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Photonic crystals affect the photon emission of embedded emitters due to an altered local density of photon
states (LDOS). We review the calculation of the LDOS from eigenmodes in photonic crystals and propose a rate
equation model for fluorescent emitters to determine the changes in emission induced by the LDOS. We show
how to calculate the modifications of three experimentally accessible characteristics: emission spectrum (spectral
redistribution), emitter quantum yield, and fluorescence lifetime. As an example, we present numerical results
for the emission of the dye Rhodamine B inside an opal photonic crystal. For such photonic crystals with small
permittivity contrast, the LDOS is only weakly modified, resulting in rather small changes. We point out that in
experiments, however, usually only part of the emitted light is detected, which can have a very different spectral
distribution (e.g., due to a photonic band gap in the direction of detection). We demonstrate the calculation of
this detected spectrum for a typical measurement setup. With this reasoning, we explain the previously not fully
understood experimental observation that strong spectral modifications occurred, while at the same time only
small changes in lifetime were found. With our approach, the mentioned effects can be quantitatively calculated
for fluorescent emitters in any photonic crystal.
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I. INTRODUCTION

In the 1940’s, Purcell pointed out that the rate of sponta-
neous emission is affected by the light source’s environment,
namely, inside resonant cavities.1 It was the introduction of
photonic crystals 40 years later2,3 that has drawn particular
attention to this phenomenon. Being nanostructures with a
periodic modulation of the relative permittivity ε, photonic
crystals offer fascinating means for the manipulation of light.

Analogous to solid state physics, where electrons face
a periodic potential, one can derive the photon dispersion
relation ω(k) that relates the frequency ω and the wave vector
k. While in homogeneous dielectric media the dispersion of
plane waves is simply ω(k) = c|k|/√ε, it can become strongly
nonlinear in photonic crystals: photons with certain energies
may not be allowed to propagate in certain directions, which
gives rise to photonic band gaps.

Photonic crystals strongly modify the emission of embed-
ded light sources as already pointed out in the pioneering
works of Yablonovitch2 and Bykov.4 This influence can be
understood in terms of the spontaneous emission probability
Pif , which in the weak-coupling regime depends on the local
density of photon states (LDOS) ρ(r,ω) as stated by Fermi’s
golden rule:5

Pif (r) = 2π

h̄
|〈f |Hint|i〉|2ρ(r,ωif ), (1)

where Hint denotes the interaction part of the Hamiltonian
coupling the emitter to the field. Consequently, the probability
for the radiative transition of electrons from electronic state
|i〉 to 〈f | is proportional to ρ(r,ωif ), as a photon with energy
h̄ ωif can be emitted only if there is an appropriate photon state
it can populate.

In homogeneous media, the LDOS is a quadratic function
of the frequency ω, independent of the position r . As a result

of the linear dispersion relation, the LDOS is proportional to√
ε. In photonic crystals, however, the LDOS can be modified

due to flat bands and band gaps, for example.
The LDOS of a certain structure can be obtained using

different approaches. For ideal, i.e., infinite photonic crystals
the LDOS can be calculated efficiently from eigenmode
calculations,6–9 which we use in this work. Finite and non-
periodic structures can be treated with the Green’s function
approach,10–13 the transfer matrix,14 and scattering matrix
method15 or using finite-difference time-domain (FDTD)
calculations.16,17

It was shown that the LDOS can differ strongly from the
total density of photon states (DOS) that is independent of r .
The LDOS strongly depends on the actual emitter position6,9

and its dipole orientation.13

In experiments, various light sources (rare-earth ions,18,19

organic dye molecules,8,20,21 semiconductor quantum
dots,22–25 and quantum wells26) have been embedded in
different photonic crystals to study the emission properties.
Further, biological samples have been investigated, such as
wings of butterflies that feature fluorophores within photonic
structure.15,27

The shape of the measured emission spectra was found to
be strongly modified. This effect was attributed to suppression
of emission within photonic band gaps and enhancement
at band edges. For the fluorescence lifetime, however, only
little effect was observed in time-resolved measurements
in “weak” photonic crystals, featuring incomplete, i.e., not
omnidirectional band gaps (e.g., opals with small permittivity
contrast).8,20,21 In contrast, photonic crystals with complete
band gaps (e.g., woodpile or diamond structures from high-
permittivity materials) significantly influenced the decay time
when emitters were embedded.24,25

The experimental results, however, have been compared
only qualitatively to theoretical LDOS calculations, e.g., by

205118-11098-0121/2013/88(20)/205118(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.205118


GUTMANN, ZAPPE, AND GOLDSCHMIDT PHYSICAL REVIEW B 88, 205118 (2013)

