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Densities of states for disordered systems from free probability
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We investigate how free probability allows us to approximate the density of states in tight-binding models
of disordered electronic systems. Extending our previous studies of the Anderson model in one dimension
with nearest-neighbor interactions [Chen et al., Phys. Rev. Lett. 109, 036403 (2012)], we find that free
probability continues to provide accurate approximations for systems with constant interactions on two-
and three-dimensional lattices or with next-nearest-neighbor interactions, with the results being visually
indistinguishable from the numerically exact solution. For systems with disordered interactions, we observe
a small but visible degradation of the approximation. To explain this behavior of the free approximation, we
develop and apply an asymptotic error analysis scheme to show that the approximation is accurate to the eighth
moment in the density of states for systems with constant interactions, but is only accurate to sixth order for
systems with disordered interactions. The error analysis also allows us to calculate asymptotic corrections to the
density of states, allowing for systematically improvable approximations as well as insight into the sources of
error without requiring a direct comparison to an exact solution.
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I. INTRODUCTION

Disordered matter is ubiquitous in nature and in man-made
materials.1 Random media such as glasses,2–4 disordered
alloys,5,6 and disordered metals7–9 exhibit unusual properties
resulting from the unique physics produced by statistical
fluctuations. For example, disordered materials often exhibit
unusual electronic properties, such as in the weakly bound
electrons in metal-ammonia solutions,10–12 or in water.13,14

Paradoxically, disorder can also enhance transport properties
of excitons in new photovoltaic systems containing bulk
heterojunction layers15–17 and quantum dots,18,19 producing
anomalous diffusion effects20–22 which appear to contradict
the expected effects of Anderson localization.23–25 Accounting
for the effects of disorder in electro-optic systems is therefore
integral for accurately modeling and engineering second-
generation photovoltaic devices.26

Disordered systems are challenging for conventional quan-
tum methods, which were developed to calculate the electronic
structure of systems with perfectly known crystal structures.
Determining the electronic properties of a disordered material
thus necessitates explicit sampling of relevant structures from
thermodynamically accessible regions of the potential energy
surface, followed by quantum chemical calculations for each
sample. Furthermore, these materials lack long-range order
and must therefore be modeled with large supercells to average
over possible realizations of short-range order and to minimize
finite-size effects. These two factors conspire to amplify
the cost of electronic-structure calculations on disordered
materials enormously.

To avoid such expensive computations, we consider instead
calculations where the disorder is treated explicitly in the
electronic Hamiltonian. The simplest such Hamiltonian comes
from the Anderson model,23,27 which is a tight-binding lattice
model of the electronic structure of a disordered electronic
medium. Despite its simplicity, this model nonetheless cap-
tures the rich physics of strong localization and can be used to
model the conductivity of disordered metals.24,25,28 However,
the Anderson model can not be solved exactly except in

special cases,29,30 which complicates studies of its excitation
and transport properties. Studying more complicated systems
thus requires accurate, efficiently computable approximations
for the experimental observables of interest. While other
methods exist to accurately treat similar tight-binding models
efficiently,31–33 they still require explicit sampling of many
realizations of the disorder.

Random matrix theory offers new possibilities for develop-
ing accurate approximate solutions to disordered systems34–36

by treating the ensemble of disordered Hamiltonians all at once
rather than first sampling this ensemble and then averaging
observables. In this paper, we focus on using random matrix
theory to construct efficient approximations for the density of
states of a random medium. The density of states is one of
the most important quantities that characterize an electronic
system, and a large number of physical observables can be
calculated from it,37 including band structure, precursors to
absorption spectra,32,38 chemisorption properties39 and in turn
catalysis on surfaces,40,41 and transition rates from Fermi’s
golden rule.42 In disordered electronics, the shape of the den-
sity of states is a key predictor of charge carrier mobility43,44

and has found such application in organic photovoltaics,45

bulk heterojunctions,46 and organic/polymer transistors.47–49

Furthermore, it only depends on the eigenvalues of the
Hamiltonian and is thus simpler to approximate, as information
about the eigenvectors is not needed.

