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Transport functions for hypercubic and Bethe lattices
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In calculations of transport quantities, such as the electrical conductivity, thermal conductivity, Seebeck, Peltier,
Nernst, Ettingshausen, Righi-Leduc, or Hall coefficients, sums over the Brillouin zone of wave-vector derivatives
of the dispersion relation commonly appear. When the self-energy depends only on frequency, as in single-site
dynamical mean-field theory, it is advantageous to perform these sums once and for all. We show here that in the
case of a hypercubic lattice in d dimensions, the sums needed for any of the transport coefficients can be expressed
as integrals over powers of the energy weighted by the energy-dependent noninteracting density of states. It is
also shown that our exact expressions for the transport functions can be obtained from differential equations that
follow from sum rules. By substituting the Bethe lattice density of states, one can obtain the previously unknown
transport function for the electrical or thermal Hall coefficients and for the Nernst coefficient of the Bethe lattice.
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I. INTRODUCTION

The calculation of transport properties is a challenge in the
presence of strong correlations since the Boltzmann equation
approach is inappropriate in that case. One must fall back on
many-body methods. A considerable simplification occurs in
the one-band case when the momentum dependence of the
self-energy can be neglected since vertex corrections then
disappear and the one-particle Green’s function suffices for
the calculation.

For three-dimensional materials, dynamical mean-field
theory1–3 (DMFT) provides a framework to obtain the needed
accurate expressions for the single-particle Green’s function
with a momentum-independent self-energy. In that case, the
calculation of transport coefficients is simplified if one can
compute functions � defined by sums over k of the form
�(ε) = ∑

k F (k)δ(ε − εk) where F (k) contains derivatives of
the dispersion relation εk . The calculation of this type of
functions �(ε), which we will call transport functions, may
be difficult even if no interaction effect enters. One can rely
on numerical calculations, but since DMFT is exact in infinite
dimension,1–4 it has been customary to rely on results valid in
the large dimension limit.5–8

We show in this paper that for a hypercubic lattice in
any dimension, it is possible to reduce the calculation of
the transport functions to integrals of powers of the energy
weighted by the noninteracting density of states. In addition,
we show that the Hall transport function also follows from
a differential equation obtained from a sum rule, in analogy
with the case of the conductivity discussed by Chattopadhyay
and co-workers.9 The same transport function occurs in the
calculation of the thermal Hall conductivity (Righi-Leduc)
and of the Nernst coefficient.

The differential equation approach also allows us to obtain
an expression for the Hall transport function that is valid on a
Bethe lattice (Cayley tree) in the large coordination limit. As
in the case of the conductivity,9,10 we show that it is this Hall
transport function that should be used, not the one traditionally
obtained by substituting the Bethe lattice density of states in
the infinite-dimensional result.11 This is important since the
DMFT self-consistency relation becomes very simple on the

Bethe lattice, making this density of states a very popular
choice, even in recent papers.12–16

In the next section, we define the transport functions.
The following section contains the results. A few numerical
examples appear before the conclusion. An appendix contains
the details of the calculation on the hypercubic lattice.

II. DEFINITIONS OF TRANSPORT FUNCTIONS

The transport coefficients in the presence of a magnetic
field can be defined as in Ziman:17

Je = LEE(H)·E + LET (H)·∇T, (1)

JQ = LT E(H)·E + LT T (H)·∇T, (2)

where Je and JQ are electrical and heat currents, while E and
H are electric and magnetic fields, respectively, and ∇T is the
temperature gradient. The transport coefficients are matrices.
Onsager’s reciprocity relations state that17

LEE(H) = LT
EE(−H), (3)

LT E(H) = −T LT
ET (−H), (4)

LT T (H) = LT
T T (−H), (5)

where the superscript T indicates the transpose of the matrix.
Let us assume that the magnetic field is applied in the z

direction, while the currents and the electric field and thermal
gradient are in the xy plane. We give below expressions
for obtaining the transport coefficients, such as conductivity,
in the dc limit, but the same transport functions appear in
the corresponding ac expressions. These expressions do not
contain vertex corrections. This is justified for one-band
models in the infinite-dimensional limit18 and in general
for wave-vector-independent self-energies on lattices with
inversion symmetry. The expressions are valid to linear order
in H (magnetic field) only. We work in units where h̄ = 1 and
lattice spacing is also unity. We assume an isotropic system
for simplicity, but the generalization is obvious.

We normalize the spectral weight as follows:∫
A(k,ω)dω = 1. For a local self-energy, the single-particle

spectral weight depends on wave vector only through the
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single-particle dispersion relation, i.e., A(k,ω) = A(εk,ω) so
that the dc conductivity can be written as5

σxx ≡ Lxx
EE

= πe2
∑

σ

∫
dε �xx(ε)

∫
dω

(
−∂f (ω)

∂ω

)
A2

σ (ω,ε),

(6)

where the conductivity transport function is defined by

�xx(ε) =
∑

k

(
∂εk

∂kx

)2

δ(ε − εk). (7)

The dc, low-field, antisymmetric part of the Hall conductivity
is given by19

σxy ≡ L
xy

EE

= π2|e|3
3

H
∑

σ

∫
dε �xy(ε)

∫
dω

(
−∂f (ω)

∂ω

)
A3

σ (ω,ε),

(8)

where H is the magnetic field and the Hall transport function
�xy(ε) is defined by

�xy(ε) =
∑

k

[
v2

x

Myy

+ v2
y

Mxx

− 2
vxvy

Mxy

]
δ(ε − εk), (9)

with vα = ∂εk

∂kα
and M−1

αβ = ∂2εk

∂kα∂kβ
. The above two transport

functions �xx(ε) and �xy(ε) suffice to define all other transport
coefficients, as we verify in the following.

