periodic
boundary conditions. For isolated systems (atoms, molecules,
clusters, etc.), the electron density falls off to zero at infinite
distance, and the existence of a rigorous TDDFT has been
proven by the Runge-Gross theorem4 and van Leeuwen’s
extension.11,12 For periodic systems (polymers, crystals, etc.),
the electron density possesses the lattice translational invari-
ance symmetry, and the rigorousness of TDDFT has been
discussed by many authors.13–18 TDDFT has been widely
employed to study excited-state properties (such as absorp-
tion and electron-energy-loss spectra) of periodic solids.19–22

The energy relaxation and dissipation in extended systems
have been addressed by the time-dependent current-density-
functional theory23,24—an extension of TDDFT with explicit
inclusion of dynamical exchange-correlation effects.

Apparently, for a composite system in which a molecule
is adsorbed on a material surface, neither an isolated nor a
periodic model is suitable, particularly when the electronic
dynamics is triggered by a local perturbation. In such a case, it
is ideal to treat the molecule with the part of the surface around
the adsorption site as an open system, while taking the rest of
bulk material as the environment.

TDDFT for open systems has been proposed by various
authors to study electron transport through molecular or na-
noelectronic devices coupled to macroscopic electrodes.25–29

With electron current flowing through a device, it is impractical
or inappropriate to treat the device-electrodes composite or
the device itself as either isolated or periodic. With the
open-system TDDFT, the device is regarded as a system
having an open boundary, while the electrodes constitute the
environment which serves as electron reservoirs and energy
sinks.

The open-system TDDFT can be built on a formally
exact theoretical foundation.28,30–35 In particular, the existence
of a rigorous TDDFT for a general open system coupled
to any large but finite environment has been proven by a
time-dependent holographic electron-density theorem.28,32,33

In principle (but unfortunately not in practice), the electron
density inside the open boundary alone should suffice to
determine all equilibrium and nonequilibrium properties of
the entire composite system (system plus environment).33

Despite the progress made, application of TDDFT beyond
electron transport in one-dimensional systems36–41 has been
very rare. The main difficulty is the accurate characterization
of dissipative processes occurring at the designated boundary,
including the energy relaxation, electron transfer, and decoher-
ence. Meanwhile, resolving the atomistic and spectral details
of the environment and addressing their influences on the open
system present further challenges.

In this paper, we will (1) show how the effects of the bulk
surface (environment) can be taken into account accurately
and efficiently in TDDFT; (2) extend the applicability of
TDDFT to simulations of real-time electronic dynamics on
two-dimensional material surfaces; (3) elucidate the boundary
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effects on the simulation results; and (4) highlight the funda-
mental importance and usefulness of the open-system model
and approach.

The remainder of this paper is organized as follows. In
Sec. II we summarize the time-domain TDDFT formalisms
corresponding to isolated, periodic, and open boundary
conditions. The characterization of dissipative interactions
between an open system and its environment is elaborated.
Section III presents the simulations of real-time electronic
dynamics on a graphene surface and a molecule-graphene
interface. Concluding remarks are finally given in Sec. IV.

II. TDDFT FORMALISMS FOR ISOLATED, PERIODIC,
AND OPEN BOUNDARY CONDITIONS

For isolated systems, the Kohn-Sham equation of motion
for the reduced single-electron density matrix is10

iσ̇ (t) = [h(t),σ (t)]. (1)

Here, σ (t) is the Kohn-Sham density matrix of the isolated
system, and the Kohn-Sham Hamiltonian h(t) consists of the
kinetic term, the external potential, the Hartree potential, and
the exchange-correlation potential.

For periodic systems, we have42

iσ̇ k(t) = [hk(t),σ k(t)], (2)

where k is the wave vector and σ (t) = ∫
BZ

σ k(t) dk/�BZ, with
�BZ being the volume of the Brillouin zone.

