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Enhancing the nonlinear response of plasmonic nanowire antennas
by engineering their terminations
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Subwavelength light concentration by means of plasmonic nanoantennas is known to significantly enhance
the nonlinear response. In nonlinear schemes involving multiple frequencies, however, it remains challenging
to design nanoantennas that respond resonantly to more than one or, eventually, to all interacting frequencies.
Considering plasmonic nanowire antennas, we hereby demonstrate the potential to engineer their resonances
at more than one frequency involved in the nonlinear process by carefully tailoring the antenna terminations.
Although we consider here the degenerate nonlinear process of second-harmonic generation, our approach can
easily be extended to other nonlinear processes.
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I. INTRODUCTION

In recent years, plasmonics has established itself as a
promising route towards the nano-scale miniaturization of
optical elements.1 The physical principle which plasmonics
is based on is the coupling of electromagnetic radiation to the
oscillation of the charge density in noble metals at the metal-
dielectric interface.2 The interest in plasmonics has spurred
ever-growing research as well as a body of literature reporting
the observation of various optical phenomena in such systems
which could be of use in integrated optics and spectroscopic
applications, among others. The subwavelength confinement
of light leads to a minimization of the geometrical scale where
linear effects are observed, which yields a stronger nonlinear
interaction due to the high field intensities available in the
near field.3 This triggered investigations into understanding the
extent to which strong field localization can beneficially affect
the nonlinear process in the face of resistive losses present in
metals (for instance, see Refs. 4–9).

In general, the intrinsic and extrinsic nonlinear properties
of nano-optical systems can be distinguished.10 The intrinsic
nonlinearity refers to systems where the metals themselves
are the sole source of a nonlinear polarization. This makes
it possible, for example, to observe a strong third-order
nonlinear response. This allows the generation of, e.g., a third
harmonic signal upon excitation of optical nanoantennas.11,12

Alternatively, at the surface of the optical nanoantenna the
mirror symmetry of the lattice may be broken and second-order
nonlinear effects can be encountered.13,14 This equally holds
when discussing the properties of metals beyond the ordinary
Drude model, e.g., the semiclassical hydrodynamic model to
describe the dynamics of free electrons,15–18 or considering
quantum-tunneling effects if two plasmonic elements are
brought sufficiently close such that electron coupling across
the gap results in extreme nonlocality.19–21 Another interesting
mechanism of SH generation in centrosymmetric media is
the Lorentzian interaction of electric- and magnetic-field
components of the modes.22 On the contrary, much work
has also been studying optical nanosystems with extrinsic
nonlinearity.23,24 The optical nanoantenna’s role is to localize
light into high near-field intensities, which causes an enhanced

nonlinear response from the surrounding nonlinear dielectric
medium. Such a case is considered here without any loss of
generality.

As a general rule, the nonlinear processes involve the in-
teraction of light oscillating at multiple frequencies depending
on the order of nonlinearity and the specific nature of the
interaction under consideration. This makes it ideal, if not
necessary, to have plasmonic elements that are resonant to
all the frequencies involved. Recent studies have attempted to
conceive such nanostructures by employing innovative antenna
designs that afford tunability at multiple frequencies.22,25–30

Some of these approaches choose a path where a few individual
nanoantennas that sustain resonances at selected frequencies
are fused into a single structure. This assures the requirement of
having a nanoantenna that sustains resonances at all frequen-
cies of interest.26–28 In the other approach, the geometrical
features of a composite nanoparticle, whether isolated or in
array, are tailored to achieve the same end by employing
orthogonal polarizations for interacting frequencies.22,25 In
both cases, however, it is challenging to achieve a good spatial
overlap—necessary for strong nonlinear response—among the
modes at different frequencies which might localize in differ-
ent arms of the composite antenna geometry. Additionally,
the second approach also requires the interacting frequencies
to be orthogonally polarized. This can also be a potential
drawback when considering that the commonly employed
quadratic media exhibit their strongest response through the
d33 component of their polarizability tensor, which is best
utilized if the interacting frequencies are polarized in the same
direction. Moreover, it is easy to realize that the fabrication
of such structures that consist of multiple elements remains
a challenge for current nanofabrication. Even though many
top-down as well as bottom-up approaches for nanofabrication
are developed, the precise alignment of the individual elements
to form the actual nanoantenna constitutes an unnecessary
complication. Therefore, it is desirable to have available
compact and isolated nanoantennas that can sustain resonances
at frequencies on demand.