The diagonal component of the thermoelectric tensor is20

αxx ≡ Lxx
ET

= −π |e|
∑

σ

∫
dε �xx(ε)

×
∫

dω

(
−∂f (ω)

∂ω

)(
ω

T

)
A2

σ (ω,ε). (10)

The off-diagonal component, on the other hand, is given
according to Ref. 21 by

αxy ≡ L
xy

ET

= π2|e|3
3

H
∑

σ

∫
dε �xy(ε)

×
∫

dω

(
−∂f (ω)

∂ω

)(
ω

T

)
A3

σ (ω,ε). (11)

The diagonal component of the response for the thermal
transport is

βxx ≡ Lxx
T T

= −πT
∑

σ

∫
dε �xx(ε)

×
∫

dω

(
−∂f (ω)

∂ω

)(
ω

T

)2

A2
σ (ω,ε). (12)

The vanishing of the vertex corrections for both βxx and αxx for
momentum-independent self-energies was proven in Ref. 22.

The off-diagonal component of the thermal transport can
be inferred from the fact that in the Boltzmann limit for

impurity scattering, there is a Wiedemann-Franz law that
holds,17 relating Hall conductivity to transverse thermal
transport LT T = −L0T LEE through the Lorentz number L0 =
π2k2

B/(3e2). From this requirement, we find

βxy ≡ L
xy

T T

= −π2|e|T
3

H
∑

σ

∫
dε �xy(ε)

×
∫

dω

(
−∂f (ω)

∂ω

)(
ω

T

)2

A3
σ (ω,ε). (13)

Finally, the so called stress tensor is given by

τxx = e2
∑

σ

∫
dε �̃xx(ε)

∫
dω f (ω)Aσ (ω,ε), (14)

where

�̃xx(ε) =
∑

k

∂2εk

∂k2
x

δ(ε − εk), (15)

while the off-diagonal stress tensor is defined by

τxy = He

2

∑
σ

∫
dε �̃xy(ε)

∫
dω f (ω)Aσ (ω,ε), (16)

with

�̃xy(ε) = 2
∑

k

det

[
∂2εk

∂kν∂kμ

]
δ(ε − εk). (17)

Our primary goal in this paper is to calculate the transport
functions �xx and �xy . �̃xx and �̃xy come in sum rules that
are important as intermediate steps. We refer to �xx as the
conductivity transport function and to �xy as the Hall transport
function, but these same transport functions are the only ones
that appear in the calculation of any of the transport quantities,
as is clear from above.

All the usual dc transport coefficients can be obtained from
the above expressions and Onsager’s relations. For example,
following Ziman17 we define the resistivity tensor

ρ = L−1
EE = 1

σxxσyy − σxyσyx

(
σyy −σxy

−σyx σxx

)
, (18)

the thermopower tensor

Q = −L−1
EELET

= −1

σxxσyy − σxyσyx

×
(

σyyαxx − σxyαyx σyyαxy − σxyαyy

−σyxαxx + σxxαyx −σyxαxy + σxxαyy

)
, (19)

the Peltier tensor

�(H) = T QT (−H), (20)

and, without explicitly doing the matrix multiplications to save
space, the thermal conductivity tensor

κ = −(
LT T − LT EL−1

EELET

)
. (21)

Some of the better-known transport coefficients when
the longitudinal current is in the x direction include the

205109-2



TRANSPORT FUNCTIONS FOR HYPERCUBIC AND BETHE . . . PHYSICAL REVIEW B 88, 205109 (2013)

Hall resistance RH = −ρxy , the Seebeck coefficient or
thermopower Qxx , the Nernst coefficient −Qxy , and the
Righi-Leduc coefficient κxy/κxx .

III. TRANSPORT FUNCTIONS FOR THE HYPERCUBIC
LATTICE IN d DIMENSIONS

We show by explicit calculation in Appendix A that for the
hypercubic lattice with nearest-neighbor hopping, the transport
functions can be expressed in terms of integrals over powers of
energy weighted by the noninteracting density of states. The
results are

�xx(ε) = −1

d

∫ ε

−∞
zN0(z)dz, (22)

�̃xx(ε) = d�xx(ε)

dε
= −1

d
εN0(ε), (23)

�xy(ε) = 2ε

(d − 1)
�xx(ε) + 4

d(d − 1)

∫ ε

−∞
z2N0(z)dz

− 2
(2t)2

(d − 1)

∫ ε

−∞
N0(z)dz, (24)

where N0(z) is the noninteracting density of states and d the
dimension.

In two dimensions,23 the noninteracting density of states
is given by a complete elliptic integral of the first kind. An
analytical expression in terms of complete elliptic integrals
of the first and second kinds exists for �xx(ε) [Eq. (22)].
In three dimensions,23 integrals over elliptic integrals times
polynomials of their arguments need to be done numerically.

The first application of Eq. (8) in the context of DMFT
can probably be traced back to Ref. 24. They also considered
the hypercubic lattice, but they limited their treatment from
the beginning to the special case d → ∞ and therefore only
obtained the d → ∞ limit of Eq. (24).

In the rest of this section, we show that we recover the results
obtained previously in infinite dimension and also from sum
rules for �xx . We generalize the latter approach to obtain �xy

from a sum rule.