FIG. 1. (Color online) The dispersion relation ω(k) of an opal photonic crystal (fcc lattice of dielectric spheres, left inset) features a photonic
band gap in the L direction (a). The different crystallographic orientations are indicated in the right inset that illustrates the first Brillouin zone.
The local density of photon states at the sphere center (r0) and averaged over the whole sphere is shown in (b), confirming the strong influence
of the emitter position. The ratio to the LDOS in homogeneous medium determines the change in radiative transition probabilities. Here, the
LDOS is enhanced at the lower band edge of the band gap (c).

comparing the emission spectrum with the LDOS spectrum.8

In this work, we present a treatment of emission inside pho-
tonic crystals that quantifies the impact of the changed LDOS
onto the emitter. This allows for calculating experimentally
observable characteristics, such as the emission spectrum, the
emitter quantum yield, and the fluorescence lifetime. Thereby
we also consider the measured spectrum observed outside
the photonic crystal. It may differ from the actual emission
spectrum as only part of the emitted light can couple out and
falls on the detector.

In the first part, we recall the calculation of electromagnetic
eigenmodes in photonic crystals and derive the LDOS. Second,
we propose a rate equation model for fluorescent emitters
to model its emission. It is particularly interesting to study
fluorescent emitters such as organic dyes: they typically exhibit
broad emission spectra compared to the sharp features in
the LDOS of photonic crystals. When emission at a certain
frequency is suppressed, the photon can still be emitted through
other decay channels at different frequencies (spectral redis-
tribution). In the third part, we calculate the influence of the
photonic crystal on the emitter in terms of (detected) emission
spectrum, emitter quantum yield, and fluorescent lifetime.

Our treatment is quite general and can be applied to
arbitrary photonic crystals. To show results, for an example,
however, we present a case study using an opal photonic
crystal, which is a close-packed, face-centered cubic (fcc)
arrangement of spheres, with εspheres = 2.25 (e.g., polymer)
and εvoids = 1 (air), i.e., a weak photonic crystal. Its fcc unit
cell and the corresponding first Brillouin zone (FBZ) are shown
in the insets of Fig. 1(a). As an example for a fluorescent
emitter, we model the properties of the rhodamine B dye, for
which embedding inside polymer spheres was already shown
experimentally.28 To match the emission spectrum of the dye
with the opal’s first band gap, we chose the unit cell size
a = 377.6 nm (sphere diameter of 267 nm).

II. LDOS CALCULATIONS

In the following, the eigenmodes of an infinite and periodic
photonic crystal are calculated to obtain the LDOS, which is

used as an input to the emitter model. If other methods are
used to compute the LDOS, it is essential to use full three-
dimensional calculations that include all possible modes an
emitter can emit.

Starting from Maxwell’s equations for nonmagnetic,
charge-free, and dispersionless materials [μ = ρ = 0, j = 0,
ε �= ε(ω)] with an harmonic ansatz for the fields [E(r,t) =
E(r) e−iωt , H analogous], we obtain the wave equation for
the H field:

∇ ×
(

1

ε(r)
∇ × H(r)

)
=

(ω

c

)2
H(r), (2)

which is a Hermitian eigenvalue problem with the eigenvalue
(ω/c)2 and the field H(r) as the eigenvector.29

Due to the photonic crystal’s discrete translational sym-
metry ε(r) = ε(r + R) (with lattice vector R as a linear
combination of the primitive lattice vectors), the Bloch
theorem yields

Hn,k(r) = eikr un,k(r) (3)

as solutions to Eq. (2) with the function un,k(r) = un,k(r + R)
being periodic on the crystal lattice. In this way, the wave
vector k and the band index n are introduced. Inserting Eq. (3)
in Eq. (2) results again in a Hermitian eigenvalue problem that
can be solved numerically using the plane-wave expansion
method, as described in Ref. 30.

For k-vector values along certain directions of the recip-
rocal space, the associated modes with frequencies ω can
be computed to obtain the dispersion relation ω(k). The
dispersion relation for our opal example is shown in Fig. 1(a).
The opal features a band gap in crystallographic L direction
(〈111〉), i.e., there are no solutions Hn,k(r) to Eq. (2), with k
in this direction, that have frequencies inside the gap.

The LDOS ρ(r,ω) is defined as6

ρ(r,ω) =
∑

n

∫
FBZ

|En,k(r)|2δ(ω − ωn,k)dk, (4)

which can be understood in terms of counting all states
in the FBZ with a certain frequency, weighted with each
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individual field distribution. This introduces the spatial de-
pendence of the LDOS, opposed to the total DOS ρ(ω) =∑

n

∫
FBZ δ(ω − ωn,k)dk, which counts all states with same

weights. For the emission process, however, the LDOS is the
relevant quantity rather than the total DOS: given a mode with
a field pattern being zero at a certain position (e.g., due to a
node), an emitter at that position cannot excite this mode.