For open systems, the general Kohn-Sham equation of
motion has been derived as28

iσ̇ (t) = [h(t),σ (t)] − i Q(t). (3)

Here, the dimension of matrices σ (t) and h(t) corresponds to
the size of the open system. The matrix Q(t) addresses the
dissipative processes occurring at the boundary, such as the
exchanges of energy, electrons, and phase information between
the open system and the environment. For instance, the total
electron current flowing over the boundary at time t can be
evaluated as I (t) = −tr[ Q(t)].28

The main challenge in developing a practical TDDFT
method for open systems is to find an accurate and
efficient scheme to compute Q(t). A number of ap-
proaches have been proposed, such as the nonequilibrium
Green’s-function (NEGF) method,26,43 the adiabatic wide-
band limit approximation,28 and the perturbative master
equation approach.29,44 However, the practicality of these
approaches is restrained by their respective limitations. For
instance, in the TDDFT-NEGF formalism, Eq. (3) becomes
an integrodifferential equation which is extremely difficult
to solve.28 The wide-band limit approximation simplifies the
computation of Q(t), but the resulted electronic dynamics
becomes sometimes less accurate since the energy dependence
of the environment spectral function is neglected.

In recent years, a quantum dissipation theory—the hi-
erarchical equations of motion (HEOM) theory—has been
developed for general open electronic systems.45–47 The
HEOM method provides a unified approach for the char-
acterization of equilibrium and nonequilibrium as well as
static and dynamic properties.48–53 The HEOM formalism
resolves nonperturbatively the combined effects of electron-

electron interaction, system-environment dissipative coupling,
and non-Markovian memory. The basic variables of the HEOM
are the reduced system density matrix and a number of
auxiliary density matrices. For systems involving electron-
electron interaction the hierarchy needs to be truncated at a
certain level L. Mathematically, this can be done by setting
all the auxiliary density matrices at the levels higher than L to
zero. In principle, the exact solution is guaranteed at L → ∞,
provided that the environment satisfies the Gaussian statistics
(such as for a noninteracting electron reservoir). In practice,
the results usually converge rapidly with the increasing L

at finite temperatures. Once the convergence is achieved,
the numerical outcome is considered to be quantitatively
accurate.51

A remarkable feature of the HEOM formalism is that,
for noninteracting electronic systems, the hierarchy ter-
minates automatically at L = 2, without approximation.45

This has been verified by our previous calculations. For
instance, the HEOM approach has reproduced48 the exact
time-dependent current response of a noninteracting quan-
tum dot to step-function bias voltages.36,54 Noting that the
Kohn-Sham reference system is effectively noninteracting,
it is thus ideal to integrate the HEOM approach into the
framework of TDDFT. In this way, a TDDFT-HEOM ap-
proach can be developed to describe realistic open electronic
systems.55–58

The TDDFT-HEOM formalism is formally equivalent to
the TDDFT-NEGF method,55,59 and it is numerically much
more convenient than the latter. This is because the inte-
grodifferential equation associated with the NEGF method
is now replaced by a set of differential equations, which can
be solved straightforwardly. The detailed derivations of the
TDDFT-HEOM formalism for open electronic systems have
been presented in Refs. 55 and 56. Here, we briefly summarize
the formulas which are essentially relevant to our following
simulations.

In the NEGF formalism,60,61 the effects of environment are
characterized by the self-energies. At equilibrium, the self-
energies are

�̃
<

(t) = i

∫
dε fβ(ε)�(ε) e−iεt ,

(4)
�̃

>
(t) = −i

∫
dε [1 − fβ(ε)]�(ε) e−iεt .

Here, fβ(ε) is the Fermi function with β = 1/kBT , and �(ε) is
the spectral function (or linewidth) matrix of the environment.

The construction of HEOM relies on how the self-energies
�̃

x
(t) (x =<,>) are expanded into exponential functions.