A. Case of infinite dimension

Here, we show that in the limit of infinite dimension we
recover the results of Lange and Kotliar.11 When d → ∞, one
needs to scale hopping as t → t√

2d
to obtain a finite density

of states. Following Ref. 11, we also define t = 1
2 . Thus, the

density of states can be written as25 N0(z) =
√

2
π
e−2z2

while
t2 = 1

8d . For �xx(ε), the integrand is ze−2z2
so that, as in

Refs. 5 and 11,

�xx(ε) = 1

4d
N0(ε). (25)

For �xy(ε), note that
∫ u

0 z2e−z2
dz = 1

4

√
πerf(u) − 1

2ue−u2

where erf(u) is the error function
∫ u

0 e−z2
dz = 1

2

√
πerf(u).

Since erf(−∞) = −1 and d − 1 = d as d → ∞, we obtain

�xy(ε) = − 1

2d2 εN0(ε). (26)

Allowing for a factor of 2 difference in the definitions of
�xy(ε), again we agree with Ref. 11.

B. Conductivity transport function from sum rule

Chattopadhyay et al.9 argue that the f -sum rule, where �̃xx

appears, can be used to obtain a differential equation for �xx .
Indeed, for a tight-binding model, the f -sum rule is given by∫ ∞

−∞

dω

π
Re{σxx(ω)} =

∑
k

∂2εk

∂k2
x

〈nk〉. (27)

But, if only nearest-neighbor hopping is allowed, we have that
∂2εk/∂k2

x = −αεk/d where α is a constant that depends on the
type of lattice. The right-hand side of the above equation may
thus be rewritten as∫

dω f (ω)
∑

k

∂2εk

∂k2
x

A(k,ω) = −α

d

∫
dω f (ω)

∑
k

εkA(k,ω)

or ∫
dε

∫
dω f (ω)�̃xx(ε)A(ε,ω)

= −α

d

∫
dω f (ω)N0(ε)εA(ε,ω). (28)

By imposing that the two are equal, we obtain the result

�̃xx(ε) = −α

d
εN0(ε)

and since we proved in Eq. (A7) the general relation �̃xx(ε) =
d�xx(ε)/dε, we have that

d�xx(ε)

dε
= −α

d
εN0(ε). (29)

This result is the same as for the simple cubic lattice Eqs. (22)
and (23) since for this lattice α = 1.

C. Hall transport function from sum rule

Inspired by these last results, we show that one can find the
transport function for the Hall conductivity �xy from the sum
rule found for the imaginary part of the frequency-dependent
Hall conductivity by Drew and Coleman26 and by Lange and
Kotliar11 for a tight-binding model∫ ∞

−∞
dω

ω Im{σxy(ω)}
πe2

= He
∑

k

det

[
∂2εk

∂kν∂kμ

]
〈nk〉. (30)

The right-hand side is the off-diagonal stress tensor (16)
related to the transport function �̃xy(ε) [Eq. (17)], analogous
to �̃xx(ε). We will find a relation between �xy(ε) and this
transport function following steps analogous to those used
above to relate �xx(ε) and �̃xx(ε). Starting from the definition
of �xy [Eq. (9)] and following the same steps as in Eq. (A7),
we first find that

d�xy(ε)

dε
= 2

∑
k

det

[
∂2εk

∂kν∂kμ

]
δ(ε − εk) = �̃xy(ε). (31)

Thus, the sum rule for the Hall effect is related to a derivative
of �xy(ε).

Specializing to the hypercubic lattice, the determinant
becomes det[ ∂2εk

∂kx∂ky
] = (2t)2 cos(kx) cos(ky) and the right-hand
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side of the sum rule, using symmetries, can be rewritten using∑
k

(2t)2 cos(kx) cos(ky)〈nk〉

= 1

d(d − 1)

∑
k

ε2
k〈nk〉 − 1

(d − 1)

∑
k

(2t)2 cos2(kx)〈nk〉

= 1

d(d − 1)

∑
k

ε2
k〈nk〉 + 1

(d − 1)

∑
k

(2t)2 sin2(kx)〈nk〉

− (2t)2

(d − 1)

∑
k

〈nk〉. (32)

Following the steps of Eqs. (27)–(29), we evaluate∑
k

det

[
∂2εk

∂kν∂kμ

]
δ(ε − εk)

= ε2

d(d − 1)

∑
k

δ(ε − εk)

+ 1

(d − 1)

∑
k

(2t)2 sin2(kx)δ(ε − εk)

− (2t)2

(d − 1)

∑
k

δ(ε − εk), (33)

which allows us to find an expression for the derivative of �xy

[Eq. (31)] that follows from the sum rule

1

2

d�xy(ε)

dε
= 1

d(d − 1)
ε2N0(ε) + 1

(d − 1)
�xx(ε)

− (2t)2

(d − 1)
N0(ε). (34)

If we take the derivative of Eq. (24) for �xy that was obtained
for the hypercubic lattice, and use Eq. (23), we obtain the
same answer. The result for �xy may thus be obtained directly
or from a differential equation that follows from a sum
rule.

Unfortunately, the relation between the derivative of �xy

and the sum rule for the Hall conductivity (30) does not seem
to hold for all nearest-neighbor dispersion relations, contrary

to the f -sum rule which is always proportional to the kinetic
energy per direction. Nevertheless, while the two expressions
we obtained independently for �xy and for its derivative are
automatically valid on the hypercubic lattice in any dimension,
on the Bethe lattice enforcing both of them will uniquely
determine the transport function �xy on that lattice.