The dipole orientation of an emitter is neglected here
as we assume emission from an ensemble with randomly
oriented dipole moments. However, the influence of the emitter
orientation could be easily implemented following the analysis
in Ref. 13.

To calculate ρ(r,ω) from a finite set of eigenmodes,
one could linearly interpolate the dispersion relation using
the tetrahedron method.6,31,32 Here, we employed the his-
togramming method9 as it is more comprehensible and allows
calculating the fractional LDOS (FLDOS) as explained later
(Sec. IV B). Thus we approximate Eq. (4) by the sum

ρ(r,ω) ≈ ρ̃(r,ω) =
∑

n

∑
k∈Kn,ω

∣∣En,kj
(r)

∣∣2
(5)

with Kn,ω = {
kj

∣∣ω − �ω/2 � ωn,kj
< ω + �ω/2

}
(6)

and the binning width �ω.
Rather than calculating only some modes along certain

directions [as for the dispersion relation in Fig. 1(a)], we need
to consider all FBZ wave vectors kj on an equidistant grid
in k space. It is possible to use only the wave vectors of an
irreducible symmetry element of the FBZ [such as the one
indicated in the inset of Fig. 1(a)]. However, this requires
an additional transformation as the fields do not necessarily
exhibit the same symmetry as the k vectors.7 In this work, we
calculated all wave vectors of the whole FBZ, simplifying the
evaluation of LDOS and FLDOS.

The resolution and accuracy of ρ̃(r,ω) due to binning noise
depend on the grid spacing �k in k space. Here, we calculated
all modes within the whole FBZ (with �k = 0.01/a) up
to the eighth band to obtain all states with ω < 1 (�ω =
0.01 2πc/a).

To compare the LDOS ρ̃PC(r,ω) in a photonic crystal with
the reference case of homogeneous media, we calculated the
LDOS ratio

γ (r,ω) = ρ̃PC(r,ω)

ρ̃0(r,ω)
, (7)

where ρ̃0(r,ω) is the corresponding “binned” LDOS in a
homogeneous medium with relative permittivity ε = ε(r)
given by33

ρ̃0(r,ω) =
∫ ω+�ω/2

ω−�ω/2
ρ0(r,ω)dω = 8π

√
ε �ω

c3�k3

(
ω2 + �ω2

12

)
.

(8)

In Fig. 1(b), we plot the LDOS of our opal for an emitter
in the sphere center (r0) as well as averaged over all positions
inside a sphere (a configuration that might be realized in
experiments). The results confirm that the LDOS strongly
depends on r . Comparing with the homogeneous LDOS, the
LDOS ratio lies below one for most frequencies considered
here, indicating rather a suppression than an enhancement [see
Fig. 1(c)].34

In general, the variations in the LDOS are quite small due
to the low permittivity contrast. Although the opal features a
band gap in one direction, there are many states with k vectors
in other directions that have frequencies inside the gap. Thus
the LDOS does not drop to zero within the band gap but shows
relatively small variations. In both cases, however, the LDOS
is largest at the lower band edge. This effect can be understood
with the shift of the band gap towards higher frequencies as
wave vectors tilt from L to U direction, reducing the number
of modes with frequencies near the upper band edge.

III. EMITTER MODEL

To calculate the influence of the photonic crystal, we
propose in the following a rate equation model for fluorescent
emitters such as the organic dye rhodamine B in our case
study. This allows the quantitative calculation of the emission
modifications in terms of emission spectrum, emitter quantum
yield, and fluorescent lifetime.

Fluorescent molecules feature rather complex energetic
structures that can be described by an electronic ground
state and one (or more) excited states [see Fig. 2(a)]. These
electronic states are split up into a number of vibrational energy
levels, which are further subdivided into rotational energy
levels of the molecule. Therefore absorption and emission
spectra are typically quite broad.

Electrons being absorbed from the ground state to one of
the vibrational levels of an excited state undergo vibrational
relaxations to the lowest level of the first excited state. From
this level, electrons can radiatively (or nonradiatively) decay
to one of the ground-state levels. Thus most emitted photons
have lower energies than the absorbed ones, which is known
as the Stokes shift.

As the vibrational transitions ∼10−12 s are much faster
than the radiative decay ∼10−9 s, emission can be assumed to
originate only from the lowest level of the excited state.35 For
our treatment of fluorescent emission inside photonic crystals,

FIG. 2. (Color online) The electronic structure of fluorescent
molecules typically consists of a ground and an excited state, both
split up into vibrational levels (a). As a result, absorption and emission
spectra are quiet broad. As vibrational relaxations happen very fast,
emission originates only from the lowest excited state level. Using
appropriate spectral shape functions, we thus model the emitter with
two states (b).
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we thus reduce the electronic structure to a quasi-two-level
model as depicted in Fig. 2(b). The separation of the excited
state in state 2 and state 2′ accounts for the Stokes shift. Due to
the quasi-instantaneous relaxation (transition rate 	2′2 ≈ ∞),
however, all excited emitters are in state 2, thus N2′ = 0.