The density of states is not a complete description of a
physical system. Other interesting observables, such as corre-
lation functions and transport properties, require knowledge
of eigenvectors. While not a solved problem, the application
of random matrix methods to eigenvectors remains an active
area of research.50 Some intriguing results suggest that it
may be possible to calculate some transport properties, such
as localization lengths, solely from eigenvalue statistics.51

Nonetheless, the calculation of the density of states for real
systems is already a sufficiently challenging problem, and we
focus on more complex models in this work, leaving open the
future possibility of applying free probability to more complex
classes of observables in these models.
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FIG. 1. The lattices considered in this work: (a) one-dimensional
chain with nearest-neighbor interactions, (b) one-dimensional chain
with many neighbors, (c) two-dimensional square lattice, (d) two-
dimensional hexagonal (honeycomb) lattice, (e) three-dimensional
cubic lattice, and (f) one dimensional-chain with disordered interac-
tions.

We have previously shown that highly accurate approxima-
tions can be constructed using free probability theory for the
simplest possible Anderson model, i.e., on a one-dimensional
lattice with constant nearest-neighbor interactions.52 However,
it remains to be seen if similar approximations are sufficient
to describe more complicated systems, and in particular if
the richer physics produced by more complicated lattices
and by off-diagonal disorder can be captured using such free
probabilistic methods.

In this paper, we present a brief, self-contained introduction
to free probability theory in Sec. II. We then develop approxi-
mations from free probability theory in Sec. III that generalize
our earlier study52 in three ways. First, we develop analogous
approximations for systems with long-range interactions,
specializing to the simplest such extension of one-dimensional
(1D) lattices with next-nearest-neighbor interactions. Second,
we study lattices in two and three dimensions. We consider
square and hexagonal two-dimensional lattices to investigate
the effect of coordination on the approximations. Third, we
also make the interactions random and develop approximations
for these systems as well. These cases are summarized
graphically in Fig. 1 and are representative of the diversity
of disorder systems described above. Finally, we introduce
an asymptotic error analysis which allows us to quantify and
analyze the errors in the free probability approximations in
Sec. IV.

II. FREE PROBABILITY

A. Free independence

In this section, we briefly introduce free probability by
highlighting its parallels with (classical) probability theory.
One of the core ideas in probability theory53 is how to
characterize the relationship between two (scalar-valued)
random variables x and y. They may be correlated, so that the
joint moment 〈xy〉 is not simply the product of the individual
expectations 〈x〉〈y〉, or they may be correlated in a higher-order
moment, i.e., there are some smallest positive integers m

and n for which 〈xmyn〉 �= 〈xm〉〈yn〉. If neither case holds,
then they are said to be independent, i.e., that all their joint
moments of the form 〈xmyn〉 factorize into products of the form
〈xmyn〉 = 〈xm〉〈yn〉. For random matrices, similar statements
can be written if the expectation 〈· · · 〉 is interpreted as the
normalized expectation of the trace, i.e., 〈· · · 〉 = 1

N
ETr . . .,

where N is the size of the matrix. However, matrices
in general do not commute, and therefore this notion of
independence is no longer unique: for noncommuting random
variables, one can not simply take a joint moment of the
form 〈Am1Bn1 . . . AmkBnk 〉 and assert it to be equal in general
to 〈Am1+···+mkBn1+···+nk 〉. The complications introduced by
noncommutativity give rise to a different theory, known as
free probability theory, for noncommuting random variables.54

This theory introduces the notion of free independence, which
is the noncommutative analog of (classical) independence.
Specifically, two noncommutative random variables A and B

are said to be freely independent if for all positive integers
m1, . . . ,mk , n1, . . . ,nk , the centered joint moment vanishes,
i.e.,

〈Am1 Bn1 . . . Amk Bnk 〉 = 0, (1)

where we have introduced the centering notation A = A −
〈A〉. This naturally generalizes the notion of classical indepen-
dence to noncommuting variables, as the former is equivalent
to requiring that all the centered joint moments of the form
〈xm yn〉 vanish. If the expectation 〈A〉 is reinterpreted as the
normalized expectation of the trace of a random matrix A, then
the machinery of free independence can be applied directly to
random matrices.55

B. Free independence and the R transform

One of the central results of classical probability theory is
that if x and y are independent random variables with dis-
tributions pX(x) and pY (y), respectively, then the probability
distribution of their sum x + y is given by the convolution of
the distributions, i.e.,53

pX+Y (y) =
∫ ∞

−∞
pX(x)pY (x − y)dx. (2)