D. Interacting transport functions

All our transport coefficients (6), (8), (10), (11), (12),
and (13) can also be written in terms of two so-called
interacting transport functions �L

tr (ω) and �T
tr (ω), where

L and T stand for longitudinal and transverse. These are
defined by

�L
tr (ω) ≡

∫
dε �xx(ε)A2(ω,ε) (35)

and

�T
tr (ω) ≡

∫
dε �xy(ε)A3(ω,ε). (36)

The definition of the longitudinal interacting transport func-
tion, which enters the transport coefficients (6), (10), and (12)
leads to a compact expression commonly used in works by
Freericks and co-workers (see, for example, Ref. 27). The
general result for the cubic lattice in d dimensions, rederived
in Appendix B, is given by

�L
tr (ω) = 1

2π2

(
Im

{
GL

tr (z)
}

Im{z∗} + 1

d
− 1

d
Re{zG(z)}

)
, (37)

where z ≡ ω + μ − �(ω) and

GL
tr (z) ≡

∫
dε

�xx(ε)

z − ε
; G(z) ≡

∫
dε

N0(ε)

z − ε
. (38)

We show in Appendix B that while we can also do a
similar analysis for �T

tr (ω) that enters the transverse transport
coefficients (8), (11), and (13), the result is not compact.
Therefore, its usefulness is not really clear, except that the
first term is related to the usual Boltzmann-type term that
depends upon the square of the quasiparticle scattering time
τ 2
Qp = ( 1

Im{�} )2. The full result is

�T
tr (ω) = 1

π3

[ −3

8(Im{z})2
Im

{
GT

tr (z)
} + 1

4d(d − 1)
Im{zG(z)} + 1

4(d − 1)
Im

{(
z2

d
− (2t)2

)
∂G(z)

∂z

}
+ 3

8 Im{z}
(

− 2

d(d − 1)
Re{z} + 2

d(d − 1)
Re{z2G(z)} + 2

d − 1
Re

{
GL

tr (z)
} − 2(2t)2

d − 1
Re{G(z)}

)]
, (39)

where

GT
tr (z) ≡

∫
dε

�xy(ε)

z − ε
. (40)

IV. TRANSPORT FUNCTIONS FOR THE BETHE LATTICE

The self-consistency relation in single-site dynamical
mean-field theory, which is exact in infinite dimensions, is
very simple on a Bethe lattice (Caley tree) in the infinite

coordination limit, i.e., a semicircular density of states. Hence,
this is a commonly used lattice. It has a tree structure with no
loop and no dispersion relation in k space. Therefore, one has
to do all calculations in energy space. But, how can we define
the transport functions on this lattice? The answer is known
for the conductivity transport function �xx . In this section,
after we describe two methods to obtain the answer for �xx

and �̃xx , we generalize the approach for the Hall transport
function �xy .
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A popular way to obtain �xx for the Bethe lattice has been
to (a) start from the standard formula in k space and rewrite
it in terms of ε space; (b) take for �xx(ε) its d = ∞ form
[Eq. (25)]; (c) replace N0(ε) by the Bethe lattice density of
state. But, it has been pointed out by Chung and Freericks10

and Chattopadhyay and co-workers9 that this does not give a
correct answer. Indeed, the f -sum rule is not satisfied because
�̃xx in that case is not equal to the derivative of �xx . It is
in that context that Chattopadhyay and co-workers9 proposed
their differential equation.

The other way that we propose to obtain the correct result
relies on the fact that, as follows from Eq. (A7), the exact
result that we obtained on the hypercubic lattice [Eq. (22)]
satisfies the differential equation (23) for any nearest-neighbor
density of states N0(ε). Hence, substituting the Bethe lattice
density of states in Eq. (22) for �xx should also give the correct
expression. That approach works essentially because the usual
Bethe lattice is also defined by nearest-neighbor hopping only.

In summary, the first derivation of the transport function5

�xx(ε) took the infinite-dimension limit first and then replaced
the density of states by that of the Bethe lattice, leading to a
failure of the f -sum rule. The other procedure, which satisfies
the f -sum rule, is to take the exact result for the transport
function valid on the hypercubic lattice for any dimension, and
then replace the density of states by that of the Bethe lattice
at the end, making sure that �̃xx is obtained by a derivative
of �xx , as in Eq. (22). The correct result would have been
obtained already in Ref. 5 if the calculation had been pushed
to the end in finite dimensions for all transport functions before
taking the infinite-dimensional limit.

The derivation of the known result for �xx(ε) on the Bethe
lattice will allow us to obtain the expression for �xy(ε).
Starting from Eq. (22) for �xx(ε) on the hypercubic lattice, we
replace the density of states N0(ε) by the Bethe lattice density
of states N0(ε) = 2

πW 2 �(W − |ε|)√W 2 − ε2 where W is half
the bandwidth, and we find

�xx(ε) = − 1

d

∫ ε�W

−W

2

πW 2
z
√

W 2 − z2dz

= 1

3d
(W 2 − ε2)N0(ε). (41)

This agrees with Refs. 9 and 10.
To compute �xy(ε) we also need∫ ε

−∞
z2N0(z)dz = 2

πW 2

∫ ε�W

−W

z2
√

W 2 − z2dz

= −ε(W 2 − 2ε2)

8
N0(ε) + W 2

8

+ W 2

4π
tan−1

(
ε√

W 2 − ε2

)
(42)

and ∫ ε

−∞
N0(z)dz = 2

πW 2

∫ ε�W

−W

√
W 2 − z2dz

= 1

2
εN0(ε) + 1

2

+ 1

π
tan−1

(
ε√

W 2 − ε2

)
. (43)

We can now substitute Eqs. (41) to (43) in the hypercubic
lattice expression for �xy(ε) [Eq. (24)]. In that equation, there
is a term with (2t)2 that we need to define on the Bethe lattice.
If we take the connectivity K of the large connectivity Bethe
lattice to be equal to 2d, we have that23 W = 2t