To model the spectral widths of absorption and emission
we employ “spectral shape functions.” They aggregate all
transitions to the different energy levels of the ground state
(for emission) and of the excited state (for absorption).

Following Einstein’s treatment of transition rates, the rate
of spontaneous emission 	SPE of an emitter ensemble is the
product of the number of emitters in the excited state N2 and
the transition probability PSPE. This transition probability can
be described via

P 0
SPE =

∫
A0

21g
0(ω)dω, (9)

where A0
21 denotes the corresponding Einstein coefficient. The

spectral shape function g0(ω) with
∫

g0(ω)dω = 1 can be
implemented analogously to a classical “line-shape function”
as g0(ω) represents the sum of all transitions to different
vibrational and rotational energy levels. The superscript “0”
denotes the reference case of emission in a homogeneous
material for which g0(ω) can be obtained from appropriate
photoluminescence measurements, e.g., using a confocal setup
to minimize reabsorption artifacts.

Inside photonic crystals, the spontaneous emission proba-
bility is modified through the LDOS ratio γ (r,ω) according to
Fermi’s golden rule [see Eq. (1)]:

P PC
SPE(r) =

∫
A0

21g
0(ω)γ (r,ω)dω = α(r)P 0

SPE, (10)

where we defined the emission probability enhancement factor
α(r) = ∫

g0(ω)γ (r,ω)dω. Note that the emission probability
in a photonic crystal depends on the emitter location r .

In Eq. (10), we neglect the rather small effects of the
photonic crystal on natural broadening and Lamb shift of each
individual transition within the emission spectrum as the total
spectral shape is typically much broader than these effects.33

While the function gPC(r,ω) = g0(ω)γ (r,ω)/α(r) reveals the
spectral shape of the emitted spectrum, the spontaneous
emission rate 	PC

SPE(r) = NPC
2 P PC

SPE(r) is a measure of the
intensity of emission (“number of photons per second”).
This rate includes the number of excited emitters NPC

2 that
might be different from N0

2 . The steady-state population
of the electronic states, however, depends on the rate of
absorption 	ABS = N1B12′u(ω12′ ) (in fact, accounting for the
broad absorption spectra and broad-band excitation: 	ABS =
N1

∫
B12′ (ω)u(ω)dω).

While the corresponding Einstein coefficient B12′ does not
change due to LDOS effects, the excitation through the spectral
energy density u(ω) depends on many factors: where does the
light come from (e.g., from outside a finite photonic crystal)
and how is the electromagnetic field distribution within the
photonic crystal as a function of r? The modified local spectral
energy density uPC(ω,r) in photonic crystals can be calculated
only for a specific geometry, e.g., using numerical methods
like finite-difference time domain,36,37 rigorous coupled wave
analysis,38 or the scattering matrix formalism,39 which is out
of the scope of this paper.

Nonetheless, assuming such calculations yield a local
absorption probability enhancement of β(r) = uPC(ω12′ ,r)/
u0(ω12′ ) [with broad band: β(r) = ∫

B12′ (ω)uPC(ω,r)dω/∫
B12′ (ω)u0(ω)dω], we can express the three transition rates of

an emitter inside a photonic crystal as

	PC
ABS = β(r)

(
NPC

1

/
N0

1

)
	0

ABS, (11)

	PC
SPE = α(r)

(
NPC

2

/
N0

2

)
	0

SPE, (12)

	PC
NRD = (

NPC
2

/
N0

2

)
	0

NRD, (13)

where we introduced the nonradiative decay rate 	NRD =
N2PNRD, whose transition probability PNRD is assumed to be
independent of the photon LDOS as it represent electronic
transitions where no photon is emitted (which would require
a photon state). As we assume a relatively low spectral
energy density (weak-coupling regime), stimulated emission
processes are neglected.

Comparing the steady-state rates

	0
ABS = 	0

SPE + 	0
NRD, (14)

	PC
ABS = 	PC

SPE + 	PC
NRD

⇔ β(r)
NPC

1

N0
1

	0
ABS = NPC

2

N0
2

(
α(r)	0

SPE + 	0
NRD

)
, (15)

we find the change of the ground and excited state populations
(Ntot = N1 + N2 being the total number of emitters):

NPC
1

N0
1

= 1

ξ (r)
(
1 − N0

1

/
Ntot

) + N0
1

/
Ntot

≈ 1, (16)

NPC
2

N0
2

= ξ (r)

1 + (ξ (r) − 1)N0
2

/
Ntot

≈ ξ (r) (17)

with ξ (r) = β(r)

1 + 0(α(r) − 1)
,

where we introduced the emitter quantum yield 0 =
	0

SPE/	0
ABS that is the ratio of emitted photons to absorbed

photons. The approximations in Eqs. (16) and (17) correspond
to the weak-coupling regime, where N0

1  N0
2 .40 In fact, the

approximations are equal to the zeroth-order Taylor expansion
around N0

1 = Ntot [see Eq. (16)] and N0
2 = 0 [see Eq. (17)].