In the context of quantum dissipation theory, this means
how the memory of environment is resolved by a number
of characteristic modes. Mathematically, this can be achieved
by applying the contour integral technique with the residual
theorem. In this way, the poles of both fβ(ε) and �(ε) in the
complex energy space contribute to the resulting characteristic
memory modes. Details about the memory decomposition can
be found in our previous works such as Refs. 45 and 46.
Various schemes have been proposed for the decomposition of
memory, such as the Matsubara decomposition scheme,45 the
partial fractional decomposition scheme,62 a hybrid Matsubara
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decomposition and frequency dispersion scheme,46 and a
Padé decomposition scheme.63–65 Among all these schemes,
the Padé decomposition scheme is so far the most efficient
one.47

For the systems investigated in Sec. III of this paper, the
bulk graphene plays the role of environment. To resolve the
spectral function of a realistic bulk material, we use a combined
Padé and Lorentzian decomposition (PLD) scheme,55,56 which
involves the following expansions:

fβ(ε) = 1

eβ(ε−μ) + 1

� 1

2
+

P∑
p=1

Rp

β

⎛
⎝ 1

ε − μ − z+
p

β

+ 1

ε − μ − z−
p

β

⎞
⎠ , (5)

�(ε) ≈
D∑

d=1

1

(ε − �d )2 + W 2
d

�d . (6)

Here, μ is the environment chemical potential at equilibrium.
The weights {Rp} and poles {z±

p } are determined by the Padé
expansion.64 In principle, the expansion of Eq. (5) becomes
exact at P → ∞. In practice, an appropriate value should
be assigned to P : it must be sufficiently large to preserve
the accuracy of Eq. (5), but not too large so as to reduce
the computational cost for the resulting HEOM. For instance,
at T = 100 K, a minimal P = 20 is required to reproduce
fβ(ε) accurately. As the temperature lowers, a larger P is
needed. In Eq. (6), {�d} and {Wd} are the centers and widths
of the Lorentzian functions, and {�d} are the coefficient
matrices. They are obtained by a least-square fit to �(ε). The
Lorentzian fitting of �(ε) is not unique, and the strategy of
finding the optimal {�d} and {Wd} may vary from system to
system.

By inserting Eqs. (5) and (6) into Eq. (4), and using the
contour integral technique as well as the residue theorem, the
greater and lesser self-energies are expanded as

�̃
x
(t) �

M∑
m=1

�̃
x

m(t) =
M∑

m=1

Ax,σ
m eγ σ

m t , (7)

with M = P + D and σ = ±. Each component of self-energy
�̃

x

m(t) corresponds to an exponentially decaying function of
|t |, and it is associated with the characteristic memory time
|Re(γ σ

m )|−1. The coefficients {Ax,±
m } and exponents {γ ±

m } are
evaluated via

A<±
m =

⎧⎨
⎩

iπ�m

Wm
fβ(�m ± iWm) m � D

∓ 2πRp

β
�

(
μ + z±

p

β

)
m > D,p = m − D

,

A>±
m =

⎧⎨
⎩

− iπ�m

Wm
f̄β(�m ± iWm) m � D

∓ 2πRp

β
�

(
μ + z±

p

β

)
m > D,p = m − D

,

γ ±
m =

{−i (�m ± iWm) m � D

−i
(
μ + z±

p

β

)
m > D,p = m − D

, (8)

where f̄β(ω) ≡ 1 − fβ(ω). Note that Eq. (7) holds only
at t > 0 with σ = −, while it is valid only at t < 0
with σ = +.

Based on the PLD scheme, the TDDFT-HEOM are estab-
lished as follows:

i σ̇ (t) = [h(t),σ ] −
M∑

m=1

[ϕm(t) − ϕ†
m(t)], (9)

i ϕ̇m(t) = [h(t) − 	μ(t) − iγ +
m ] ϕm +

M∑
m′=1

ψmm′

− i[(1 − σ )A<+
m + σ A>+

m ], (10)

i ψ̇mm′ (t) = i(γ −
m′ − γ +

m )ψmm′ + i(A>−
m′ − A<−

m′ )ϕm

− iϕ
†
m′(A>+

m − A<+
m ). (11)

The basic variables are {σ (t),ϕm(t),ψmm′(t)}, and the total
number of unknown matrices is M2 + M + 1 with M =
P + D. In this work, a group of Lorentzian functions with a
fixed D and predesignated {�d,Wd} is used as basis functions
to approximate �(ε) of Eq. (6), and the coefficients {�d} are
determined via a least-square fit. In this way, the positions and
shapes of the Lorentzian functions can be tuned conveniently
and systematically. For the systems considered in Sec. III,
M < 100 is sufficient for achieving a reasonably accurate
decomposition of �(ε).