√
2d. We can

also relate W and t by the requirement that the function �xy

must change sign at ε = 0 along with the change between
holelike and electronlike excitations. If �xy has to be zero at
ε = 0, it means that the constant terms in Eqs. (42) and (43)
must cancel each other once inserted in Eq. (24). This is the
case if 2t = W√

2d
, the same result as the one found above. With

this value of 2t , the terms with tan−1( ε√
W 2−ε2 ) also cancel out

so that we finally obtain

�xy(ε) = − 1

3d(d − 1)
ε(W 2 − ε2)N0(ε). (44)

This expression also satisfies the differential equation (34). It
was used in Ref. 12 where the Bethe lattice density of states
was used as an approximation of the 3d simple cubic lattice.
In this reference, there was a small error in the evaluation of
�xy(ε) but the particular cancellations present for the Bethe
lattice lead to a final answer that is correct.

V. NUMERICAL EXAMPLES

To illustrate how various approximations for the transport
functions differ, we consider the Hall coefficient and the
thermopower in a doped Mott insulator on a cubic lattice in
the Fermi-liquid regime, where the answer depends mostly on
the transport function.

A. Approximations for the transport functions

First, let us discuss directly various approximations for �xy .
The density of states of the simple cubic lattice appears in the
inset of Fig. 1(a). We show different choices of �xy times
d(d−1) as a function of energy ε normalized such that W =
1. �xy(ε) calculated for the three-dimensional simple cubic
lattice [Eq. (22)] is represented by the black solid line. The
infinite-dimensional hypercubic lattice result [Eq. (26)] shown
as the red dashed curve is always larger. Recall that in the limit
of large dimension d, d(d−1) = d2 so it is still correct to call
the y axis d(d − 1)�xy . The blue small dashed curve is the
result for large coordination Bethe lattice that we obtained
in Eq. (44). Clearly, it is an excellent approximation to the
Hall transport function of the simple cubic lattice. Finally, the
magenta short-long dashed curve represents the result when
one substitutes, as in Ref. 11, the Bethe lattice density of
states (DOS) in the d = ∞ result, as was popular for �xx

before the work of Refs. 9 and 10. This can be a rather bad
approximation.

For completeness, we also show in Fig. 1(b) the different
calculations for �xx that were already discussed in the past.
Using the Bethe lattice density of states in the expression
for the infinite-dimensional DOS is not the best choice. The
correct choice for the Bethe lattice (41), shown by the small
dashed blue line, also differs quite substantially from the black
solid line for the simple cubic lattice, contrary to the case of
the Hall coefficient.

205109-5
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FIG. 1. (Color online) (a) d(d−1)�xy(ε) for the simple cubic
lattice (black solid line), for the infinite-dimensional hypercubic
lattice (red dash), for our expression for the Bethe lattice (blue
small dash), and for the Bethe lattice density of states substituted
in the infinite-dimensional result (magenta short-long dash). (b) With
the same symbols, the corresponding approximations for d�xx(ε).
The inset in (a) is the density of states for the simple cubic
lattice.

B. Hall coefficient

To illustrate the effect of the choice of the transport function
on the Hall coefficient, we consider a simple, mostly analytic,
example. Indeed, at very low temperature, DMFT predicts a
Fermi-liquid peak at zero frequency. As far as transport is con-
cerned, the derivative of the Fermi-Dirac function guarantees
that only the quasiparticle peak is important at low T . Thus,
one can consider only the Fermi-liquid self-energy and neglect
the incoherent contributions. The self-energy in this regime is
given by a Taylor expansion in power of ω. The simplest mean-
ingful (capturing some lifetime effects) case is to stop at second
order. In that case, one finds11 �(ω) = (1 − 1/Z)ω + αω2 +
iγ (ω). The constants are Z = (1 − ∂ Re{�(ω)}/∂ω|ω=0)−1,
α = 1

2∂2Re{�(ω)}/∂ω2|ω=0, and the quasiparticle lifetime is
γ (ω) = γ̃ [T 2 + (ω/π )2]. It should be noted that this form
for the self-energy holds only at very low temperature in
DMFT calculations even when a symmetric DOS such as
that of the Bethe lattice16 is used. Corrections from ωT 2 and
ω3 terms become important very quickly when temperature is
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FIG. 2. (Color online) Prefactor of the Hall resistance for various
transport functions in the Fermi-liquid regime of a doped Mott
insulator, as a function of density or filling (n = 1 being half-filling).
Same conventions as in Fig. 1: simple cubic lattice (black solid
line), the infinite-dimensional hypercubic lattice (red dash), our
expression for the Bethe lattice (blue small dash), and the Bethe
lattice density of states substituted in the infinite-dimensional result
(magenta short-long dash).

risen.16,28,29 With this form of self-energy, Lange and Kotliar11

have shown that the Hall constant is

RH = 0.2630

e

�xy(μ̃)

[�xx(μ̃)]2
, (45)

where e is the electron charge and μ̃ = μ − Re{�(0)} which,
invoking Luttinger’s theorem, corresponds to the chemical
potential needed to have the same density with the nonin-
teracting density of states. The above result is independent of
Fermi-liquid parameters and we do not need to solve the full
DMFT equations to find RH . The final answer depends only
on transport functions.