These results for the populations yield the change in
transition rates due to the photonic crystal

	PC
ABS

/
	0

ABS ≈ β(r), (18)

	PC
SPE

/
	0

SPE ≈ α(r)β(r)

1 + 0(α(r) − 1)
, (19)

	PC
NRD

/
	0

NRD ≈ β(r)

1 + 0(α(r) − 1)
. (20)

Note that all three transition rates and also the populations
in a photonic crystal are functions of the emitter position r ,
although not explicitly stated.

Hence, the absolute intensity of emission depends on
the enhancement of the probabilities of absorption β(r) and
emission α(r) as well as on the quantum yield 0 of the emitter.
In the absence of nonradiative decay channels (0 = 1), the
rates of both absorption and emission would be enhanced by
the same factor β(r). This factor β(r) depends on the specific
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geometry, the source of excitation and needs to be obtained
separately as mentioned above. Independent of the absorption
rate [and its modification β(r)], however, we can calculate
how many of the absorbed photons are emitted, i.e., the emitter
quantum yield inside the photonic crystal PC, as we show in
Sec. IV C.

IV. EFFECTS OF THE PHOTONIC CRYSTAL

A. Spectral redistribution (total emission)

As mentioned above, spontaneous emission from emitters
with broad emission spectra may be spectrally redistributed
as excited state electrons can decay to different ground state
levels. Emission at frequencies with a relatively low LDOS
ratio is suppressed and instead light is emitted at frequencies
with higher LDOS ratios. The spectral distribution of the
emitted light can be obtained from the spectral shape functions
g0(ω) and gPC(r,ω).

For our opal case study, the spectral shape function g0(ω) of
Rhodamine B was initially obtained from photoluminescence
measurements of a dye-doped polymer film with ε = 2.25
(spin-coated on a glass substrate). In this way, the dye
molecules experience the same chemical environment as in an
opal with spheres made of the same polymer. It is necessary
to compare the emission in identical host materials to avoid
other, chemical effects that modify the emission.

Based on this g0(ω) as an input parameter, the emission
spectrum in the photonic crystal was calculated for a dye
molecule at the sphere center r0 (see Fig. 3): emission is
redistributed from the upper-frequency band edge to the
lower-frequency band edge of the gap in L direction due to
the elevated LDOS at these wavelengths. However, the effect
is rather small as the LDOS in this example features only small
variations [see Fig. 1(b)].

The emission spectrum depends on the exact emitter posi-
tion within the photonic crystal. To model a particular spatial
distribution of emitters, e.g., to compare to corresponding
experiments, the emission spectrum for each emitter positions
needs to be calculated individually. In general, it is not
correct to first average the LDOS over all relevant r , and to
subsequently use this averaged LDOS for further calculations.

Accordingly, the spectral shape gPC
tot (ω) of light emitted by

many emitters at different r i is not just the average of their
gPC(r i ,ω). Instead, gPC

tot (ω) is given by the sum of the individual
contributions, while considering the local rates 	PC

SPE(r i):

gPC
tot (ω) = s

∑
i

gPC(r i ,ω) 	PC
SPE(r i)

≈ s 	0
SPE

∑
i

gPC(r i ,ω) α(r)β(r)

1 + 0(α(r) − 1)
, (21)

with normalization factor s = ∑
i 	

PC
SPE(r i). As gPC

tot (ω) depend
on β(r), local absorption needs to be considered to obtain the
emission spectrum of a group of emitters.

We emphasize that all calculations of this section yield the
spectral distribution of all emitted light, independent of its
propagation direction. In experiments, this spectrum could be
recorded using an integrating sphere, when all modes (even

FIG. 3. (Color online) As a results of the modified LDOS inside
photonic crystals, emitted light is spectrally redistributed, changing
the shape of the emission spectrum. Here, part of the emission of the
rhodamine B dye (at r0) is shifted from shorter to longer wavelengths,
where the LDOS is enhanced.

trapped ones) are able to escape from a finite sample, e.g., at
the edge faces.

In most experiments, however, only part of the emitted
light is detected, which explains why previous experimental
papers8,20–22 reported much stronger modifications of the
emission spectrum than in our calculation even for structures
with permittivity contrast similar to the one modeled by
us. To calculate the detected spectrum (to compare with
experiments), one needs to account for the measurement setup
as we show in the following section.