A residual correction approach is further applied to mini-
mize any minor error that might come up with the PLD scheme.
Note that the Kohn-Sham density matrix of an equilibrium
open system σ eq can be obtained very accurately by making use
of the full information of self-energies �̃

x
(ε). This can be done,

for instance, by using the NEGF method28 without having to
invoke the PLD. Consequently, if the real-time dynamics of an
open system starts from an equilibrium state, the time evolution
of σ (t) can be replaced by that of σ eq + 	σ (t), where 	σ (t)
is the induced Kohn-Sham density matrix. Therefore, Eqs. (9)
and (10) can be replaced by

i	σ̇ (t) = [h(t),σ eq + 	σ (t)]

−
M∑

m=1

[ϕm(t) − ϕ†
m(t)] − i	 Q0, (12)

i ϕ̇m(t) = [h(t) − 	μ(t) − iγ +
m ]ϕm(t)

− i[1 − σ eq − 	σ (t)]A<+
m

− i[σ eq + 	σ (t)]A>+
m +

M∑
m′=1

ψmm′(t). (13)

Here, 	 Q0 ≡ Qeq
NEGF − Qeq

PLD is the residual correction term
for Q(t), where Qeq

NEGF is obtained from �̃
x
(ε) through a

stationary-state calculation without invoking the decomposi-
tion of Eq. (7).

As we will show later in Sec. III, the residual correc-
tion approach significantly improves the accuracy of the
TDDFT-HEOM approach on the real-time electronic dy-
namics. Moreover, it preserves the numerical efficiency of
TDDFT-HEOM, and hence the TDDFT-HEOM calculation
on the real-time dynamics remains much more convenient
than the TDDFT-NEGF method. With the predetermined σ eq

and 	 Q0, the basic variables of TDDFT-HEOM become
{	σ (t),ϕm(t),ψmm′ (t)}, and the time evolution of an open
system is now characterized by Eqs. (11)–(13).
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FIG. 1. (Color online) Schematic diagrams of (a) a quasi-one-
dimensional atomic chain of a finite width (seven layers), where
the green circle marks the open system, and (b) a two-dimensional
graphene monolayer, where the atoms in the shaded area constitute the
open system. (c), (d) Equilibrium PDOS computed with and without
the Lorentzian fitting of Eq. (6), respectively.

III. RESULTS AND DISCUSSIONS

A. Numerical validation of the TDDFT-HEOM approach

To validate the accuracy of the TDDFT-HEOM construction
based on the PLD scheme, we perform numerical tests on
two prototypical systems: (1) a quasi-one-dimensional atomic
chain [see Fig. 1(a)] and (2) a two-dimensional graphene
monolayer [see Fig. 1(b)].

We examine the projected density of states (PDOS) of the
open system (including all the atoms inside the open boundary)
at equilibrium, which is computed via66,67

N (ε) = − 1

π
Im{tr[ε I − h − �(ε) − i�(ε)]−1}. (14)

Here, �(ε) is the real part of retarded self-energy �̃
r
(ε), which

can be obtained from �(ε) via the Kramers-Kronig relation.68

We first carry out a numerical test on the homogeneous
atomic chain depicted in Fig. 1(a), where the whole chain is de-
scribed by a tight-binding model. The energetic parameters are
the on-site energy ε0 = 0 and the nearest-neighbor coupling
γ = 1 eV. We choose the atoms on a cross section as the open
system, and the rest of the chain is taken as the environment.
Apparently, the environment consists of two semi-infinite
periodic lattices, and hence its spectral function �(ε) can
be obtained very accurately by using a highly convergent
renormalization algorithm.69

The construction of HEOM requires the spectral function
�(ε) to be decomposed into Lorentzian functions; see Eq. (6).
The fitting Lorentzian functions are centered at 15 equally
spaced energy points, and each center is assigned with three
different widths. Therefore, the total number of Lorentzian
functions used is 45, i.e., D = 45. The PDOS of the open
system is then evaluated via Eq. (14) with and without the
use of Eq. (6), and the calculated results are compared in

Fig. 1(c). As shown clearly, although the line shape of N (ε)
is somewhat complicated, the two curves agree very well with
each other. The only minor deviations appear at the energies of
van Hove singularities. These minor deviations do not affect
the normalization of the PDOS. This thus verifies that the
Lorentzian fit for �(ε) is reasonably accurate.