Figure 2 displays the various results. RH being antisym-
metric with respect to half-filling, we only show the results
for n � 1. We observe a cancellation of errors in the ratio
of transport functions that leads to only relatively small dis-
crepancies between the 3d cubic lattice result, obtained from
Eqs. (22) and (24), (black solid line) and two approximations,
namely, the infinite-dimensional result (red dash) obtained
from Eqs. (25) and (26) and the sum rule satisfying expressions
for the Bethe lattice (blue short dash), obtained from Eqs. (41)
and (44). As could be seen already in Fig. 1, the largest discrep-
ancies occur near the band edges. In this low-temperature limit,
the Hall coefficient recovers its noninteracting value.11 Near
half-filling n = 1, the curves are mostly linear as expected
from RH ∝ 1/n but with different slopes (see inset of Fig. 2).
The replacement of the density of states in the infinite-
dimensional result by the Bethe lattice density result (magenta
short-long dash) is an approximation that is unphysical at
low density and has the largest discrepancy in its slope
near n = 1.

C. Thermopower

As a last example, consider thermopower. For the quadratic
Fermi-liquid self-energy, Palsson and Kotliar20 obtained for
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the Seebeck coefficient

S = −kB

|e|
E2

E0

kBT

Z

�′
xx(μ̃)

�xx(μ̃)
, (46)

where E2 and E0 are universal positive constants. Contrary
to the Hall coefficient, the thermopower depends on a Fermi-
liquid parameter, the quasiparticle weight Z. Since we assume
a doped Mott insulator, we take (for all density of states)
a simple model where Z is proportional to the doping x =
|1 − n|, which gives Z = 0 at half-filling. Hence, we can write

S

T
∝ − 1

|1 − n|
�′

xx[μ̃(n)]

�xx[μ̃(n)]
. (47)

The comparisons that we will make will thus be only very
qualitative since, normally, in DMFT the precise value of Z

depends on the density of states that is used and contains some
information about particle-hole asymmetry.30

For a simple cubic lattice (or any single band with nearest-
neighbor hopping), we may take the derivative of �xx , Eq. (22),
and write

S

T
∝ 1

Z

1
d μ̃N0(μ̃)

�xx(μ̃)
. (48)

The density of states N0, the transport function �xx , and the
quasiparticle weight Z are all positive and thus, as expected
for a particle-hole-symmetric system, S changes sign at n = 1
the value for which μ̃ = 0. For a correlated metal, there is no
ambiguity as Z �= 0 at half-filling and thus S = 0. But, for a
Mott insulator, at n = 1, Z = μ̃ = 0. Using l’Hôpital’s rule in
Eq. (48) then leads to

lim
μ̃→0,n→1

S

T
=

1
dN0(0)

�xx(0)Z′
μ̃=0,n=1

. (49)

Thus, the limiting behavior is determined by the derivative
of Z at half-filling since Z′ = dZ

dn
dn
dμ̃

= 2N0(μ̃) dZ
dn

. Taking Z

exactly equal to |1 − n| for definiteness, the left and right
derivatives differ at n = 1, leading to a discontinuous jump of
S from negative to positive at half-filling with values

lim
μ̃→0,n→1

S

T
= ∓1

2d�xx(0)
. (50)

Figure 3(a) displays the results for the thermopower (48)
using the different definitions of the transport function �xx . S

being antisymmetric with respect to half-filling, we only show
the results for n � 1. In Fig. 3(b), we show only �′

xx/�xx .
The results for the cubic lattice are far from the results for
all the other transport functions. As for the Hall coefficient,
the case (magenta short-long dash) where the Bethe lattice
density of states is used in the infinite-dimensional result (25)
gives the worst results, especially at low density where it does
not reproduce the large thermopower. Hence, the inadequacy
of this approximation for the conductivity noted in Refs. 9
and 10 carries over to the thermopower and calls for great
caution in the interpretation of calculations based on this
approximation.13

VI. CONCLUSION

We have found simple expressions for transport functions
on hypercubic lattices in terms of integrals of power laws
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FIG. 3. (Color online) (a) Limiting low-temperature behavior of
the thermopower S

T
on an arbitrary scale when the system is a Mott

insulator at half-filling. Same conventions as in Fig. 1: simple cubic
lattice (black solid line), the infinite-dimensional hypercubic lattice
(red dash), our expression for the Bethe lattice (blue small dash),
and the Bethe lattice density of states substituted in the infinite-
dimensional result (magenta short-long dash). (b) Same as (a) but
with the prefactor 1/|1 − n| removed.

of the energy weighted by the noninteracting density of states
[Eqs. (22) and (24)]. In particular, we recover the known results
for infinite dimension [Eqs. (25) and (26)]. On hypercubic
lattices, we have also shown that it is possible to use sum rules
to obtain differential equations not only for the conductivity
transport function9 [Eq. (23)], but also for the Hall conductivity
transport function [Eq. (34)]. This has allowed us to generalize
the approach of Chattopadhyay et al.9 and Chung et al.10

to calculate the transport function for the Hall conductivity
on the Bethe lattice [Eq. (44)]. Numerical calculations for
doped Mott insulators in three dimensions in the Fermi-liquid
regime show that the latter transport function [Eq. (44)] gives
a good approximation for the result on the simple cubic lattice.
These calculations also show that substituting the Bethe lattice
density of states in the infinite-dimensional result (26) should
be avoided. The two transport functions that we have calculated
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LOUIS-FRANÇOIS ARSENAULT AND A.-M. S. TREMBLAY PHYSICAL REVIEW B 88, 205109 (2013)

are the only ones that are necessary to obtain all the transport
coefficients.
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APPENDIX A: TRANSPORT FUNCTIONS
FOR THE HYPERCUBIC LATTICE

1. Conductivity transport function �xx(ε)

The dispersion relation for a hypercubic lattice in d
dimensions is given by εk = −2t