B. Detected emission

To be detected in a measurement, emitted light must be
able to couple out from the photonic crystal and fall into
the detector’s aperture. In the photonic crystal, all modes
are Bloch modes. Such a Bloch mode is able to couple to
a plane wave mode in free space outside the photonic crystal
if (a) the frequency ω is conserved and (b) the wave vector
component k|| parallel to the specified interface is conserved
[see Fig. 4(a)].

The latter criterion arises from translational symmetry29

and should not be confused with Snell’s law of refraction:
looking at plane waves at an interface between homogenous
materials, (b), in fact, yields Snell’s law. In photonic crystals,
however, there is no simple dispersion relation ω(k). Therefore
it is necessary to look at k||, rather than at the angle of the wave
vector inside the photonic crystal (in contrast to Ref. 8).

The out-coupling condition is thus
∣∣k||

∣∣ � ω
√

εout/c, where
εout is the relative permittivity of the surrounding medium
(e.g., air or immersion oil). Only part of the modes meet this
criterion, the other modes are guided inside the photonic crystal
(similar to total internal reflection).
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FIG. 4. (Color online) (a) Modes inside the photonic crystal can
couple to plane waves in free space if the frequency ω and the wave
vector component k|| parallel to the specific interface are conserved.
To be detected, the wave vector k0 of the out-coupled wave must
lie within the detection aperture. As an example, we calculate the
detected spectrum for the measurement configuration shown in (b).
The interface to air is formed by the {111} plane of the opal. Light is
collected within a cone normal to the interface (half-angle θ ).

Not all out-coupled modes, however, are detected by the
measurement setup, only those that can be collected by the
detection system. Here, we assume a setup with a cone of
detection normal to the interface as illustrated in Fig. 4. Only
modes whose wave vector lies within this cone are detected,
which results in the condition

∣∣k||
∣∣ � ω

√
εout

c
sin(θ ), (22)

where θ is the half-angle of the aperture. Of course, this
condition can easily be adapted to other cases: e.g., a detection
cone tilted to the sample surface at different angles could be
used to study the angular characteristic of emitted light, which
has been referred to as angular or directional redistribution.8

The detected spectrum can be calculated by restricting the
LDOS analysis from Sec. II to modes that satisfy the detection
condition. Thus we calculate the fractional LDOS (FLDOS)
ρ̃f (r,ω) analogous to Eq. (5), but only with the subset of modes
in Kn,ω that satisfies Eq. (22). From this treatment we obtain
the spectral shape function gf(r,ω) of the detected spectrum
from emission inside a photonic crystal:33

gPC
f (r,ω) = g0(ω)

γf(r,ω)

αf (r)
(23)

with αf(r) =
∫

g0(ω)γf(r,ω)dω (24)

and γf(r,ω) = ρ̃PC
f (r,ω)

ρ̃0
f (r,ω)

, (25)

where the corresponding FLDOS for emission in homoge-
neous media is ρ̃0

f (r,ω) = η ρ̃0(r,ω) (due to the isotropic
distribution of photon states). The factor η describes the
fraction of modes that are detectable, thus depending on the
measurement setup. For the detection cone in our example
(see Fig. 4), we find η = 1 − cos[arcsin(

√
εout/ε sin θ )] from

geometric reasoning. Note that a weighted average analogous
to Eq. (21) needs to be applied in case of multiple emitters at
different locations.

FIG. 5. (Color online) Restricting the LDOS analysis to de-
tectable modes (θ = 10◦) changes the shape of the detected spectrum
drastically: no light is detected within the band gap of the opal,
which lies in the direction of the detection cone. Instead, a strong
enhancement at the low-frequency band edge is found.

In Fig. 5, we plot the resulting spectral distribution of
detected light of an emitter at r0 for a detection cone with
half-angle θ = 10 ◦ (solid angle of 0.03π ) normal to the
typical {111} plane of the opal (εout = 1).41 The detected
spectrum from the opal drastically differs from the undisturbed
emission. Within the band gap, no light reaches the detector.
No k vectors exist in this spectral region that fulfill Eq. (22).
This would change if we widened the detection cone.

A strong enhancement is obtained at the low-frequency
band edge arising from the elevated DOS at flat bands. The
reason for the asymmetry of the FLDOS, i.e., the enhancement
only on one edge of the band gap, is the spatial distribution
of the fields: it is well known that modes at the lower band
edge concentrate in the high-ε regions (dielectric modes) while
the ones above the band gap have a larger fraction of their
energy in the low-ε regions (air modes).29 As we are looking
at positions r within the spheres the (F)LDOS is enhanced at
the low-frequency band edge. In fact, looking at r in the voids
(air), we see the enhancement at the high-frequency band edge
(not shown here).