We then move to the more challenging case of a two-
dimensional graphene monolayer. Suppose the bulk graphene
resides in the xy plane. A rectangular piece of graphene
containing 96 atoms is chosen as the simulation box; see the
shaded area in Fig. 1(b). It is to be treated explicitly by TDDFT
approaches and is subjected to specific boundary conditions.
The atoms on the graphene plane form a perfectly periodic
two-dimensional lattice, and the C–C bond length assumes
the typical value of 1.42 Å.70 Because of the delocalized sp2

network, conduction electrons can move easily on the (xy)
plane.71 A tight-binding Hamiltonian is used to represent the
pz electrons of all carbon atoms, with the on-site energy ε0 = 0
and nearest-neighbor coupling γ = 2.7 eV.72

We point out here that the renormalization scheme of
Ref. 69 is not applicable to the evaluation of �(ε) for a two-
dimensional environment such as the bulk graphene. Instead,
a k-sampling scheme proposed in Ref. 73 is employed. This
scheme involves the calculation of surface Green’s functions
of a bulk graphene, and these Green’s functions are required
to vanish properly in the open system (inside the simulation
box). The self-energies and the spectral function �(ε) are then
obtained by collecting the surface Green’s functions of all
wave vectors k.

Figure 2 demonstrates some diagonal and off-diagonal
elements of �(ε) obtained by using the k-sampling technique.
To construct the HEOM, we then use the same set of Lorentzian
functions (D = 45) as that for the atomic chain to fit �(ε). The
fitted data are compared to the k-sampling results in Fig. 2.
Apparently, although the overall feature is well captured by
the Lorentzian fit, there are some minor discrepancies in the
detailed line shapes, particularly at energies at which the curve
is rather spiky.

The PDOS of the graphene inside the simulation box is
then calculated, shown in Fig. 1(d). An analytic form of the
PDOS is available for the graphene described by the tight-
binding Hamiltonian.72 As shown in Fig. 1(d), the calculated
PDOS with the Lorentzian fitting of �(ε) agrees nicely with
the analytic data. The only minor deviations occur at the van
Hove singularities ε = ±γ , which are due to a finite level

FIG. 2. (Color online) (a) A diagonal element (for atom C) and
(b) an off-diagonal element (between atoms C and D) of spectral
function matrix �(ε) for the graphene monolayer as sketched in
Fig. 1(b). The positions of atoms C and D are also marked in Fig. 1(b).

205126-4



TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY FOR . . . PHYSICAL REVIEW B 88, 205126 (2013)

FIG. 3. (Color online) Time-dependent electron density on atom
A (nA) within the first 1.5 fs in response to a local potential shift. The
three lines correspond to the isolated, periodic, and open boundary
conditions, respectively. The calculation results obtained without and
with the residual correction are presented in (a) and (b), respectively.

broadening of 10−2 eV adopted for the calculation of surface
Green’s functions.73

Although the equilibrium PDOS is reproduced with the
fitted �(ε), the minor fitting error of �(ε) may affect the
accuracy of the resulted real-time dynamics. To address this
issue, we now look into the transient electronic dynamics on
a graphene surface, as depicted in Fig. 1(b). We consider the
scenario that the graphene is initially at equilibrium. At a
certain time (set as t = 0), the on-site energy of atom A in
the simulation box [see Fig. 1(b)] is shifted by 2 eV, which
lasts for 0.05 fs and then vanishes. Experimentally this may
be realized by applying a local voltage to an atom-sized gate
electrode placed on top of the graphene. The time variation of
electron density on the perturbed atom A, nA(t) = σ AA(t), is
shown in Fig. 3(a). Within the first few femtoseconds, when
the evolution of electronic response has not yet reached the
boundary, the transient dynamics should be identical regardless
of the specific boundary condition imposed.