∑d
i=1 cos(ki) where we take

the lattice constant a as unity. Differentiating εk [Eq. (7)]
for the conductivity and thermopower transport function
becomes

�xx(ε) = (2t)2
∑

k

sin2(k1)δ(ε − εk). (A1)

There are d sums over wave vector, one for each direction.
Each discrete wave vector sum is assumed normalized so
that it becomes

∫
dk/(2π ) in the continuum. �xx(ε) can be

evaluated by first computing its Fourier transform,31 that we
call X(w),

X(w) =
∫ ∞

−∞
�xx(ε)e−iwεdε

= (2t)2
∑

k

sin2(k1)e−iwεk

= (2t)2

[ ∫ π

−π

dk

2π
ei2tw cos(k)

]d−1∫ π

−π

dk

2π
sin2(k)ei2tw cos(k)

= (2t)2J d−1
0 (2tw)

J1(2tw)

2tw
, (A2)

where J0(s) and J1(s) are Bessel functions. These expressions
are in the literature5 but the last step, namely, obtaining the
transport function in arbitrary dimension from the inverse
Fourier transform of Eq. (A2), remained to be taken. Using
the known relation dJ0(s)

ds
= −J1(s), we obtain d[J0(2tw)]d

d(2tw) =
−d[J0(2tw)]d−1J1(2tw) so that the inverse transform is

�xx(ε) = − 1

2πd

∫ ∞

−∞

1

w

d[J0(2tw)]d

dw
eiwεdw

= − 1

d

∫ ∞

−∞
F (ε − z)G(z)dz, (A3)

where we used the convolution theorem and defined F by

F (ε) = 1

2π

∫
dw eiwε 1

w
= i

2
sgn(ε), (A4)

with sgn the sign function, while G(ε) is defined by

G(ε) = −iε
1

2π

∫ ∞

−∞
dw eiwεJ d

0 (2tw)

= −iε
1

2π

∫ ∞

−∞
dw eiwε

∑
k

e−iwεk

= −iε
∑

k

δ(ε − εk) = −iεN0(ε), (A5)

where we used the properties of the Fourier transform of a
derivative and defined N0(ε) as the noninteracting density of
states. Since for the hypercubic lattice with nearest-neighbor
hopping only, the density of states is even about ε = 0, the
final result is then [Eq. (22)]

�xx(ε) = −1

d

∫ ε

−∞
zN0(z)dz. (A6)

2. Stress tensor ˜�xx(ε)

We now turn to the calculation of �̃xx(ε). It is obtained
from the following relation between �xx(ε) and �̃xx(ε):

d�xx(ε)

dε
=

∑
k

(
∂εk

∂kx

)2
∂δ(ε − εk)

∂ε

= −
∑

k

(
∂εk

∂kx

)2
∂δ(ε − εk)

∂kx

(
∂εk

∂kx

)−1

= −
∫

dkd . . . dk2

(2π )d

∫
dkx

2π

∂εk

∂kx

∂δ(ε − εk)

∂kx

. (A7)

Integrating by parts, we find
∑

k
∂2εk

∂k2
x
δ(ε − εk) so that with the

definition (14) of �̃xx(ε) we obtain Eq. (23), namely,

�̃xx(ε) = d�xx(ε)

dε
= −1

d
εN0(ε). (A8)

It is important to note that the relation �̃xx(ε) = d�xx(ε)/dε

is valid in general and not only for the hypercubic lattice.

3. Hall transport function �x y(ε)

The calculation of �xy(ε) is more involved but we can use
the same kind of approach as for �xx(ε). Evaluating explicitly
the derivatives of εk , we may write Eq. (15) as

�xy(ε)

= (2t)3
∑

k

[sin2(kx) cos(ky) + sin2(ky) cos(kx)]δ(ε − εk)

= 2(2t)3
∑

k

sin2(kx) cos(ky)δ(ε − εk). (A9)

In Fourier space,

Y (w) =
∫ ∞

−∞
�xy(ε)e−iwεdε

= 2(2t)3
∑

k

sin2(k1) cos(k2)�d
α=1e

i2tw cos(kα)

= 2(2t)3i[J0(2tw)]d−2 1

2tw
[J1(2tw)]2. (A10)
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Evaluation of d2J d
0 (2tw)
dw2 will help us rewrite this expression.

Properties of Bessel functions allow us to write

[J0(2tw)]d−2[J1(2tw)]2

= 1

(2t)2d(d − 1)

d2J d
0 (2tw)

dw2

+ 1

d − 1
J d

0 (2tw) − 1

2t(d − 1)

1

w
[J0(2tw)]d−1J1(2tw).

(A11)

Equation (A10) can then be rewritten as

Y (w) = 2i

d(d − 1)

1

w

d2J d
0 (2tw)

dw2
+ 2(2t)2

d − 1

i

w
J d

0 (2tw)

− 2(2t)

d − 1

i

w2
[J0(2tw)]d−1J1(2tw)

≡ Y1(w) + Y2(w) + Y3(w). (A12)

The value of �xy(ε) is then given by the sum of the inverse
Fourier transform of each term in Eq. (A12). The first term on
the right-hand side of Eq. (A12) upon inverse transform can,
once again, be written as a convolution that is called �(1)

xy (ε).
One of the terms in the convolution is given by Eq. (A4)
while the other one coming from the second derivative gives
−ε2N0(ε). Thus, the convolution can be written as

�(1)
xy (ε) = 1

d(d − 1)

[ ∫ ε

−∞
z2N0(z)dz −

∫ ∞

ε

z2N0(z)dz

]
.