An analogous result holds for freely independent noncom-
muting random variables and is known as the (additive) free
convolution; this is most conveniently defined using the R

transform.54,56,57 For a probability density p(x) supported on
[a,b], its R transform R(w) is defined implicitly via

G(z) = lim
ε→0+

∫ b

a

p(x)

z − (x + iε)
dx, (3a)

R(w) = G−1(w) − 1

w
. (3b)

These quantities have natural analogs in Green’s function
theory: p(x) is the density of states, i.e., the distribution of
eigenvalues of the underlying random matrix; G(z) is the
Cauchy transform of p(x), which is the retarded Green’s
function; and G−1 (w) = R (w) + 1/w is the self-energy.
The R transform allows us to define the free convolution
of A and B, denoted A�B, by adding the individual R
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transforms

RA�B (w) := RA (w) + RB (w) . (4)

This finally allows us to state that if A and B are freely
independent, then the sum A + B must satisfy

RA+B (w) = RA�B (w) . (5)

In general, random matrices A and B are neither classically
independent nor freely independent. However, we can always
construct combinations of them that are always freely inde-
pendent. One such combination is A + Q†BQ, where Q is a
random orthogonal (unitary) matrix of uniform Haar measure,
as applied to real symmetric (Hermitian) A and B.58 The
similarity transform effected by Q randomly rotates the basis
of B, so that the eigenvectors of A and B are always in generic
position, i.e., that any eigenvector of A is uncorrelated with
any eigenvector of B.36 This is the main result that we wish to
exploit. While in general A and B are not freely independent,
and hence (5) fails to hold exactly, we can nonetheless make
the approximation that (5) holds approximately, and use this as
a way to calculate the density of states of a random matrix H

using only its decomposition into a matrix sum H = A + B.
Our application of this idea to the Anderson model is described
in the following.

III. NUMERICAL RESULTS

A. Computation of the density of states and its free approximant

We now wish to apply the framework of free probability
theory to study Anderson models beyond the one-dimensional
nearest-neighbor model which was the focus of our initial
study.52 It is well known that more complicated Anderson
models exhibit rich physics that are absent in the sim-
plest case. First, the one-dimensional Anderson Hamiltonian
with long-range interactions has delocalized eigenstates at
low energies and an asymmetric density of states, fea-
tures that are absent in the simplest Anderson model.59–63

These long-range interactions give rise to slowly decaying
interactions in many systems, such as spin glasses3,64 and
ionic liquids.65 Second, two-dimensional lattices can exhibit
weak localization,66 which is responsible for the unusual
conductivities of low-temperature metal thin films.67,68 The
hexagonal (honeycomb) lattice is of particular interest as
a tight-binding model for nanostructured carbon allotropes
such as carbon nanotubes69 and graphene,70,71 which exhibit
novel electronic phases with chirally tunable band gaps72,73

and topological insulation.74,75 Third, the Anderson model in
three dimensions exhibits nontrivial localization phases that
are connected by the metal-insulator transition.23,76 Fourth,
systems with off-diagonal disorder, such as substitutional
alloys and Frenkel excitons in molecular aggregates,1,77 exhibit
rich physics such as localization transitions in lattices of any
dimension,78 localization dependence on lattice geometry,79

Van Hove singularities,80 and asymmetries in the density of
states.77 Despite intense interest in the effects of off-diagonal
disorder, such systems have resisted accurate modeling.81–89

We are therefore interested to find out if our approximations
as developed in our initial study52 can be applied also to all
these disordered systems.

The Anderson model can be represented in the site basis by
the matrix with elements

Hij = giδij + Jij , (6)

where gi is the energy of site i, δij is the usual Kronecker
delta, and Jij is the matrix of interactions with Jii = 0.
Unless otherwise specified, we further specialize to the case of
constant interactions between connected neighbors, so that
Jij = JMij where J is a scalar constant representing the
interaction strength, and M is the adjacency matrix of the
underlying lattice. Unless specified otherwise, we also apply
vanishing (Dirichlet) boundary conditions, as this reduces
finite-size fluctuations in the density of states relative to
periodic boundary conditions. For concrete numerical calcu-
lations, we also choose the site energies gi to be independent
and identically distributed (i.i.d.). Gaussian random variables
of variance σ 2 and mean 0. With these assumptions, the
strength of disorder in the system can be quantified by a single
dimensionless parameter σ/J .