In Fig. 3(a), the electronic dynamics under the open
boundary condition is obtained by solving the HEOM of
Eqs. (9)–(11). The resulting nA(t) exhibits some deviation
from those of isolated and periodic models. The maximal
deviation is observed at t ∼ 0.12 fs. This thus exemplifies
that the minor error in the Lorentzian fit of �(ε) can lead
to nontrivial error in the resulted real-time dynamics.

A residual correction approach has been proposed in Sec. II
to minimize any possible error due to the insufficient accuracy
of the Lorentzian fit. By applying the residual correction, the
electronic dynamics for an open system is obtained by solving
the HEOM consisting of Eqs. (11)–(13). As shown in Fig. 3(b),
the deviation at t ∼ 0.12 fs is completely eliminated. For all the
numerical calculations we have carried out so far, the HEOM
with the residual correction always guarantees quantitative
agreement with the isolated or periodic model in the short-time
transient regime. This is due to the fact that the external
perturbation considered is not very strong, and hence the
electronic dynamics involves only a relatively narrow energy
range around the chemical potential of the environment.

Ideally, a more accurate decomposition scheme for �(ε) is
desired. A possible alternative approach to resolve the memory
of the environment is to utilize the complex absorbing potential
(CAP) method.74–76 The CAP method imposes an optimized
imaginary external potential on the environment, so that the de-
composition of �(ε) can be realized by analyzing the energetic

FIG. 4. (Color online) Time-dependent electron density on atom
A (nA) from t = 0 to 60 fs, in response to a local potential shift. The
three lines correspond to the isolated, periodic, and open boundary
conditions, respectively. For clarity, the data of isolated and periodic
systems are elevated by 0.04 and 0.02, respectively.

structure of a finite region of environment, instead of using the
Lorentzian fit of Eq. (6). The CAP method has been combined
with the NEGF approach to study the time-dependent quantum
transport problem in quasi-one-dimensional systems.77,78 Note
that the HEOM of Eqs. (9)–(11) can also be constructed
based on a combined Padé decomposition and CAP scheme.
This may further simplify the numerical procedures of the
TDDFT-HEOM approach, which will be explored in our future
work.

We then examine the long-time electronic response to
the external perturbation, for which the boundary condition
is expected to play a critical role. As displayed in Fig. 4,
the long-time electronic dynamics for the three boundary
conditions are distinctly different from each other. The isolated
system exhibits a persistent fluctuation with a rather large
amplitude. This is because the boundary is fully reflective. In
contrast, with the periodic boundary the fluctuation retains a
small but nonvanishing amplitude. This is because an electron
leaving from one side of the box is forced to reenter at the
counter side, and ultimately the electronic response is “evened”
out inside the box. It is only with the open boundary that the
fluctuation eventually damps out and the initial equilibrium is
restored.

B. Real-time dynamics of an excess electron on a
two-dimensional graphene surface

We now investigate the real-time dynamics of an excess
electron on a graphene surface with the TDDFT-HEOM
approach. Again, the graphene monolayer depicted in Fig. 1(b)
is taken as the system. The graphene is initially in its
equilibrium state. At a certain time (set as t = 0), an excess
electron is injected onto atom A. Such a local perturbation
drives the graphene out of equilibrium and induces electronic
response that propagates outward from the perturbed site.
Experimentally the single-electron injection may be realized
with a tunneling junction setup.79 The present scenario can
be deemed as a quantum analog of “dripping a droplet into a
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FIG. 5. (Color online) The number of excess electrons that remain
within the simulation box vs time upon its injection onto atom A at
t = 0.

liquid,” which results in generation and spreading of electron
ripples on the graphene surface.

Dissipation of an excess electron on the graphene plane is
supposed to be one of the simplest examples of electronic dy-
namics on material surfaces. However, even such a simple case
turns out to be rather challenging for conventional TDDFT. The
major difficulty is that in reality the number of excess electrons
remaining in the box, 	Nbox(t) = ∑

a∈box σ aa(t) − σ
eq
aa , is not

conserved as time goes on, whereas the isolated or periodic
boundary condition forces it to be a constant; see Fig. 5. In
contrast, the open-system TDDFT allows the excess electron
to propagate through the (artificially designated) boundary
and properly dissipate into the surrounding bulk graphene.
A characteristic dissipation time τd can be defined as the time
that 	Nbox reduces to less than 0.01. From Fig. 5, we have
τd = 6.6 fs.