The main message is, however, that the measured spectrum
can differ very strongly from the spectral distribution of the
totally emitted light, even in “weak” photonic crystals. The
detected spectrum arises usually only from a small subset of
all modes (here, η = 0.7%). It can be more distorted in terms
of suppressions due to band gaps and enhancements at band
edges, when a band gap lies in the direction of detection.
One can therefore not draw nonambiguous conclusions about
the emitted spectrum from a measured spectrum. On the
other side, predicting the detected spectrum from theory needs
accurate knowledge of the exact measurement setup (detection
aperture) and sample surface (to calculate the interface-parallel
k||).
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The result for the detected spectrum resembles the pre-
viously reported experimental results much better than the
total emitted spectrum. Although the investigated systems
differ (dye positions, measurement setup, etc.), our result
qualitatively confirms the observation of a “dip” within the
band gap.8,20,21 But even when the exact same system is
modeled and measured, the calculated and measured spectra
can mismatch due to several reasons.

First, in our calculation we assumed that every mode, that
is able to couple out, will couple out (i.e., with an efficiency of
100%). This is justified when light bounces between a top and
bottom surface: with a nonzero out-coupling efficiency light
will exit eventually at some point.

Further, modes of higher bands can have a set of different
possibilities to couple out. Their k vectors are folded back into
the FBZ, thus they may be able to couple to more than one
plane wave mode outside the photonic crystal. This can be
understood when the periodic interface is seen as a grating:
light can therefore exit to different diffraction orders with
different diffraction efficiencies. For the spectral range in our
example, looking at the first band gap, this effect does not play a
significant role. In other cases, however, it might be necessary
to employ further calculations on the different out-coupling
efficiencies.

On the other hand, imperfections in the experiment can
cause differences between calculated and measured spectra:
defects in the photonic crystal might scatter light in other
directions, making it (un)detectable. Further, reabsorption of
emitted light by other emitters may modify the measured
spectrum. Finally, samples are always finite, whereas the
calculations presented here are based on the assumption of
infinite photonic crystals. Therefore emitters may have not
enough periods/layers in their environment to establish the
full LDOS effect, especially if positioned near surfaces.

The calculation of the detected spectrum is important for
comparison with spectral measurements. Other experimentally
accessible characteristics like the emitter quantum yield or the
fluorescence lifetime, however, require consideration of all
modes. The changes of these quantities induced by a photonic
crystal are discussed in the following.

C. Emitter quantum yield

Besides spectral redistribution, the photonic crystal envi-
ronment also affects the photoluminescence quantum yield of
embedded emitters. The quantum yield  states the probability
that a photon is emitted after one photon was absorbed and it
is a key property of fluorescent materials. For the steady state
(	ABS = 	SPE + 	NRD), we can write

 = 	SPE

	ABS
= PSPE

PSPE + PNRD
. (26)

Applying this equation to both the homogeneous medium
reference and the photonic crystal case, we find

PC(r) = α(r)P 0
SPE

α(r)P 0
SPE + PNRD

= 0α(r)

1 + 0 (α(r) − 1)
. (27)

Given the undisturbed emitter quantum yield 0 of a fluores-
cent species in homogeneous media, the modified quantum
yield in a photonic crystal environment can be described

solely by the emission probability enhancement factor α(r),
independent of the absorption process.

In our case study, we obtain a slight decrease in quantum
yield from 0 = 70%42 to PC(r0) = 69.7% for the rho-
damine B dye at position r0. This decrease is due to the overall
slightly lower LDOS compared to the homogeneous medium
[α(r0) = 0.987]. With an LDOS larger than in the reference
case the spontaneous emission rate would be increased and
the quantum yield would be enhanced, as this radiative
decay channel would be more favorable (compared to the
nonradiative decay) than in the reference case.

Note that the emitter quantum yield inside the photonic
crystal depends on the emitter location r . To calculate the
quantum yield of a group of emitters, the individual PC(r i)
needs to be averaged, weighted with the local absorption:

PC
tot =

∑
i 

PC(r i) β(r i)∑
i β(r i)

. (28)

Further, we want to mention that the emitter quantum yield
is not only affected by the LDOS. The chemical environment of
the emitter may also have significant influence. It is therefore
necessary to determine 0 under the same chemical conditions
as in the photonic crystal (same host material for embedding).

D. Fluorescence lifetime

In lifetime measurements, the decay of fluorescence is
analyzed after the excitation has been turned off. The cor-
responding differential equation

Ṅ2(t) = −N2(t) (PSPE + PNRD) (29)

can be solved with the exponential ansatz N2(t) = N2(0) e−t/τ ,
where τ = (PSPE + PNRD)−1 is called fluorescence lifetime.