The particular quantity we are interested in approximating
is the density of states, which is one of the most important
descriptors of electronic band structure in condensed matter
systems.37 It is defined as the distribution

ρH (x) =
〈∑

j

δ(x − εj )

〉
, (7)

where εj is the j th eigenvalue of a sample of H and the
expectation 〈· · · 〉 is the ensemble average.

To apply the approximations from free probability theory,
we partition our Hamiltonian matrix into its diagonal and off-
diagonal components A and B. The density of states of A

is simply a Gaussian of mean 0 and variance σ 2, and for
many of our cases studied below, the density of states of B is
proportional to the adjacency matrix of well-known graphs90

and hence is known analytically. We then construct the free
approximant

H ′ = A + QT BQ, (8)

where Q is a random orthogonal matrix of uniform Haar
measure as discussed in Sec. II B, and find its density of states
ρH ′ . Specific samples of Q can be generated by taking the
orthogonal part of the QR decomposition91 of matrix from
the Gaussian orthogonal ensemble (GOE).92 We then average
the approximate density of states over many realizations of the
Hamiltonian and Q and compare it to the ensemble-averaged
density of states generated from exact diagonalization of the
Hamiltonian. We choose the number of samples to be sufficient
to converge the density of states with respect to the disorder in
the Hamiltonian.

While this method is more costly than diagonalization of
the exact Hamiltonian, it provides a general and robust test
for the quality of the free approximation for this exploratory
study. A far more efficient method would be to numerically
compute the free convolution directly. The Cauchy transform
of the densities of states of A and B [Eq. (3a)] can be computed
via a series expansion.93 With careful numerics, the functional
inverses of the Cauchy transform can be computed, giving the
R transforms, which are then added [Eqs. (3b) and (4)].94 This
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process is then inverted, where the inverse Cauchy transform
is computed using Plemelj’s lemma.95 While this process is
fairly straightforward, it has proven numerically challenging.
As such, we use Eq. (8) as a general and accurate test of
the quality of the free approximation, anticipating that further
work could use the more efficient free convolution once the
numerical issues are solved.

B. One-dimensional chain

We now proceed to apply the theory of the previous section
to specific examples of the Anderson model on various lattices.
Previously, we had studied the Anderson model on the one-
dimensional chain:52

Hij = giδij + J (δi,j+1 + δi,j−1), (9)

which is arguably the simplest model of a disordered system.
Despite its simple tridiagonal form, this Hamiltonian does
not have an exact solution for its density of states, and
many approximations for it have been developed.96 However,
unlike the original Hamiltonian, the diagonal and off-diagonal
components each have a known density of states when
considered separately. To calculate the density of states of the
Hamiltonian, we diagonalized 1000 samples of 1000 × 1000
matrices, so that the resulting density of states is converged
with respect to both disorder and finite-size effects. The results
are shown in Fig. 2(a), demonstrating that the free approxima-
tion to the density of states is visually indistinguishable from
the exact result over all the entire possible range of disorder
strength σ/J .

C. One-dimensional lattice with non-neighbor interactions

Going beyond tridiagonal Hamiltonians, we next study the
Anderson model on a one-dimensional chain with constant
interactions to n neighbors. The Hamiltonian then takes the

form

H 1D
ij = giδij + J

[
n∑

k=1

δi,j+k + δi+k,j

]
, (10)

where we use the superscript to distinguish the one-
dimensional many-neighbor Hamiltonian from its higher-
dimensional analogs. Unlike the nearest-neighbor interaction
case above, the density of states is known to exhibit Van Hove
singularities at all but the strongest disorder.1,24

We average over 1000 samples of 1000 × 1000 Hamilto-
nians, which as before ensures that the density of states is
numerically converged with respect to statistical fluctuations
and finite-size effects. We looked at the case of n = 2, . . . ,6
neighbors with identical interaction strengths, and also inter-
action strengths that decayed linearly with distance to better
model the decay of interactions with distance in more realistic
systems. The free approximant is of similar quality in all cases.
As shown in Fig. 2(b) for n = 4 neighbors, the free approxi-
mant reproduces these singular features of the density of states,
unlike perturbative methods which are known to smooth them
out.97,98 The reproduction of singularities by the free approxi-
mant parallels similar observations found in other applications
of free probability to quantum information theory.99

D. Square, hexagonal, and cubic lattices

We now investigate the effect of dimensionality on the
accuracy of the free approximant in three lattices. First, we
consider the Anderson model on the square lattice, with
Hamiltonian