It is the aim of this paper to explore the potential of
cylindrical nanowires as an ideal platform to tailor the
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nonlinear interaction of light with matter, which meets both
aforementioned requirements. Most notably, we show here
that with only a single structural entity it is possible to devise
nanoantennas that sustain resonances at multiple frequencies
which are involved in the nonlinear process. These optical
nanowire antennas are superior for various reasons compared
to many other nanoantennas. First, their basic functionality is
well understood by now, even on the basis of semianalytical
models.31,32 Second, various fabrication methods have been
proven to be applicable to realize those nanoantennas with a
high precision.33

The starting point of the approach to our antenna design is
the appreciation that it is not just the length of the nanoantenna
that dictates the resonance frequency. Equally the termination
of the nanoantenna can provide a significant degree of freedom
for tailoring the response of the system. In fact, in limiting
cases the termination can even account for the localized
resonances exhibited by analytically understood nanoparticles
in the quasistatic limit.34 In these optical nanoantennas a
resonance is supported whenever the phase accumulation of
a surface plasmon polariton that bounces back and forth in
the nanowire experiences a phase accumulation of a multiple
of 2π . Contributions to this phase accumulation are due to
the propagation along the nanowire, i.e., determined by the
dispersion relation, but also by the phase of the complex
reflection coefficient. It is essential to stress that both quantities
may have a tailored dispersion that can be independently
controlled to a large extent. Designing and engineering the
nanoantenna termination with the purpose of tailoring the
antenna resonances is an often underestimated opportunity.
Thus it is only natural to consider the antenna terminations to-
wards an enhancement of multifrequency nonlinear processes
as discussed above.

To this end, we combine in our contribution a multitude of
theoretical and numerical means to explore the opportunities
to tailor the second-order nonlinear response of nanowire
antennas embedded in lithium niobate (LiNbO3). Specifically,
we utilize an analytical model that can precisely predict the
resonances, use a coupled-field theory approach to calculate
the strength of the nonlinear response, and verify all our
predictions using full-wave simulations that take into account
the nonlinear process correctly.

II. LINEAR PROPERTIES

Figure 1(a) sketches the antenna geometry under consid-
eration. It consists of a cylindrical nanowire of length L

that has a semiellipsoidal cap as termination. Two of the
three semiaxes of the cap perpendicular to the cylinder’s
axis are equal to the radius of the nanowire, whereas the
third semiaxis, a [Fig. 1(a)], parallel to the cylinder’s axis,
is allowed to be different. This serves as an additional degree
of freedom to tailor the response of the nanoantenna. The
limiting case of a = 0 would make it an abrupt termina-
tion, whereas the limiting case of L = 0 would cause the
antenna to collapse towards an ellipsoidal nano-particle.34

When illuminated with a plane wave whose electric field is
polarized along the cylinder’s axis (x axis) and propagating
along the z axis [Fig. 1(a)], a propagating surface plasmon
polariton is excited on the nanowire. It bounces back and forth
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FIG. 1. (Color online) (a) Cylindrical nanowire of length L

terminated by semiellipsoidal caps on both sides. Two semiaxes of
these caps are shared with the radius of the nanowire, whereas the
third axis is a free parameter, labeled a. (b)–(f) |Ey | distribution of FP
modes of order M when the antenna is illuminated by an x-polarized
plane wave propagating along the z axis. For exciting modes with
even M , the exciting wave was inclined with respect to the z axis on
the x-z-plane in order to break the symmetry.