The simulation proceeds as follows. At t = 0 the electron
occupation on atom A (nA = σ AA) increases instantaneously
by 1, i.e., nA(0+) = n

eq
A + 1. The subsequent real-time elec-

tronic dynamics are obtained by solving Eqs. (1)–(3) for
isolated, periodic, and open boundary conditions, respectively.
For simplicity the system is treated as spin-closed at any time.

We now examine how the electron density on atom A
varies in time. The short-time evolution of nA(t) is shown
in Fig. 6(a). At t < 1 fs, the lines associated with the three
types of boundary conditions overlap perfectly with each other.

FIG. 6. (Color online) Time-dependent electron density on atom
A (nA) from t = 0 to (a) 3 fs and to (b) 60 fs. For clarity, in (b) the
data of isolated and periodic systems are elevated by 0.08 and 0.04,
respectively.

Since the electronic dynamics should be identical before the
first ripple wavefront reaches the boundary, such quantitative
agreement verifies the accuracy of our proposed HEOM
approach. Approximate schemes such as the wide-band limit28

and complex absorbing potential76,78,80 have been used for
simplifying the evaluation of Q(t). The short-time transient
dynamics presented here provides a potentially useful example
for testing the accuracy of these approximate schemes.

Regarding the electronic response of graphene, a fundamen-
tal quantity is the time scale in which the ripples dissipate away
so that the equilibrium is restored. To this end, the long-time
electronic dynamics are displayed in Fig. 6(b). The figure
looks very similar to Fig. 4. In the isolated model the electron
density undergoes a significant and persistent fluctuation
due to the fully reflective boundary, while in the periodic
model the fluctuation retains a residual yet nonvanishing
amplitude. Apparently, it is only with the open boundary that
the fluctuation eventually damps out.

If one insists on using conventional TDDFT methods for
isolated or periodic systems to study the real-time electronic
response to a local perturbation, the size of the simulation box
must be enlarged drastically to avoid the unwanted boundary
effects. In practice, such calculations could be exceedingly
costly, if not impossible.

The evolution of excess electron density, 	n(r,t) =
n(r,t) − neq(r), is visualized in Fig. 7. For clarity the pz atomic
orbitals are represented by Gaussian functions. At t = 0.5 fs,
when the propagation has not reached the boundary of the
box, the three boundary conditions give the same pattern of
ripples. The 	n(r,t) exhibits a distinct threefold symmetry
on the xy plane, reflecting the sp2 bonding characteristics. At
t = 1.5 fs, a significant portion of the excess electron should
have dissipated into the surrounding graphene. Apparently,
only the open-system model allows the excess electron to

FIG. 7. (Color online) Snapshots of time-dependent density of ex-
cess electrons inside the simulation box, 	n(r,t) = n(r,t) − neq(r),
after the excess electron is injected at t = 0. The upper, middle, and
lower rows correspond to isolated, periodic, and open systems; and
the left, middle, and right columns are for time instants t = 0.5, 1.5,
and 20 fs, respectively. For a clear visualization, the pz atomic orbitals
are represented by Gaussian functions.
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permeate through the boundary while preserving the threefold
symmetry [see Fig. 7(h)]. In contrast, both the isolated and
periodic models constrain the electron from leaving the box.
At t as long as 20 fs, the ripples of the isolated model remain
fluctuating, while the periodic boundary makes the excess
electron “evenly” distributed among the sp2 network. Only
with the open-system model can the excess electron dissipate
away properly.

C. Real-time electron transfer across a
molecule-graphene interface

We now move to a more complex scenario in which a linear
model molecule of four atoms is adsorbed on the graphene
surface at atom B. TDDFT has been employed to study the
ultrafast electron transfer in dye-sensitized solar cells with the
isolated81 and periodic82,83 models. However, to the best of
our knowledge, the boundary effects on the calculation results
have not been explored.