H 2D = B1D ⊗ I + I ⊗ B1D + A, (11)

where B1D is the off-diagonal part of the H 1D defined in
Eq. (10), I is the identity matrix with the same dimensions
as B1D, A is the diagonal matrix of independent random site
energies of appropriate dimension, and ⊗ is the Kronecker
(direct) product. We have found that a square lattice of
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FIG. 2. (Color online) Comparison of exact density of states (lines) with free probability approximant (circles) for the lattices in Fig. 1,
with (b) showing the case of n = 4 neighbors. Data are shown for multiple values of a dimensionless parameter quantifying the strength of
disorder to show the robustness of this approximation. For (a)–(e), this parameter is σ/J , the ratio of the noisiness of diagonal elements to the
strength of off-diagonal interaction. In (f), the axis is chosen to be the relative strength of off-diagonal disorder to diagonal disorder, σ ∗/σ ,
with σ/J = 1.
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50 × 50 = 2500 sites is the smallest lattice with negligible
finite-size fluctuations in the density of states. As such, we
calculated the density of states for 500 samples of 3600 × 3600
Hamiltonians. We find that for both nearest neighbors [shown
in Fig. 2(c)] and non-nearest neighbors (specifically, n =
2, . . . ,6), the free approximation is again visually identical
to the exact answer.

Second, we consider the honeycomb (hexagonal) lattice,
which has a lower coordination number than the square lattice.
Its adjacency matrix does not have a simple closed form,
but can nonetheless be easily generated. For this lattice, we
averaged over 1000 samples of matrices of size 968 × 968,
and applied periodic boundary conditions to illustrate their
effect. As in the square case of the two-dimensional grid
model, the density of states of the honeycomb lattice with any
number of coupled neighbor shells is well reproduced by the
free approximant [Fig. 2(d)], even reproducing the Van Hove
singularities at low to moderate site disorder. Additionally, we
see that the finite-size oscillations at low disorder (σ/J ∼ 0.1)
are also reproduced by the free approximation.

Third, we consider the Anderson model on a cubic lattice,
the Hamiltonian of which is

H 3D = (B1D ⊗ I ⊗ I ) + (I ⊗ B1D ⊗ I )

+ (I ⊗ I ⊗ B1D) + A. (12)

Figure 2(e) shows the approximate and exact density of states
calculated from 1000 samples of 1000 × 1000 matrices. This
represents a 10 × 10 × 10 cubic lattice which is significantly
smaller in linear dimension than the previously considered
lattices. We therefore observed oscillatory features in the
density of states arising from finite-size effects. Despite this,
the free approximant is still able to reproduce the exact density
of states quantitatively. In fact, if the histogram in Fig. 2(e)
is recomputed with finer histogram bins to emphasize the
finite-size-induced oscillations, we still observe that the free
approximant reproduces these features.

E. Off-diagonal disorder

Up to this point, all of the models we have considered
have only site disorder, with no off-diagonal disorder. Free
probability has thus far provided a qualitatively correct
approximation for all these lattices. To test the robustness of
this approximation, we now investigate systems with random
interactions. The simplest such system is the one-dimensional
chain, with a Hamiltonian of the form

Hij = giδij + hi(δi,j+1 + δi,j−1). (13)

Unlike in the previous systems, the interactions are no longer
constant, but are instead new random variables hi . We choose
them to be Gaussians of mean J and variance (σ ∗)2. There
are now two order parameters to consider: σ ∗/J , the relative
disorder in the interaction strengths, and σ ∗/σ , the strength of
off-diagonal disorder relative to site disorder. As in the prior
one-dimensional case, we average over 1000 realizations of
1000 × 1000 matrices.

We now observe that the quality of the free approximation
is no longer uniform across all values of the order parameters.
Instead, it varies with σ ∗/σ , but not σ ∗/J . In Fig. 2(f), we
demonstrate the results of varying σ ∗/σ with σ/J = 1. In

the limits σ ∗/σ � 1 and σ ∗/σ � 1, the free approximation
matches the exact result well; however, there is a small but
noticeable discrepancy between the exact and approximate
density of states for moderate relative off-diagonal disorder,
although the quality of the approximation is mostly unaffected
by the centering of the off-diagonal disorder. In the next
section, we will investigate the nontrivial behavior of the
approximation with the σ ∗/σ order parameter.