between the semiellipsoidal terminations, where it causes the
nanoantenna to sustain eventually Fabry-Perot (FP) resonances
at specific frequencies for a fixed geometry. The requirement
to observe an antenna resonance at a frequency ν can be
described as31,33,34

β
′
(ν)L + φr(a,ν) = mπ, (1)

where β
′
(ν) = �{β(ν)} is the real part of the propagation

constant, φr(a,ν) the phase of the modal reflection coeffi-
cient r(a,ν), L the length of the cavity, and m an integer
denoting the order of the FP resonance. The reasoning for
the antenna resonance derives from the requirement that the
phase accumulation per round-trip shall be a multiple of
2π . It should be pointed out that only symmetric antennas
are considered here, i.e., those where the antenna capping
is identical for both terminations. Figures 1(b)–1(f) plot the
|Ey| field distribution of FP resonances of various order
m in the x-z cross section of the antenna. It should be
noted that unlike odd-order resonances, even-order ones are
forbidden by symmetry and were excited by the incoming
wave inclined with respect to the z axis on the x-z plane
[Fig. 1(a)].

To numerically model the system, we describe the metallic
nanoantenna using a Drude fit of Ag35 defined by the
plasma frequency ωp = 1.88 × 103 THz and damping γ =
19.3 THz. The surrounding dielectric medium is assumed to
be LiNbO3 whose dispersion is isotropically defined, for the
sake of computational simplicity, through the extraordinary
axis by means of a Sellmeir fit.36 The anisotropy of the
nonlinear χ (2) tensor, however, is fully considered and its
c axis is aligned with the x axis [Fig. 1(a)] to make the
most out of the strongest d33 coefficient. Since numerical
techniques based on the finite-element method (FEM) are more
suitable for capturing geometrical curvature,37 we employed
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the commercial FEM-based electromagnetic solver COSMOL

MULTIPHYSICS to compute the linear dispersion of the complex
modal propagation constant β(ν) of the fundamental TM0

mode on a cylindrical nanowire of 15-nm radius [Fig. 2(a)].
As the radius of the nanowire is sufficiently small compared
to the wavelength (quasistatics), we do not need to consider
any higher transversal mode supported by the nanowire.31,34

In order to obtain the modal reflection coefficient from the

terminal cap, we employ the computational setup shown in
Fig. 2(b). The eigenmode is launched at the z = 0 plane where
the back-reflection from the antenna termination gets absorbed
into the perfectly matched layers (PML) surrounding the
computational window. A straightforward application of the
orthogonality relation established through the unconjugated
reciprocity theorem38 leads to the following equation for the
modal reflection coefficient:

r(a,ν) = − exp(−i2β
′
l)

∫ ∞
0 Eρ,0(ρ,ν)[Hφ(ρ,z = 0,a,ν) − Hφ,0(ρ,ν)]ρ dρ∫ ∞

0 Eρ,0(ρ,ν)Hφ,0(ρ,ν)ρ dρ
. (2)

Eρ,0(ρ,ν) and Hφ,0(ρ,ν) denote the radially and azimuthally
polarized electric- and magnetic-field components of the
eigenmode supported by an infinitely extended nanowire,
respectively. Likewise, Hφ(ρ,z,a,ν) denotes the total magnetic
field within the computational domain that introduces the
dependence upon the cap radius a. The length l of the
antenna in Fig. 3(b) was chosen large enough so as to
remove any dependence of r(a,ν) on it due to coupling
to higher order evanescent modes, although the application
of orthogonality relations should already have significantly
suppressed it. At the z = 0 plane, Hφ(ρ,z = 0,a,ν) is a
superposition of incident and reflected modes from which
the contribution of the incident eigenmode is subtracted to
obtain the reflection coefficient. Figures 2(c) and 2(d) display
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FIG. 2. (Color online) (a) Dispersion of fundamental TM0 mode
computed for a cylindrical wire of radius 15 nm. (b) Schematic of
the three-dimensional geometry used to obtain the modal reflection
coefficient r(a,ν) of the TM0 mode. (c) Squared amplitude R(a,ν) =
|r(a,ν)|2 (c) and phase φr (a,ν) = arg[r(a,ν)] (d) of the reflection
coefficient.