(A13)

We can easily show that
∫ ∞
−∞ z2N0(z)dz = ∑

k ε2
k = 2t2d for

the hypercubic lattice. Therefore, we obtain

�(1)
xy (ε) = 1

d(d − 1)

[
2
∫ ε

−∞
z2N0(z)dz − 2t2d

]
. (A14)

The second term �(2)
xy (ε) on the right-hand side of Eq. (A12)

can also be written as a convolution of inverse transforms. The
term with J0 gives N0(ε) and the other term is again Eq. (A4).
We thus may write

�(2)
xy (ε) = − (2t)2

(d − 1)

[∫ ε

−∞
N0(z)dz −

∫ ∞

ε

N0(z)dz

]
. (A15)

But, we know that the integral of the DOS over all frequencies
is equal to one

∫ ∞
−∞ N0(z)dz = 1 and thus

�(2)
xy (ε) = − (2t)2

(d − 1)
2
∫ ε

−∞
N0(z)dz + (2t)2

(d − 1)
. (A16)

Finally, for �(3)
xy (ε) we find the convolution

�(3)
xy (ε) = 2

d(d − 1)
i

1

2π

∫ ∞

−∞

1

w2

d[J0(2tw)]d

dw
eiwε

= 2

d(d − 1)
iH (ε) ∗ G(ε), (A17)

where G(ε) is given by Eq. (A5) and H (ε) =
1

2π

∫
1

w2 e
iwεdw = − ε

2 sgn(ε). This leads to

�(3)
xy (ε) = −2

ε

d(d − 1)

∫ ε

−∞
zN0(z)dz

+ 2

d(d − 1)

∫ ε

−∞
z2N0(z)dz − 2t2

(d − 1)
. (A18)

The final result (24) is obtained by adding �(1)
xy , �(2)

xy , and
�(3)

xy :

�xy(ε) = 2ε

(d − 1)
�xx(ε) + 4

d(d − 1)

∫ ε

−∞
z2N0(z)dz

− 2
(2t)2

(d − 1)

∫ ε

−∞
N0(z)dz. (A19)

We have thus succeeded in writing sums over delta functions
in k space as one-dimensional integrals over the density of
states in energy space.

APPENDIX B: INTERACTING TRANSPORT FUNCTIONS

In this appendix, we give details of the derivation for the
longitudinal and transverse interacting transport functions (37)
and (39).

1. Longitudinal conductivities

Following Ref. 32, Eq. (35) for �L
tr (ω),

�L
tr (ω) = 1

π2

∫
dε �xx(ε)

[
Im

{
1

(z − ε)

}]2

, (B1)

where z ≡ ω + μ − �(ω) can be rewritten with the help of
the Green’s functions (38) and their derivatives since

Re

{
∂GL

tr (z)

∂z

}
= −

∫
dε

�xx(ε)

|z|2 − 2ε Re{z} + ε2

+ 2
∫

dε
�xx(ε)(Im{z})2

(|z|2 − 2ε Re{z} + ε2)2
(B2)

and

Im
{
GL

tr (z)
} = Im{z∗}

∫
dε

�xx(ε)

|z|2 − 2ε Re{z} + ε2
.

Finally, using integration by parts and Eq. (23) for d�xx (ε)
dε

, one
can show that

∂GL
tr (z)

∂z
= 1

d
[1 − zG(z)] (B3)

and obtain the final result32 (37).

2. Transverse conductivities

The case of the transverse conductivities is similar to the
above. We wish to rewrite the transverse transport function as
defined from Eq. (36) by

�T
tr (ω) ≡ − 1

π3

∫
dε �xy(ε)

[
Im

{
1

z − ε

}]3

. (B4)
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We first define a transverse transport Green’s function in the
form

GT
tr (z) =

∫
dε

�xy(ε)

z − ε
. (B5)

Here, we will need both the first and the second derivatives
of GT

tr . Integrating by parts, computing d�xy (ε)
dε

for the hyper-
cubic lattice from Eq. (24), using Eq. (B3) and �xx(∞) = 0,
we find

∂GT
tr (z)

∂z
= −

∫
dε

�xy(ε)

(z − ε)2

= − 2z

d(d − 1)
[1 − zG(z)] + 2

d − 1
GL

tr (z)

− 2(2t)2

d − 1
G(z). (B6)

Taking the derivative of that equation with respect to z and
using Eq. (B3), the second derivative takes the form

∂2GT
tr (z)

∂z2
= 2z

d(d − 1)
G(z) +

[
2z2

d(1 − d)
− 2(2t)2

d − 1

]
∂G(z)

∂z
.

(B7)

To see that the interacting transport function can be
rewritten with the above derivatives, note that

Im

{
∂2GT

tr (z)

∂z2

}
= Im

{
2
∫

dε
�xy(ε)

(z − ε)3

}
= 8π3�T

tr (z) + 6

Im{z∗}
∫

dε
�xy(ε)(Im{z∗})2

(|z|2 − 2ε Re{z} + ε2)2
.

(B8)

Using the expressions for Re{ ∂GT
tr (z)
∂z

} and Im{GT
tr (z)} that can

be obtained by replacing �xx by �xy in Eqs. (B2) and (B3),
Eq. (B8) takes the form

−8π3�T
tr (z) = −Im

{
∂2GT

tr (z)

∂z2

}
− 3

Im{z}Re

{
∂GT

tr (z)

∂z

}
+ 3

(Im{z})2
Im

{
GT

tr (z)
}
. (B9)

To obtain the desired result (39), we finally replace the
derivatives of GT

tr (z) by the expressions (B6) and (B7) that
we obtained above for the hypercubic lattice.
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