IV. ERROR ANALYSIS

In our numerical experiments, we have found that the
accuracy of the free approximation remains excellent for
systems with only site disorder, regardless of the underlying
lattice topology or the number of interactions that each site
has. Details such as finite-size oscillations and Van Hove
singularities are also captured when present. However, when
off-diagonal disorder is present, the quality of the approxi-
mation does vary qualitatively with the ratio of off-diagonal
disorder to site disorder σ ∗/σ as illustrated in Sec. III E, and
the error is greatest when σ ∗ ≈ σ . To understand the reliability
of the free approximant (8) in all these situations, we apply an
asymptotic moment expansion to calculate the leading-order
error terms for the various systems. In general, a probability
density ρ can be expanded with respect to another probability
density ρ̃ in an asymptotic moment expansion known as the
Edgeworth series:100,101

ρ(x) = exp

[ ∞∑
m=1

κ (m) − κ̃ (m)

m!

(
− d

dx

)m
]

ρ̃ (x) , (14)

where κ (m) is the mth cumulant of ρ and κ̃ (m) is the mth
cumulant of ρ̃. When all the cumulants exist and are finite,
this is an exact relation that allows for the distribution ρ̃ to
be systematically corrected to become ρ by substituting in the
correct cumulants. If the first (n − 1) cumulants of ρ and ρ̃

match, but not the nth, then we can calculate the leading-order
asymptotic correction to ρ̃ as

ρ(x) = exp

[
κ (n) − κ̃ (n)

n!

(
− d

dx

)n

+ · · ·
]

ρ̃(x) (15a)

=
[

1 + κ (n) − κ̃ (n)

n!

(
− d

dx

)n

+ · · ·
]

ρ̃(x) (15b)

= ρ̃(x) + (−1)n

n!
(κ (n) − κ̃ (n))

dnρ̃

dxn
(x) + O

(
dn+1ρ̃

dxn+1

)
(15c)

= ρ̃(x) + (−1)n

n!
(μ(n) − μ̃(n))

dnρ̃

dxn
(x) + O

(
dn+1ρ̃

dxn+1

)
,

(15d)

where on the second line we expanded the exponential eX =
1 + X + · · · , and on the fourth line we used the well-known
relationship between cumulants κ and moments μ and the fact
that the first n − 1 moments of ρ and ρ̃ were identical by
assumption.

We can now use this expansion to calculate the leading-
order difference between the exact density of states ρH =
ρA+B and its free approximant ρH ′ = ρA�B by setting ρ̃ = ρH ′

and ρ = ρH in Eq. (15d). The only additional data required
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are the moments μ
(n)
H = 〈Hn〉 and μ

(n)
H ′ = 〈(H ′)n〉, which can

be computed from the sampled data or recursively from the
joint moments of A and B as detailed elsewhere.100 This then
gives us a way to detect discrepancies, which is to calculate
successively higher moments of H and H ′ to determine
whether the difference in moments is statistically significant,
and then for the smallest order moment that differs, calculate
the correction using (15d).

The error analysis also yields detailed information about
the source of error in the free approximation. The nth moment
of H is given by

μ
(n)
H = 〈Hn〉 = 〈(A + B)n〉

=
∑

m1,n1, . . . ,mk,nk∑k
j=1 mj + nj = n

〈Am1Bn1 . . . AmkBnk 〉, (16)

where the last equality arises from expanding (A + B)n in
a noncommutative binomial series. If A and B are freely
independent, then each of these terms must satisfy recurrence
relations that can be derived from the definition (1).100

Exhaustively enumerating and examining each of the terms
in the final sum to see if they satisfy (1) thus provides detailed
information about the accuracy of the free approximation.

We now apply this general error analysis for the specific
systems we have studied. It turns out that the results for systems
with and without off-diagonal disorder exhibit different errors,
and so are presented separately in the following.