the squared amplitude R = |r(a,ν)|2 and phase φr (a,ν) =
arg[r(a,ν)] of the dispersive modal reflection coefficient.

Given the strong dispersion of r(a,ν) [Figs. 2(c) and 2(d)]
upon both the frequency and the cap geometry, we attempt to
explore the possibility of aligning FP resonances of different
orders with the frequencies taking part in the nonlinear process.
To this end, we propose to exploit the semiaxis a of the
cap as a degree of freedom in design parameters while
keeping the radius of the nanowire constant. This can be
desirable in circumstances where strong field localization is
required because the fundamental TM0 mode shows increasing
localization with decreasing wire radius.34 As for the specific
nonlinear interaction considered, we choose to work with
the degenerate nonlinear process of (SH) generation when
the metallic cylinder is embedded in a dielectric medium
possessing a χ (2) response. More complex scenarios involving
three- or four-wave mixing (cubic media) can be explored
along the same lines.

III. NONLINEAR PROPERTIES

From the linear simulations we can extract all the infor-
mation necessary to predict the spectral position of the FP
resonances of the antenna. In terms of the antenna length L,
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FIG. 3. (Color online) (a) Pump frequency νFH and (b) length
L for the given cap radius a where double resonance is possible
for FP orders m and n at FH and SH, respectively. Horizontal
and vertical black lines indicate the operating configuration (ν =
276 THz, a = 17 nm, and L = 50 nm) chosen in this study.
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the resonance condition of Eq. (1) can be written as

Lm = mπ − φr(a,νFH)

β
′ (νFH)

, Ln = nπ − φr(a,2νFH)

β
′(2νFH)

,

where m and n are integers denoting the order of the FP
resonances at FH and SH frequencies, respectively. In order
to find configurations with a resonant response at both the
fundamental harmonic (FH) and the corresponding SH, we
solve for the condition Lm = Ln. Figure 3 displays the result
when the semiaxis a is varied from 5 to 25 nm and the FH
frequency from 180 to 320 THz. The figures have to be
read such that for a desired operation frequency of the FH
a certain semi-axis a can be derived [cf. Fig. 3(a)]. Using
this specific a the corresponding antenna length L can be
read off from Figs. 3(a) and 3(b), such that the corresponding
antenna sustains a resonance at both the FH and the SH
frequencies. Allowing for different FP orders at FH and SH, we
obtained doubly resonant configurations for the combination
of firstorder at FH with third and fourth order at SH, and the
combination of second order at FH with fifth order at SH, as
indicated in the figure. It can be seen that a suitable design
that covers the entire frequency spectrum is not found for
the present rather restrictive geometry. However, for quite a
large spectral domain in multiple intervals double-resonant
nanoantennas can be perceived.

Considering only the bright resonances, i.e., excitable
resonances, under normal illumination [parallel to the z axis;
Fig. 1(a)], we work exclusively with the scheme exhibiting
first- and third-order resonances at FH and SH frequency,
respectively, in Fig. 3. However, this is by no means a general
restriction because the other combinations could have been
explored as well.