The molecule assumes the same values of ε0 and γ as the
graphene, and their bonding strength is λ. At t = 0 an excess
electron enters at the free end of the molecule, which drives
the molecule-graphene composite out of equilibrium. Again,

FIG. 8. (Color online) Isosurfaces of excess electron density
	n(r,t) = 4 × 10−4 bohr−3 for isolated (left column) and open (right
column) system models at various time instants and λ = γ = 2.7 eV.
The four rows from top to bottom are snapshots at t = 0.5, 1, 2.5,
and 6.5 fs, respectively.

FIG. 9. (Color online) Number of excess electrons on the
molecule vs time, 	Nmol(t), under the isolated, periodic, and open
boundary conditions, respectively. The coupling strength between the
molecule and the graphene is (a) λ = γ , (b) λ = γ /2, (c) λ = γ /4,
and (d) λ = γ /8, respectively.

Eqs. (1)–(3) are used to simulate the real-time electronic dy-
namics subjected to the isolated, periodic, and open boundary
conditions, respectively.

The evolution of the excess electron is displayed in Fig. 8
for λ = γ , where snapshots of the isolated boundary at
various time instants are compared with the open-system
counterparts. At t < 1 fs (the upper two rows), the dynamics
occurs mostly inside the box, and both models give essentially
the same result. In contrast, at t > 2.5 fs (the lower two
rows) the dynamics become qualitatively different: in the
isolated model the electron gets reflected at the boundary and
sometimes repopulates on the molecule, while with the open
boundary the excess electron gradually drains into the sur-
rounding bulk graphene and vanishes entirely in the long-time
limit.

Figure 9 plots the population of the excess electron on
the molecule versus time, 	Nmol(t) = ∑

a∈mol σ aa(t) − σ
eq
aa ,

at various values of λ. Apparently, only with the open-system
model the electron relaxation exhibits the correct long-time
asymptotic behavior. A characteristic transfer time τt can be
defined as the time that 	Nmol reduces to less than 0.01. From
Fig. 9, τt is evaluated to be 7.6, 15.8, 66.5, and 270.5 fs
for λ/γ = 1, 1/2, 1/4, and 1/8, respectively. This clearly
infers that τ ∝ 1/λ2, except at λ = γ where the intramolecular
dynamics is nearly in resonance with the interfacial electron
transfer modes. While the isolated model gives reasonable
short-time transient dynamics, at a long time the excess
electron reappears on the molecule, which is clearly due to the
artificial quantum confinement effect. In contrast, the periodic
boundary withholds the electron from leaving the molecule,
and this occurs even more so with a smaller λ. This stresses
the fact that the periodic (or isolated) model lacks a relaxation
channel in the absence of external fields and dissipative baths.
Consequently, the excess electron is unable to lose energy to
populate onto the low-lying graphene states.
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IV. CONCLUDING REMARKS

To conclude, in this work we have improved the accuracy
of a previously developed TDDFT-HEOM approach for open
systems and extended its applicability to two-dimensional
systems. The practicality and usefulness of the TDDFT-
HEOM approach are exemplified with atomistic simulations
of real-time electronic dynamics at a graphene surface and a
molecule-graphene interface.

The real-time simulations highlight the significant role of
the boundary condition in the electronic dynamics. Therefore,
an open-system approach is particularly useful when the
number of electrons within the region of primary interest is not
conserved. As demonstrated in Sec. III, the TDDFT-HEOM
approach is capable of characterizing accurately the exchange
of electrons between a finite open system and its surrounding
environment. Simulations of electronic dynamics on material
surfaces may shed light on the mechanisms of some important
interfacial processes, such as the electron transfer from (to)
a bulk donor (acceptor) and reactions occurring on catalyst
surfaces.

In the present work the TDDFT-HEOM approach
is implemented with a tight-binding Hamiltonian. It is

certainly desirable to go beyond this simple model and
apply it at a first-principles level. To this end, an ap-
propriate exchange-correlation functional form is needed
to address the electron-electron interactions and possible
excitonic effects. The influence of other dissipative sources,
such as nuclear motions or phonon modes, can also be
treated in the framework of TDDFT-HEOM. For instance,
the effects of electron-phonon interactions on time-dependent
quantum transport have been explored with the TDDFT-
HEOM approach.84 Further progress along this direction is
underway.
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