A. Systems with constant interactions

We have previously shown that for the one-dimensional
chain with nearest-neighbor interactions, the free approximant
is exact in the first seven moments, and that the only term in
the eighth moment that differs between the free approximant
and the exact H is 〈(AB)4〉.52 The value of this joint moment
can be understood in terms of discretized hopping paths on
the lattice.34 Writing out the term 〈(AB)4〉 explicitly in terms
of matrix elements and with Einstein’s implicit summation
convention gives

〈(AB)4〉 = 1

N
E

(
Ai1i2Bi2i3Ai3i4Bi4i5Ai5i6Bi6i7Ai7i8Bi8i1

)
(17a)

= 1

N
E

[(
gi1δi1i2

) (
JMi2i3

) (
gi3δi3i4

) (
JMi4i5

)
× (

gi5δi5i6

) (
JMi6i7

) (
gi7δi7i8

) (
JMi8i1

)]
(17b)

= 1

N
E

(
gi1gi2gi3gi4J

4Mi1i2Mi2i3Mi3i4Mi4i1

)
.

(17c)

From this calculation, we can see that each multiplication
by A weights each path by the site energy of a given site
gi , and each multiplication by B weights the path by J and
causes the path to hop to a coupled site. The sum therefore
reduces to a weighted sum over returning paths on the lattice
that must traverse exactly three intermediate sites. The only
paths on the lattice with nearest neighbors that satisfy these
constraints are shown in Fig. 3(a), namely, (i1,i2,i3,i4) =
(k,k + 1,k,k + 1), (k,k + 1,k + 2,k + 1), (k,k − 1,k,k − 1),

FIG. 3. (a) Diagrammatic representation of the four paths that
contribute to the leading-order error for the case of a two-dimensional
square lattice with constant interactions and nearest neighbors. Dots
contribute a factor of gi for site i. Solid arrows represent a factor
of J . Each path contributes J 4〈g2

a〉〈g2
b〉 = σ 4J 4 to the error. (b)

Build up of the diagrammatic representation the leading-order error
in the case of a 1D chain with off-diagonal disorder. The two dashed
arrows contribute a factor of μ4 − μ2

2. Because of the disorder in the
interactions, multiplication by B2 allows loops back to the same site.
The first of these loops, 〈AB2〉, has zero expectation value because
it contains an independent random variable of mean zero as a factor.
Once two loops are present, the expectation value instead contains
this random variable squared, which has nonzero expectation value.

and (k,k − 1,k − 2,k − 1) for some starting site k. The first
path contributes weight E(g2

kg
2
k+1)J 4 = E(g2

k )E(g2
k+1)J 4 =

σ 4J 4, while the second term has weight E(gkg
2
k+1gk+2)J 4 =

E(gk)E(g2
k+1)E(gk+2)J 4 = 0. Similarly, the third and fourth

paths also have weight σ 4J 4 and 0, respectively. Finally
averaging over all possible starting sites, we arrive at the
final result that 〈(AB)4〉 = 2σ 4J 4 with periodic boundary
conditions and 〈(AB)4〉 = 2(1 − 1/N)σ 4J 4 with vanishing
boundary conditions. We therefore see when N is sufficiently
large, the boundary conditions contribute a term of O(1/N )
which can be discarded, thus showing the universality of this
result regardless of the boundary conditions.

Applying the preceding error analysis, we observe that the
result from the one-dimensional chain generalizes all the other
systems with constant interactions that we have studied, the
only difference being that the coefficient 2 is simply replaced
by n, the number of sites accessible in a single hop from a
given lattice site. In order to keep the effective interaction felt
by a site constant as we scale n, we can choose J to scale as

1√
n

. In this case, the free approximation converges to the exact

result as 1
n

.
We can generalize the argument presented above to explain

why 〈(AB)4〉 is the first nonzero joint centered moment, and
thus why the approximation does not break down before the
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eighth moment. Consider centered joint moments of the form

〈Aa1Bb1Aa2Bb2 . . . AanBbn〉 (18)

for positive integers {ai,bi} such that
∑

i(ai + bi) � 8. Since
A is diagonal with i.i.d. elements, all powers of An are also
diagonal with i.i.d. elements, and so An = 0. Centered higher
powers of B, Bn couple each site to other sites with interaction
strengths J n, but after centering, the diagonal elements of Bn

are zero and multiplication by Bn still represents a hop from
one site to a different coupled site. Therefore, the lowest-order
nonzero joint centered moment requires at least four hops,
so n � 4 is the smallest possible nonzero term, but the only
term of this form of eighth order or lower is the one with
ai = bi = 1, i.e., the term 〈(AB)4〉.