In order to compare the predicted resonance frequencies to
those supported by the actual structure, first we performed lin-
ear full-wave simulations. Specifically, we considered an array
of antennas arranged in a periodic lattice of 200 × 200 nm
in the transverse x-y plane. The period was chosen large
enough such that the interaction among neighboring nanoan-
tennas may be disregarded. Choosing a test case of a = 17 nm,
we find L = 50 nm and νFH = 277 THz as the configuration
for double resonance from Fig. 3. The periodic array is excited
with x-polarized light according to Fig. 1(a) to compute the
linear response of the system. Figures 4(a) and 4(c) show the
transmission results when the cap semiaxis a and the length
L of the antenna are detuned. A detailed inspection clearly
demonstrates the double-resonance characteristic at both FH
and SH in the fully resonant case. It can be extracted from
the figure that the resonances predicted with the analytical
model are indeed supported by the structure at the correct
frequencies.

To theoretically understand the advantage of doubly res-
onant antennas for nonlinear interactions, in the second step
we take advantage of the undepleted pump approximation to
describe the nonlinear interaction of the near fields at both
the FH and the SH frequency.39 Accordingly, the strength of
the nonlinear interaction is described in terms of an effective
nonlinear coefficient γ which depends crucially on the field
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FIG. 4. (Color online) (a) Linear transmission spectrum and
(b) nonlinear mode overlap |γ | for cap detuning. (c) Linear trans-
mission and (d) mode overlap when the length of the antenna is
detuned. The nonlinear mode overlap is obtained by illuminating
with a pump of power 1 W per unit cell. Please note that |γ | is shown
on a logarithmic scale.

overlap and is defined under Kleinman’s symmetry as

γ ≈ ε0νFH

∫∫∫
d33(r)E2

x(r,νFH)E�
sx(r,2νFH)dr, (3)

where Ex(x,y,ν) is the x component of the total FH field
(incident plane wave and scattered field by the periodic array),
while Esx(r,ν) denotes the x component of the scattered (with-
out excitation at the SH frequency) SH field. Equation (3) is
approximately written in terms of the dominant d33 coefficient
of the contracted χ (2) tensor, which is at least one order
of magnitude stronger than the rest.36 In numerical simula-
tions, however, the full anisotropic χ (2) tensor is taken into
account.

By illuminating the periodic array with a plane wave
of power 1 W per unit cell, we scanned for the variation
of |γ | in the case of cap and length detuning as before.
The results are shown in Figs. 4(b) and 4(d). We find an
enhancement in |γ | by approximately twice the order of
magnitude when νFH = 277 THz and the cap axis a = 17 nm
[Fig. 4(b)] or length L = 50 nm [Fig. 4(b)]. Another bright
line is also visible when the incident pump frequency is
νFH = 139 THz. This happens because the corresponding
SH frequency coincides with the first-order FP resonance
of the antenna and the nonlinear response is equally en-
hanced in such a single-resonant configuration although less
pronounced.

To corroborate the predicted enhancement in nonlinear
interaction, we performed nonlinear full-wave simulations
using our in-house code based on the finite-difference time-
domain (FDTD) method. The grid size in the discretized
space was chosen to be 1 nm, whereas metallic and dielectric
dispersion was incorporated through the fits described earlier.
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FIG. 5. (Color online) (a) Transmission spectrum of nonlinear
FDTD simulations when illuminated with a continuous-wave pump
of power 13 mW at ν = 277 THz showing the effect of detuning
(a) the cap radius a where L = 50 nm and (b) the length L where
a = 17 nm from their resonant values of a = 17 nm and L = 50 nm,
respectively.

The instantaneous nonlinear response of the dielectric medium
was incorporated into the FDTD simulation as40

P(2)(r,t) = 2ε0

⎛
⎜⎝

d33(r)Ex(r,t)2 + d31(r)Ey(r,t)2

2d31(r)Ex(r,t)Ey(r,t)

0

⎞
⎟⎠. (4)

For the sake of computational simplicity, we omitted in our
code [hence Eq. (4)] those components of the contracted χ (2)

tensor which introduce dependence on the Ez field, which is
negligibly smaller than the others. Illuminating the periodic
array with a continuous-wave pump at νFH = 277 THz and
carrying 13 mW power per unit cell, we computed the power
flux in transmission at SH through a periodic cell. Figures 5(a)
and 5(b) show the results for the two specific cases of cap and
length detuning discussed earlier, respectively. An order-of-
magnitude enhancement is observed in the generated SH when
the geometrical parameters coincide with the doubly resonant
configuration [Figs. 4(a) and 4(c)], clearly demonstrating the
advantage of our scheme.