Using Eq. (26), we can write τ = /PSPE. Comparing the
lifetime τ PC inside a photonic crystal to the lifetime τ 0 in
homogenous media, we find

τ PC(r) = τ 0 1

1 + 0 [α(r) − 1]
. (30)

This means that the relative change in fluorescence lifetime
depends only on the quantum yield 0 and the emission
probability enhancement factor α(r) (which can be obtained
through calculations of the LDOS). We want to emphasize the
dependence on the quantum yield 0: doing experiments with
low-quantum yield emitters will result in very small changes
in lifetime, even if the photonic crystal provides a large LDOS
effect. This can be one reason for the small changes in lifetime
reported in previous studies,20–22 additional to small LDOS
changes by the studied photonic crystals.

In our case study, we obtain τ PC(r0) = 1.009 τ 0, i.e., a
0.9 % longer lifetime than in a homogeneous medium. For
an emitter without nonradiative decay channels (0 = 1), we
would get a longer lifetime of τ PC(r0) = τ 0/α(r0) = 1.013 τ 0.
These results are in accordance with the reported observations
of only little effect on the fluorescence decay in “weak”
photonic crystals.

We want to point out that the measured fluorescence
lifetime does not depend on the exact way of measuring
it: it does not matter if luminescence is recorded only for
specific wavelengths or integrated over the full spectrum,
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nor if only part of the emitted light is detected in a certain
measurement setup. The fractional transition probabilities
might be different in these cases and therefore the absolute
signal level.33 The dynamics of the decay, however, depend
only on the exponential decay of N2(t). This decay and thus
the lifetime τ are determined by all possible transitions, not
only those that are being monitored. This means that at the
same time a strong modification of the spectrum (large FLDOS
variation) but only little change in lifetime (small LDOS
variation) may be observed, as shown for our opal example.
Such behavior has been reported in previous experiments20,21

and can now be explained with this reasoning.
When studying multiple emitters, the observed decay arises

from the individual rates:

	PC
tot (t) =

∑
i

	PC
SPE(r i) e−t/τ PC(r i )

≈
∑

i

	0
SPE α(r)β(r)

1 + 0[α(r) − 1]
e−t/τ PC(r i ). (31)

Thus the decay becomes non-single-exponential. To calculate
the contribution of each emitter, i.e., the pre-exponential
factors, local absorption needs to be considered as well.

V. CONCLUSION

In conclusion, we have shown how to calculate the LDOS in
photonic crystals from eigenmode computations. This method
is very efficient and can be applied to arbitrary photonic
crystals, such as the opal used as an example in this work.

By describing the electronic structure of a fluorescent
emitter as a quasi-two-level system with appropriate spectral
shape functions, we can assess the impact of the LDOS changes
on the electronic transition probabilities according to Fermi’s
golden rule. As an example, we studied the emission of the
dye rhodamine B. Our treatment, however, can be applied to
all emitters whose electronic structure can be described in
this way. For more complex emitters (e.g., several relevant
electronic states), the rate equation model can be adapted.

With this approach, the emission spectrum inside a photonic
crystal can be calculated, which can differ from the undisturbed
spectrum due to spectral redistribution as a result of LDOS
variations. In experiments, however, only part of the emitted
light is measured. We demonstrated how to calculate the
detected spectrum, given a specific setup geometry. This
detected spectrum can strongly differ from the emitted

spectrum, especially if a band gap exists in the direction of
detection.

The absolute intensities of emitted and detected light
depend on the absorption process, particularly on the local
spectral energy density of the excitation. Although the treat-
ment of the changes in excitation is out of the scope of this
paper, we have shown how it influences the different transition
rates. Independent from the absorption rate, however, the
change in the emitter quantum yield in a photonic crystal
environment can be calculated, i.e., how many of the absorbed
photons are emitted.

Another property accessible in measurements is the fluores-
cence lifetime. We have calculated how this lifetime changes
within a photonic crystal due to LDOS effects, depending on
the emitter quantum yield (the smaller the quantum yield, the
smaller the change in lifetime).

Both quantum yield and lifetime depend on the emission
probability enhancement factor α, which is determined by
the LDOS variation but also by the undisturbed emission
spectrum (i.e., they depend on the emitter species). They do
not depend on the measurement setup geometry. This insight
explains why at the same time strong spectral modifications
but small changes in lifetime were observed in previous
experiments.

As multiple emitters at different positions in the pho-
tonic crystal experience different LDOS variations, we have
obtained the aggregated emission spectrum, quantum yield
and decay kinetics for a group of emitters. As a result, the
(detected) spectra may be inhomogeneously broadened and
the fluorescence decay becomes non-single-exponential.

With this work we provide a method for calculating the
effects of a photonic crystal on the (detected) emission
spectrum, the quantum yield, and the lifetime of fluorescent
emitters. This allows quantitative comparison to experiments
and helps to understand the physics behind the observations.
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