B. Random interactions

When the off-diagonal interactions are allowed to fluctuate,
the free approximation breaks down in the sixth moment,
where the joint centered moment 〈(AB2)2〉 fails to vanish.
We can understand this using a generalization of the hopping
explanation from before. In this case, B2 contains nonzero
diagonal elements, which corresponds to a nonzero weight
for paths that stay at the same site. Thus, (AB2)2 contains a
path of nonzero weight that starts at a site and loops back
to that site twice [shown in Fig. 3(b)]. The overall difference
in the moment of the exact distribution from that in the free
distribution is 2σ 2(μ4 − μ2

2), where μ4 and μ2 are the fourth
and second moments of the off-diagonal disorder. As above,
the σ 2 component of this difference can be understood as the
contribution of the two A’s in the joint centered moment.
The other factor 2(μ4 − μ2

2) is the weight of the path of two
consecutive self-loops. The sixth moment is the first to break
down because, as before, we must hop to each node on our
path twice in order to avoid multiplying by the expectation
value of mean zero, and (AB2)2 is the lowest-order term that
allows such a path.

We summarize the leading-order corrections and errors in
Table I. At this point, we introduce the quantity J̃ = √

2nJ ,
which is an aggregate measure of the interactions of any site
with all its 2n neighbors. As can be seen, the discrepancy
occurs to eighth order for all the studied systems with
constant interactions, with a numerical prefactor indicative
of the coordination number of the lattice, and the factor of
1/8! strongly suppresses the contribution of the error terms.
Furthermore, for any given value of the total interaction J̃ ,
the error decreases quickly with coordination number 2n,
suggesting that the free probability approximation is exact in

TABLE I. Coefficients of the leading-order error in the free
probability approximation in the Edgeworth expansion (15d).

Order Term Coefficient

1D 8 (AB)4 J̃ 4σ 4/(2 × 8!)
2D square 8 (AB)4 J̃ 4σ 4/(4 × 8!)
2D honeycomb 8 (AB)4 J̃ 4σ 4/(3 × 8!)
3D cube 8 (AB)4 J̃ 4σ 4/(6 × 8!)
1D with n nearest neighbors 8 (AB)4 J̃ 4σ 4/(2n × 8!)
1D with off-diagonal disorder 6 (AB2)2 σ 2(μ4 − μ2

2)/6!

the mean field limit of 2n → ∞ neighbors. This is consistent
with previous studies of the Anderson model employing
the coherent potential approximation.24,102,103 In contrast, the
system with off-diagonal disorder has a discrepancy in the
sixth moment, which has a larger coefficient in the Edgeworth
expansion (15d). This explains the correspondingly poorer
performance of our free approximation for systems with off-
diagonal disorder. Furthermore, the preceding analysis shows
that only the first and second moments of the diagonal disorder
σ contribute to the correction coefficient, thus showing that this
behavior is universal for disorder with finite mean and standard
deviation.

V. CONCLUSION

Free probability provides accurate approximations to the
density of states of a disordered system, which can be
constructed by partitioning the Hamiltonian into two easily
diagonalizable ensembles and then free convolving their
densities of states. Previous work52 showed that this approxi-
mation worked well for the one-dimensional Anderson model
partitioned into its diagonal and off-diagonal components. Our
numerical and theoretical study described above demonstrates
that the same approximation scheme is widely applicable to a
diverse range of systems, encompassing more complex lattices
and more interactions beyond the nearest neighbor. The quality
of the approximation remains unchanged regardless of the
lattice as long as the interactions are constant, with the free
approximation being in error only in the eighth moment of the
density of states. When the interactions fluctuate, the quality
of the approximation worsens, but remains exact in the first
five moments of the density of states.

Our results strongly suggest that free probability has
the potential to produce high-quality approximations for the
properties of disordered systems. In particular, our theoretical
analysis of the errors reveals universal features of the quality
of the approximation, with the error being characterized
entirely by the moments of the relevant fluctuations and the
local topology of the lattice. This gives us confidence that
approximations constructed using free probability will give
us high-quality results with rigorous error quantification. This
also motivates future investigations towards constructing fast
free convolutions using numerical methods for R transforms,94

which would yield much faster methods for constructing free
approximations. Additionally, further studies will be required
to approximate more complex observables beyond the density
of states, such as conductivities and phase transition points.
These will require further theoretical investigation into how
free probability can help predict properties of eigenvectors,
which may involve generalizing some promising initial studies
linking the statistics of eigenvectors such as their inverse
participation ratios to eigenvalue statistics such as the spectral
compressibility.51,104
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