The scenarios discussed so far, however, do not fully
distinguish the merit of having doubly resonant antennas.
Therefore, we calculated the antenna configuration when
illuminated at the same frequency (νFH = 277 THz) but
with the geometrical parameters varied to keep only one of
the two resonances at pump or SH frequency as shown in
Fig. 6(a). To clarify the role of the resonance at SH, we
chose to work on the red line in Fig. 6(a), which describes
the geometrical configuration where the antenna is always
resonant at νFH = 277 THz. It is clearly seen that the SH is
only resonant for a specific, the doubly resonant, configuration.
Only if this configuration is met is a double-resonant scheme
achieved; otherwise, the nanoantenna is only singly resonant
at FH.

Figure 6(b) shows the corresponding results for linear
transmission simulation performed in the same manner as
discussed earlier in the context of Fig. 4. We find the FH
to be always resonant at νFH = 277 THz as enforced but the
SH is detuned except when the cap semiaxis is a = 17 nm.
Figure 6(c) scans the value of |γ |. The bright line in Fig. 6(c)
at νFH = 139 THz shows no geometrical dependence because
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FIG. 6. (Color online) (a) Antenna configuration at νFH =
277 THz when the FH has an FP resonance of first order and an
SH of third order. (b) Linear transmission spectrum and (c) nonlinear
mode overlap |γ | when the antenna is kept resonant at FH according
to (a). (d) Transmission spectrum of nonlinear FDTD simulations
when the structure is illuminated with a pump of νFH = 277 THz.

the antenna is always resonant at the corresponding SH. But
the bright line around νFH = 277 THz is slanted, indicating a
prominent dependence upon the SH resonance of the antenna,
which keeps changing for different geometrical configurations.
Figure 6(d) shows the computed SH transmission spectrum in
nonlinear FDTD simulations whose computational details are
the same as described earlier. The peak for the largest SH signal
is reached in Fig. 6(c) for a = 18 nm, which is close enough
to the predicted value of a = 17 nm. This minor deviation can
be attributed to disparity between the numerical methods: the
FEM for the analytical prediction and the FDTD method for
nonlinear computations. However, overall we see an excellent
agreement and a clear demonstration of the positive impact
doubly resonant antennas can have on enhancing the efficiency
of nonlinear interactions.

IV. CONCLUSION

In conclusion, we have proposed and numerically demon-
strated that a simple plasmonic antenna consisting of a cylin-
drical metallic nanowire with semiellipsoidal terminations
provides sufficient degrees of freedom such that it can be
tuned to have double resonance sustained across an extended
range of incident frequencies. Through rigorous linear and
nonlinear full-wave FDTD simulations, the superiority of
doubly resonant structures over singly resonant ones has
been demonstrated for the specific case of SH generation.
The key that unlocked these tuning opportunities was the
appreciation that the terminations of the nanoantennas, i.e.,
their cappings, can be independently controlled from the main
body of the nanoantenna, i.e., the wire. This degree of freedom
has thus far not been exploited in the context of nonlinear
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plasmoncics. Although fabrication of the suggested structures
sounds challenging, currently available high-resolution top-
down nanofabrication techniques, e.g., based on helium-
ion lithography, can be used in perspective. Alternatively,
bottom-up approaches can also be used, e.g., based on the
controlled reduction of a metal salt on an existing nanowire
for homogeneous material systems,41 but also for heterogenous
material systems42 if desired. Our findings have the potential to
greatly enhance the outcome of more complex, nondegenerate

parametric interactions, leading to novel applications in optical
spectroscopy and computing.
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